<ul id="mouqm"></ul>
  • <strike id="mouqm"></strike>
    <ul id="mouqm"></ul>

    圓錐的體積教學設計意圖(14篇)

    時間:2025-05-07 作者:儲xy
    簡介:百分文庫小編為你整理了這篇《圓錐的體積教學設計意圖(14篇)》及擴展資料,但愿對你工作學習有幫助,當然你在百分文庫還可以找到更多《圓錐的體積教學設計意圖(14篇)》。

    人的記憶力會隨著歲月的流逝而衰退,寫作可以彌補記憶的不足,將曾經的人生經歷和感悟記錄下來,也便于保存一份美好的回憶。寫范文的時候需要注意什么呢?有哪些格式需要注意呢?以下是小編為大家收集的優秀范文,歡迎大家分享閱讀。

    圓錐的體積教學設計意圖篇一

    并能運用公式正確地計算圓錐的體積,發展學生的空間觀念。

    教學難點:圓錐的體積應用

    學具準備:等底等高的圓柱和圓錐,水和沙,多媒體課件

    教學時間:一課時

    教學過程:

    一、復習

    1、圓錐有什么特征?(課件出示)

    使學生進一步熟悉圓錐的特征:底面,側面,高和頂點。

    2、圓柱體積的計算公式是什么?

    指名學生回答,并板書公式:“圓柱的體積=底面積×高”。同時滲透轉化方法在數學學習中的應用。

    二、導人新課

    出示一個圓錐形的谷堆,給出底面直徑和高,讓學生思考如何求它的體積。

    板書課題:圓錐的體積

    三、新課

    1、教學圓錐體積的計算公式。

    師:請大家回億一下,我們是怎樣得到圓柱體積的計算公式的?

    指名學生敘述圓柱體積計算公式的推導過程,使學生明確求圓柱的體積是通過切拼成長方體來求得的。

    師:那么圓錐的體積該怎樣求呢?能不能也通過已學過的圖形來求呢?

    先讓學生討論一下用什么方法求,然后指出:我們可以通過實驗的方法,得到計算圓錐體積的公式。

    教師拿出等底等高的圓柱和圓錐各一個,“大家看,這個圓錐和圓柱有什么共同的地方?”

    然后通過演示后,指出:“這個圓錐和圓柱是等底等高的,下面我們通過實驗,看看它們之間的體積有什么關系?”

    學生分組實驗。

    匯報實驗結果。先在圓錐里裝滿水,然后倒入圓柱。正好3次可以倒滿。

    多指名說

    接著,教師課件邊演示邊敘述:現在圓錐和圓柱里都是空的。請大家注意觀察,看看能夠倒幾次正好把圓柱裝滿?

    問:把圓柱裝滿一共倒了幾次?

    生:3次。

    師:這說明了什么?

    生:這說明圓錐的體積是和它等底等高的圓柱的體積的。

    多找幾名同學說。

    板書:圓錐的體積=1/3 ×圓柱體積

    師:圓柱的體積等于什么?

    生:等于“底面積×高”。

    師:那么,圓錐的`體積可以怎樣表示呢?

    引導學生想到可以用“底面積×高”來替換“圓柱的體積”,于是可以得到圓錐體積的計算公式。

    板書:圓錐的體積= 1/3 ×底面積×高

    師:用字母應該怎樣表示?

    然后板書字母公式:v=1/3 sh

    師:在這個公式里你覺得哪里最應該注意?

    教學例1課件出示)一個圓錐的零件,底面積是19平方厘米,高是12厘米。這個零件的體積是多少?

    1/3×19×12=76((立方厘米))

    答:這個零件體積是76立方厘米。

    做一做:課件出示,學生回答后,教師訂正。

    1、一個圓錐的底面積是25平方分米,高是9分米,它的體積是多少?

    2、已知圓錐的底面半徑r和高h,如何求體積v?

    3、已知圓錐的底面直徑d和高h,如何求體積v?

    4、已知圓錐的底面周長c和高h,如何求體積v?

    5、一個圓錐的底面直徑是20厘米,高是9厘米,它的體積是多少?

    例2課件出示)在打谷場上,有一個近似于圓錐的小麥堆,測得底面直徑是4米,高是1.2米。每立方米小麥約重735千克,這堆小麥大約有多少千克?(得數保留整千克)

    判斷:課件出示,學生回答后,教師訂正。

    1、圓柱體的體積一定比圓錐體的體積大( )

    2、圓錐的體積等于和它等底等高的圓柱體積的 ( ) 。

    3、正方體、長方體、圓錐體的體積都等于底面積×高。 ( )

    4、等底等高的圓柱和圓錐,如果圓柱體的體積是27立方米,那么圓錐的體積是9立方米( )

    四、教師小結。

    這節課我們學習了哪些知識?你還有什么問題嗎?

    五、作業。課本練習

    圓錐的體積教學設計意圖篇二

    (1)掌握錐體的等積定值,錐體的體積公式。

    (2) 理解"割補法"求體積的思想,培養學生發現問題,解決問題的能力。

    公式的推導過程,即"割補法"求體積。

    三棱柱模型、多媒體

    1、復習祖暅 原理及柱體的體積公式。

    2、等底面積等高的任意兩個錐體的體積。

    (類比于柱體體積公式的得出)。首先研究等底面積等高的任意兩個錐體體積之間的關系。

    取任意兩個錐體,設它們的底面積都是s,高都是h。

    (創造祖暅 原理的條件)把這兩個錐體放在同一個平面α上。這時它們的頂點都在和平面α的任意平面去截它們,截面分別與底面相似,設截面和底面頂點的距離是h,截面面積分別是s1、s2,那么:

    ∵s1/s=h12/,

    ∴s1/s=s2/s,s1=s2。

    根據祖日恒 原理,這兩個錐體的體積相等,由此得到下面的定理:

    定理,等底面積等高的兩個錐體的體積相等。

    3、三棱錐的體積公式

    為研究三棱錐的體積,可類比于初中三角形面積的求法。

    在初中,學習三角形的面積公式之前,已知有平行四邊形的面積公式,為此,將δabc"補"成和它同底等高的平行四邊形abdc,然后沿其對角線bc,將平行四邊形"分"成兩個三角形,由對稱性,得到的δabc的面積為平行四邊形面積的一半,即為:sδabc=1/2ah,(a其底邊長,h為高)

    而今,欲求三棱錐的體積,亦可類比地借助于已知的柱體體積公式。

    能否將三棱錐"補"成一個底面積為s,高為h的.三棱柱呢?

    [可以]以aa'為側棱,以δabc為底面補成一個三棱柱。

    也采用"分"的方法,這個三棱柱可分成怎樣的三棱錐呢?

    (圖形沒有打印)

    [引導學生觀察分析]將三棱柱分割成三個三棱錐,如圖就是三棱錐1,和另兩個三棱錐2、3。

    三棱錐1、2的底δaba'、δb'a'b的面積相等,高也相等(頂點都是c)。三棱錐2、3的底δb'cb'、δc'b'c的面積相等,高也相等。(頂點都是a')。

    ∴v1=v2=v3=1/3v三棱柱 ∵v棱柱=sh ∴v三棱柱=1/3sh

    最后,因為和一個三棱錐等底面積等高的任何錐體都和這個三棱錐的體積相等,所以得到下面的定理。

    定理:如果一個錐體(棱錐、圓錐)的底面積是s,高是h,那么它的體積是:v錐體=1/3sh。

    推論:如果圓錐的底面半徑是r,高是h,那么它的體積是: v圓錐=1/3πr2h

    4、錐體體積公式的應用。

    練習1:正四棱錐底面積是s,側面積為q,則其體積為: 。

    練習2:圓錐的全面積為14πcm2,側面展開圖的中心角為60°,則其體積為 。

    練習3:邊長為a的正方形,以它的一個頂點為圓心,邊長為半徑畫弧,沿弧剪下一個扇形,用這個扇形圍成一個圓錐筒,求它的體積。

    5、課堂小結:1°割補法求三棱錐的思想。

    2°錐體的體積公式。

    圓錐的體積教學設計意圖篇三

    《圓錐的體積》是九年義務教育六年制小學數學第十一冊第三單元的內容。

    1、通過讓學生小組合作探究,利用不同的方法測量出圓錐的體積。體驗到計算圓錐體積的計算公式v=1/3sh是最簡便的方法。

    2、鍛煉學生的操作能力,估算能力,評價能力,更好的發展他們的創新能力。

    3、培養學生的合作意識及主動探索知識的精神。

    讓學生自己親身體驗到計算圓錐體積的不同方法。從而理解計算公式v=1/3sh,并感受到計算公式的簡便。

    教學難點:能利用不同方法計算不同物體的體積。知識的活學活用。

    1、個學生一組,每組各有量杯;量桶;一升的容器;等底等高的圓柱與圓錐器皿;大米,沙子或水;1立方厘米的小方塊若干。

    2、教學軟件。

    一、創設情景,激趣引新。

    1、首先教師手中拿一圓柱體問:“同學們,老師想知道這個圓柱體的體積你們能幫助我嗎?”

    (學生踴躍舉手說明。可以先測量出圓柱的半徑與高。再用圓周率乘半徑的平方得到底面積,最后乘以高就可以了。)

    2、教師表示贊同,并抓住這一契機拿出于剛才圓柱等底等高的圓錐,問:“那老師這里還有一個圓錐體,它的體積應該怎樣計算呢?你們知道嗎?”(學生齊答不)那你們想不想研究呢?(學生齊答想)好,下面我們就一起來研究圓錐的體積該怎樣計算。

    〈設計意圖:通過以舊引新,不僅讓學生感受到圓錐與圓柱的聯系,而且還能體驗得到新知的親切。從而產生學習新知的欲望。〉

    二、小組合作,探究學習。

    1、動手操作,測量圓錐體的`體積。

    要求:每組同學,利用桌面上的工具(量杯,量桶,與圓錐等底等高圓柱容器,大米,沙子,水,1立方分米小方塊)測量出自己組內的圓錐體的體積。測量物體是容器的厚度不計。

    〈全體學生在動手操作,互相商量解決問題的辦法。教師巡回指導。課堂呈現小組探究學習的熱烈場面。〉

    3、分組匯報不同的方法。

    〈學生在匯報時可邊講解邊示范〉

    方法一:可以利用量杯。首先把圓錐體容器內裝滿水,然后把它倒入量杯內,我們看到水面的刻度就是水的體積也就是圓錐體的體積。

    方法二:利用手中的一立方厘米的小木塊進行估算。

    方法三:受《曹沖稱象》的啟示。利用一生的容器。把它裝滿水后將圓錐體放入,溢出水后拿出圓錐體。這時看容器空出來的地方為長方體,用一立方分米減去長方體的體積就可以得到圓錐體的體積了。

    方法四:把圓錐體內裝滿大米、沙子或水,然后將它到入與它等底等高的圓柱體容器里。發現到了3次正好到慢。也就是說,圓錐體的體積等于與它等底等高的圓柱體的三分之一。用字母表示為:v=1/3sh

    〈設計意圖:通過討論研究和動手操作,發展學生的創新能力,和解決實際問題的能力。〉

    (1)在講解第四個方法時,教師可以向學生質疑,在操作此過程時有一個非常重要的前提條件是什么?為什么圓錐體的體積等于與它等底等高圓柱體體積的三分之一?

    (2)學生再次在小組內操作探究。

    (3)匯報結論。

    (4)微機演示。

    當等底不等高時,當等高不等底時,當底和高都不相等時,出現的結果是怎樣的。

    〈設計意圖:通過學生探究與微機演示,使學生直觀的感受圓錐體與圓柱體之間關系。加深對圓錐體體積計算公式的理解。〉

    4、評價以上各種辦法

    同學們的結論是用公式計算比較方便。

    三、解決實際問題

    (問題一)

    1、各小組量一量,算一算自己組內的圓錐體的體積。(測量,計算時都要保留整數)

    2、匯報結果。

    先測量出圓錐體的直徑,算出底面積。再測量出高,算出它的體積。算式:1/3x[3.14x(10/2)x10]≈262立方厘米(忽略厚度,即把溶劑可看作體積)

    (問題二)

    1、現知道手中的圓錐體每立方厘米約裝0.9克大米,計算這個圓錐體容器可裝多少克大米?

    2、匯報結果。

    用每立方厘米裝大米的克數乘圓錐的體積。算式:0.9x262≈236克

    3、驗證計算結果

    用稱稱一稱,比較一下結果。

    4、討論兩次結果為什么不同。

    由于測量時厚度不計,計算時是近似值。都存在誤差。

    〈設計意圖:通過測量,計算等環節,發展學生的應用意識及估算的能力。〉

    (問題三)

    利用圓錐體積公式計算。

    (1)r=2cm h=6cm v=?(2)d=6m h=5mv=?

    (問題四)

    計算不規則物體體積或容積。(直說出計算的方法即可)

    1、用什么方法計算出葫蘆能裝多少水?

    2、胡蘿卜的體積怎樣計算?

    3、不規則的零件體積計算?

    〈設計意圖:結合生活實際讓學生感受到數學與生活的聯系。及解決實際問題的不同方法及策略,培養創新能力。〉

    四、總結全課

    說說你的收獲,鼓勵學生學習知識要活學活用,大膽動腦,勇于創新。

    圓錐的體積教學設計意圖篇四

    圓錐的體積是傳統的教學內容,對這部分內容的編排,在內容和要求方面沒有大的變化,實驗教材的編排體現了新的教學理念,使得教材的面貌發生了較大的變化。具體來說有這樣幾個變化:

    (1)加強了所學知識與現實生活的聯系。教材通過列舉大量現實生活中具有圓錐體特征實物直觀引入,讓學生觀察思考這些物體形狀的共同的特點,并從實物中抽象出它們的幾何圖形。當學生認識它們的主要特征后,又讓學生從生活中尋找更多的具體如此特征的實物,從而加強所學知識與現實生活的聯系,進一步感受幾何知識在生活中的廣泛應用。

    (2)加強了對圖形特征,體積、方法的探索過程。在以往的教學中,這部分內容的編排更側重于理解和掌握圖形的特征、體積的計算方法,而對于促進學生空間觀念的發展在學習素材和實踐操作方面都顯不夠。實驗教材加強了動手實踐、自主探索、,讓學生經歷知識的形成過程,使學生獲得較多的有關自主探索和空間觀念的訓練機會。

    (3)加強了學生在操作中對空間與圖形問題的思考。

    加強了學習方法的引導,鼓勵學生獨立思考,培養學生的學習能力。教材注意鼓勵學生運用已有的知識對新學習的內容進行聯想和猜測,再通過實驗和推理驗證,培養學生良好的學習和思考習慣。如:聯系圓柱體公式鼓勵學生猜測圓錐體積的計算方法。圓錐體積的教學是按照引出問題聯想、猜測實驗探究導出公式的思路設計的,在猜測的基礎上進行試驗和推理,使學生受到研究方法和思維方式的訓練,發展和提高自主學習的能力。

    1、理解并掌握圓錐的體積的計算方法,能運用公式解決簡單的實際問題。

    2、提高學生實際應用的能力。

    3、培養學生利于學習,勇于探索的精神。

    圓錐的體積公式的推導過程。

    進一步理解圓錐的體積公式,能運用公式進行計算,能解決簡單的實際問題。

    合作交流自主探究動手操作

    同樣的圓柱形容器若干,與圓柱等底等高的圓錐,與圓柱等高不等底的圓錐,與圓柱不等高不等底的圓錐,沙子和水

    一、復習導入

    1、提問:援助的體積公式是什么?

    2、出示圓錐的幾何圖形,學生說出圓錐的底面、側面和高

    3、導入:同學們,前面我們認識了圓錐,掌握了它的特征,那么,圓錐的體積公式怎樣計算呢?這節課我們就來研究這個問題。(板書課題:圓錐的體積)

    二、探究新知

    (一)指導探究圓錐的體積計算公式

    1.師:下面我們用實驗來探究圓錐體積的計算方法。

    (1)老師給每組同學都準備了圓柱體和圓錐體容器、沙子和水

    (2)實驗要求

    做一做:實驗時先往圓錐里裝滿水往圓柱里倒,直到把圓柱里得倒滿水為止。

    比一比:實驗前比一比援助和圓錐底面和高的關系。

    想一想:通過實驗你發現了什么?

    2.學生分組試驗,邊實驗邊做記錄

    3.學生匯報試驗結果

    4.分析數據,做出判斷

    觀察全班數據,發現了大多數情況下圓柱能裝下三個圓錐的沙和水

    5.進一步觀察分析,什么情況下圓柱能裝下三個圓錐的沙和水

    6.教師強調:只要是等底等高的就存在上面的現象。

    7.師演示(實驗)等底等高的圓柱和圓錐

    板書:v圓柱=3v圓錐或v圓錐=1/3v圓柱

    8.你們能用字幕表示他們的關系么?

    v圓錐=1/3v圓柱=1/3sh

    9.要求圓錐的體積必須知道什么?

    (二)解決實際問題

    導言:同學們對本節課的知識學得很好,下面請同學們解決一下實際問題。

    出示例3:

    (1)指名讀題,分析題意

    (2)指兩名同學板演,其他齊做

    (3)匯報,說解題思路

    (4)拓展:如果就給出這堆沙子,沒有任何數據,說說你解決這個問題的辦法。

    (三)質疑

    三、鞏固練習

    (一)實戰訓練營:填空

    1、圓錐的底面是一個()形,從圓錐的頂點到底面圓心的距離是圓錐的()。

    2、圓錐的體積等于和它()的圓柱體體積的(),所以圓錐體的體積()

    3、把一個圓柱削成一個最大的圓錐,這個圓錐的體積是原來圓柱體積的(),削去部分體積是圓柱體體積的()。

    4、一個圓錐體體積是5.4立方分米,與它等底等高的圓柱的體積是()。

    (二)數學門診部:判斷對錯

    1、兩個圓錐體的底面積相等,他們的體積也相等.()

    2、圓錐的體積是圓柱體積的1/3。()

    3、圓柱的體積一定大于圓錐的體積。()

    4、一個圓錐與一個圓柱等底等體積,那么圓錐的底面積是圓柱的1/3。()

    (三)求下列圓錐的體積

    1、底面半徑是2cm,高是8cm

    2、底面直徑是2dm,高是5.8dm

    3、底面周長是6.28cm,高是7.6cm

    4、高是16dm,底面直徑是高的5/8。

    (四)解決實際問題

    一個圓錐形小麥堆,底面周長是31.4m,高是4m,如果每立方米小麥重750kg,那么這堆小麥重多少千克?

    (五)維訓練題

    一個圓錐形的小麥堆,量得其占地面積是12平方米,高是1.8米,把這堆小麥裝入一個糧倉里,正好站這個糧倉容積的2/15,這個糧倉得的容積是多少立方米?

    四、總結

    這節課你有哪些收獲?

    五、作業

    練習四3478題

    板書設計圓錐體的體積

    v圓柱=3v圓錐或v圓錐=1/3v圓柱

    v圓錐=1/3v圓柱=1/3sh

    圓錐的體積教學設計意圖篇五

    九年義務教育六年制小學數學第十二冊p32頁。

    1、通過練習,使學生進一步理解和掌握圓錐體積公式,能運用公式正確迅速地計算圓錐的體積。

    2、通過練習,使學生進一步深刻理解圓柱和圓錐體積之間的關系。

    3、進一步培養學生將所學知識運用和服務于生活的能力。

    靈活運用圓柱圓錐的有關知識解決實際問題。

    同教學難點。

    練習的過程是學生將所學知識內化、升華的過程,練習過程中既有基礎知識的合理鋪墊,又有不同程度的提高,練習的內容有明顯的階梯性。力求使不同層次的學生都學有收獲。

    一、復習鋪墊、內化知識。1. 圓錐體的體積公式是什么?我們是如何推導的?

    2.圓柱和圓錐體積相互關系填空,加深對圓柱和圓錐相互關系的理解。

    (1)一個圓柱體積是18立方厘米,與它等底等高的圓錐的體積是()立方厘米。

    (2)一個圓錐的體積是18立方厘米,與它等底等高的圓柱的體積是()立方厘米。

    (3)一個圓柱與和它等底等高的圓錐的體積和是144立方厘米。圓柱的體積是()立方厘米,圓錐的體積是()立方厘米。

    3.求下列圓錐體的體積。

    (1)底面半徑4厘米,高6厘米。

    (2)底面直徑6分米,高8厘米。

    (3)底面周長31.4厘米.高12厘米。

    4、教師根據學生練習中存在的問題,集體評講。同座位的同學先說一說圓錐體積公式的推導過程。

    學生獨立練習,互相批改,指出問題。

    學生交流一下這幾題在解題時要注意什么?

    二、豐富拓展、延伸練習。1.拓展練習:

    (1)把一個圓柱體木料削成一個最大的圓錐體木料,圓錐的體積占圓柱體的幾分之幾?削去的部分占圓柱體的幾分之幾?

    (2)一個圓柱體比它等底等高的圓錐體積大48立方厘米,圓柱體和圓錐體的體積各是多少?

    2.完成31頁第5題。討論下列問題:

    (1)圓柱和圓錐體積相等、底面積也相等,圓柱的高和圓錐的高有什么關系?

    (2)圓柱和圓錐體積相等、高也相等,圓柱的底面積和圓錐的底面積有什么關系?

    3.分組討論:圓柱的底面半徑是圓錐的2倍,圓錐的高是圓柱的高的2倍,圓柱和圓錐的體積之間有什么倍數關系?

    學生分組討論,教師參與其中,以有疑問的方式參與討論。

    三、充分提高,全面升華。

    1.展示一個圓錐形的沙堆,小組討論一下用什么方法可以測量出它的體積。

    2.教師給每一組一小袋米。讓學生在桌子上堆成一個近似的圓錐體,通過合作測量的形式求出它的體積。

    3.討論練習八蒙古包所占空間的大小的方法。

    (1)蒙古包是由哪幾個部分組成的?

    (2)上部的圓錐和下部的圓柱有哪些相同的地方,有哪些不同的地方?

    (3)同學們能獨立地求出蒙古包所占的空間的大小嗎?請試一試。

    4.交流一下本節課的收獲。

    學生分組討論后動手實踐并計算。

    學生先交流。

    四、全課總結,內化知識。

    1.提問:

    (1)同學們掌握了圓錐體的哪些知識?

    (2)你用圓錐體的體積的有關知識解決現實生活中的哪些問題?

    2.學有余力的同學思考38頁思考題。

    3.作業:練習八6、7、8

    學生獨立練習

    圓錐的體積教學設計意圖篇六

    義務教育課程標準實驗教科書(北師大版)六年級下冊第11~13頁

    1、知識技能目標:

    ◆使學生探索并初步掌握圓錐體積的計算方法和推導過程;

    ◆使學生會應用公式計算圓錐的體積并解決一些實際問題。

    2、思維能力目標:

    ◆提高學生實踐操作、觀察比較、抽象概括的能力,發展空間觀念。

    3、情感態度目標:

    ◆使學生在經歷中獲得成功的體驗,體驗數學與生活的聯系。

    重點:使學生初步掌握圓錐體積的計算方法并解決一些實際問題

    難點:探索圓錐體積的計算方法和推導過程。

    1、多媒體課件。

    2、等底等高、等底不等高、等高不等底的圓錐和圓柱共六套,沙、米,實驗報告單;帶有刻度的直尺,繩子等。

    (一)創設情境,導入新課

    1、故事情景引發猜想

    電腦呈現出動畫情境(伴圖配音)。

    炎熱的夏天,小明和小強去“廣場超市”的 冷飲專柜買冰淇淋,圓錐形的冰淇淋標價是0.8元,圓柱形的標價2元。于是,他們兩個為買哪一種形狀的冰淇淋爭執起來。同學們,你們能幫他們解決到底買哪種形狀的冰淇淋更合算嗎?(圖中圓柱形和圓錐形的雪糕是等底等高的。)

    (學生回答自己的猜想,有說買圓錐形的,有說買圓柱形的)

    教師:學完今天的內容后,同學們就能正確解決了!

    2、圓錐實物揭示課題

    ①教師出示一筒 沙,師:將這筒沙倒在桌上,會變成什么形狀?

    (學生猜想后教師演示)

    ②師:在這堂課上,你希望學到哪些知識呢?

    (生自主回答,確立學習目標)

    ③揭題:圓錐的體積

    師:好,我們一起努力吧!

    (二)自主探索,合作交流

    1、直觀引入直覺猜想

    (1)教師演示刨鉛筆:把一支圓柱形鉛筆的筆頭刨成圓錐形。

    (2)引導學生觀察,并思考:你覺得圓錐的體積與相應的圓柱體積之間有聯系嗎?你認為有什么聯系?

    ①教師鼓勵學生大膽猜想。(生說可能的情況)

    ②師:你們是怎樣理解“相應的”一詞的?說說你的看法。

    生說后,師總結:“相應的”,即圓錐與圓柱是等底等高的。(用實物演示給生看)

    2、實驗探索發現規律

    (1)小組討論填寫材料單,有順序地領取材料

    學生分6組操作實驗,教師巡回指導。(其中4個小組的實驗材料:沙子、米、等底等高的圓柱形和圓錐形容器各一個;另外2個小組的實驗材料:沙子、米等,等底不等高和等高不等底的圓柱形和圓錐形容器各一個)

    (2)小組合作實驗,并填寫實驗報告單。

    實驗方法

    發現結果

    第一次實驗

    第二次實驗

    第三次實驗

    結論:

    (3)匯報結果,實物投影展示實驗報告單。

    (4)組際交流,得出結論:

    結論1:圓錐的體積v等于和它等底等高圓柱體積的三分之一。

    結論2:等底不等高的圓錐體與圓柱體,圓錐的體積是圓柱體積的二分之一。

    結論3:等高不等底的圓錐體與圓柱體,圓錐的體積是圓柱體積的四分之一。

    結論4:圓柱的體積正好是圓錐體積的3倍。

    結論5:圓柱的體積是等底等高的圓錐體積的3倍。

    ……

    師:同學們實驗的結論各不相同,到底哪組的結論對呢?

    (各小組紛紛敘述自己小組的實驗過程、結論;說明自己小組的準確性,學生的思維處于高度集中狀態)。

    (5)參與處理信息。

    圍繞三分之一或3倍關系的情況討論:

    師:我們先來看得出三分之一或3倍關系的這幾個小組;請小組代表說說他們是怎樣通過實驗得出這一結論的?

    (請他們拿出實驗用的器材,自己比劃、驗證這個結論。突出他們小組的圓柱和圓錐是等底等高的)

    師:其他小組得出的結論不同,是不是由于實驗過程或結論有錯誤呢?我們也請小組代表說說你們的看法。

    (生說明他們的過程和結論都是對的,只是他們的圓錐和圓柱不是即等底又等高的)。

    師:總結以上各個小組的看法,我們可以得出什么樣的結論?

    生1:圓錐的體積等于和它等底等高圓柱體積的三分之一。

    生2:圓柱的體積是等底等高的圓錐體積的3倍。

    生3:我認為第一種說法較合理,強調了圓錐體積的求法。

    ……

    師總結并板書:

    圓錐的體積等于和它等底等高的圓柱體積的1/3。

    3、啟發引導推導公式

    師:對于同學們得出的結論,你能否用數學公式來表示呢?

    生:因為圓柱的體積計算公式v=sh;所以我們可以用1/3 sh表示圓錐的體積。

    師:其他同學呢?你們認為這個同學的方法可以嗎?

    生:可以。

    師:那我們就用1/3 sh表示圓錐的體積。

    計算公式:v= 1/3 sh

    >師:(1)這里sh表示什么?為什么要乘1/3?

    (2)要求圓錐體積需要知道哪兩個條件?

    生回答,師做總結

    4、簡單應用嘗試解答

    例1:(課件出示教材情景圖)在打谷場上,有一個近似于圓錐的小麥堆,底面半徑是2米,高是1.5米。你能計算出小麥堆的體積嗎?

    (生獨立列式計算全班交流)

    (三)鞏固練習,運用拓展

    1、試一試

    一個圓錐形零件,它的底面直徑是10厘米,高是3厘米,這個零件的體積是多少立方厘米?

    2、練一練

    計算下面各圓錐的體積:

    3、實踐性練習

    師:請你們將做實驗時裝在圓柱容器里的沙(或米)倒出,堆成一個圓錐形沙(米)堆,小組合作測量計算它的體積。

    4、開放性練習

    一段圓柱形鋼材,底面直徑10厘米,高是15厘米,把它加工成一個圓錐零件。根據以上條件信息,你想提出什么問題?能得出哪些數學結論?(可小組討論)

    (四)整理歸納,回顧體驗

    1、上了這些課,你有什么收獲?(互說中系統整理)

    2、用什么方法獲取的?你認為哪組表現最棒?

    3、通過這節課的學習,你有什么新的想法?還有什么問題?

    (五)問題解決。(電腦呈現出動畫情境)

    小明和小強到底買哪種形狀的冰淇淋更合算呢?

    師:誰能幫他們解決這個問題呢?

    (學生說出買圓柱形的冰淇淋更合算的理由。)

    圓錐的體積

    圓錐的體積等于和它等底等高的圓柱體積的1/3。

    《數學課程標準》指出:“有效的數學學習活動不能單純地依賴模仿和記憶,動手實踐、自主探索與合作交流是學生學習數學的重要方式。”因此,在教學圓錐體積計算時,一改以前教師演示或在教師指令下實驗的做法;采取提供學生材料和機會,引導學生自主探究的學習方式。具體表現在:

    (1)密切數學與生活的聯系,富有兒童情趣。

    從學生熟悉的生活故事引入,為新知識作好鋪墊和準備。又從刨鉛筆直觀引入,引發學生大膽猜想,學生的主動性,探究性得到培養。最后的問題解決回歸于生活,實現了叢生活中來,又服務于生活的指導思想。

    (2)在經歷“錯誤”之中歷煉思維

    在平時的課堂教學中,學生往往會出現很多錯誤性的東西,比如:錯誤的認識、錯誤的過程、錯誤的結論等。很多老師不是“遇錯即糾”,就是“遇錯即批”,其實大可不必,因為錯誤之中也有可以充分利用的寶貴資源。“授人以魚,不如授之以漁”。學生學習數學不僅要學會題的解法,更要懂得解法的來龍去脈。我們要利用“錯誤”這一資源讓學生思考問題,經歷碰壁,最終找到解決問題的方法,把思考的實際過程展現給學生,讓學生經歷思維的碰撞,真正關注學習的過程,幫助他們理解和掌握數學思維和方法。

    為了使學生對“等底等高”這一條件能牢固掌握并深刻理解,在分發學具時,我有意將等底等高、等底不等高和等高不等底的三組不同的圓錐形和圓柱形容器分發給各小組,學生通過動手操作后,得出的結論大不相同,在學生匯報的過程中,意見發生了重大分歧,不同結論的各小組都堅持自己的結論準確無誤,認知出現了激烈的沖突,此時,我并沒有給出評判,而是要求學生認真去觀察、比較、發現各自小組的圓錐和圓柱有什么相同或不同的地方,通過觀察、比較,最后終于得出只有在等底等高的條件下圓錐的體積才等于圓柱體積的三分之一。這樣做既圓滿地推導出了圓錐的體積公式,又促進了學生實踐能力和批判意識的發展。而這些目標的實現,完全是利用“錯誤”這一資源產生的效果

    (3)學習過程中揭示了一般科學的研究方法:

    提出問題——直覺猜想——實驗探索——合作交流——實驗驗證——得出結論——實踐運用。這為以后的探究學習提供了一個基本方法,使學生在自主探索中掌握了知識,同時獲得了最廣泛的數學活動經驗、思想和方法,更發展了學生的反思意識、小組自我評價意識。課堂中,啟發學生提問,猜想,動手測量,注重了解決問題能力的培養,學生體驗到了成功的快樂。

    縱觀本節課的設計,運用現代教學理論,以新課程的理念指導教學,較好的處理了主導和主體、知識和能力、過程和結論的關系,充分調動了學生的積極性,引導全體學生動腦、動手、動口參與學習的全過程。整節課教學目標明確,教學層次清楚。結構嚴謹,重點突出。

    圓錐的體積教學設計意圖篇七

    教材內容的分析:本課“圓錐的認識和體積”是在學生學習了圓柱體積的基礎上進行的。教學時首先認識、理解圓錐體的特征,直觀又形象。然后通過用空心圓錐向空心圓柱的容器里倒水的實驗得到圓錐的體積公式。進而培養學生的主動探究能力和合作精神。

    (1)掌握圓錐特征、引導學生通過實驗推導出圓錐體積計算公式,并能運用公式計算圓錐的體積,解決有關的實際問題;

    (2)培養學生的觀察、邏輯思維能力和初步的空間觀念;

    (3)向學生滲透知識間可以相互轉化的辯證唯物主義思想,學習將新知識轉化為原有知識的.學習方法。

    掌握圓錐特征、圓錐體積計算公式推導過程。

    圓錐體積計算公式推導過程。

    等底等高的圓柱和圓錐空心實物,任意一個圓柱和圓錐,若干沙子或水。

    圓錐水等底等高的圓柱、圓錐容器大三角板直尺

    一、進入學習情境

    1.開始,回憶學過的立體圖形,并板書圓柱的體積公式。今天我們來認識一種新的立體圖形。

    2.觀察課本實物圖:鉛錘、谷堆、冰激凌等。

    (1)這些物體的形狀與圓柱體一樣嗎?哪里不一樣?根據這些物體的形狀,你們能給它們起個名字嗎?(引導說出“圓錐”)

    (2)在我們的身邊還有哪些物體是圓錐體?(學生舉例如路障、喇叭、跳棋)

    3、師:你知道圓錐各部分的名稱嗎?圓錐有哪些特征?

    拿出圓錐模型,介紹圓錐的特征。

    (1)用手摸一摸圓錐,你發現了什么?

    (小組內先互相說一說,后師板書:

    1、圓錐有一個頂點

    2、圓錐只有一個底面,這個底面是個圓形。

    3、側面是一個曲面,展開圖是扇形。)

    從實物圖中抽象出一個圓錐的立體圖形來,教師畫一個不帶高的圓錐圖。

    出示兩個圓錐(一個高,一個矮),觀察這兩個圓錐,你發現了什么?是由圓錐的什么決定的?(板書:高)

    下面我們來研究圓錐的高。你想知道圓錐高的哪些知識?

    1、什么是圓錐的高?

    2、幾條高?為什么只有一條高?

    3、怎么測量圓錐的高?)

    問:誰來回答第一個問題?(齊讀板書)

    再看第二個問題(1條高)指出高,怎么畫?為什么畫虛線?所以我們一般用虛線表示。

    你認為測量時要注意什么?

    (2)明確并板書:圓錐的底面是個圓,圓錐的側面是一個曲面,從圓錐的頂點到底面圓心的距離是圓錐的高。因為圓錐只有一個頂點,所以它只有一條高。

    4、了解了圓錐體的特征,我們再來研究圓錐體的體積公式。怎樣計算一個圓錐物體的體積呢?我們學習圓柱體積公式的時候借助以前學過的長方體,今天我們學習圓錐體體積也可利用剛剛學過的圓柱體的體積,大家猜一猜,圓錐的體積與圓柱體積有什么關系?

    (板書課題:圓錐的體積)

    二、自主學習

    探索圓錐體積與圓柱體積的關系。

    1、師出示實驗要求:把空圓錐裝滿水,倒入空圓柱中,測量高度,幾次裝滿,統計次數填入實驗報告單。

    2、匯報交流

    (1)小組討論:通過剛才的實驗和統計,你發現了什么?圓柱的體積和圓錐的體積有什么關系?是不是任意兩個圓錐體和圓柱體就有這樣的關系呢?再來看實驗。

    (2)小組代表匯報交流:圓柱體積等于和它等底等高的圓錐體積的3倍,圓錐的體積等于和它等底等高的圓柱體積的三分之一。

    教師強調等底等高這個前提條件

    3、概括圓錐體積公式:

    師:圓柱的體積是:體積=底面積×高用字母表示v=sh那么和它等底登高的圓錐體體積是圓柱體積的三分之一怎樣表示呢?

    圓錐體體積=1/3×底面積×高v=1/3sh

    三、實踐運用

    根據這個公式我們可以解決一些實際問題

    1、一個圓錐形的零件,底面積是28.26平方厘米,高是14厘米,這個零件的體積是多少立方厘米?

    一生板演,匯報

    2、一個圓錐形,底面直徑是4厘米,高6厘米,這個圓錐的體積是多少立方厘米?

    四、課堂練習

    (1)s=20平方米h=12米(2)r=10米h=15米

    (3)d=6米h=10米(4)c=62.8米h=9米

    五、小結:

    今天我們學習了圓錐體,你有哪些收獲?

    學生匯報:1、圓錐體的特征

    2、圓錐體的體積公式

    圓錐的體積教學設計意圖篇八

    1、情感目標培養學生探索合作精神。

    2、知識目標理解圓錐體積公式的推導過程,掌握圓錐體積的計算公式,以及運用公式計算圓錐體積。

    3、能力目標培養學生的空間想象力,合作交往能力、創新思維以及動手操作能力。

    理解圓錐體積公式的推導過程,掌握圓錐體積的計算公式。

    圓錐體積計算公式的推導過程。

    關鍵

    公式推導過程中:圓柱體和圓錐體必須是等底等高,則它們之間才存在必然的關系。

    活動一:比大小

    活動目的:激發求知欲望。

    課件播放:春天到了,萬物復蘇,春筍也從睡夢中醒來,三只可愛的小熊貓來到竹林中踩竹筍,它們都踩到了一只竹筍。熊貓都都說:今天我踩的竹筍是最大的。熊貓瞇瞇聽了不服氣的說:誰說的,第一大的應該是我的竹筍。熊貓花花也不甘示弱的說:不對,不對,我的竹筍應該是第一大!

    師:竹林里的`爭論還在繼續著,同學們,到底三只熊貓的竹筍誰的最大呢?讓我們來猜一猜吧!

    師:我們光是猜,說服力并不強,那么能找到什么真正能解決問題的辦法嗎?

    活動二:議一議

    活動目的:通過師生、生生的互動討論、交流、探究,從而發現圓錐的體積和圓柱的體積有關。

    1、出示課題

    2、找圓錐體和學過的什么體有相似之處

    3、猜一猜,圓柱的體積和圓錐的體積的關系。

    圓錐的體積教學設計意圖篇九

    人教版九年義務教育小學數學教科書第十二冊。

    這部分知識是學生在有了圓錐的認識和圓柱體積相關知識的基礎上進行教學的。在知識與技能上,通過對圓錐體的研究,經歷并理解圓錐體積公式的推導過程,會計算圓錐的體積;在方法的選擇上,抓住新舊知識間的聯系,通過猜想、課件演示、實踐操作,從經歷和體驗中驗證,讓學生在自主探索與合作交流過程中真正理解和掌握基本的數學知識與技能,數學思想和方法,使學生真正成為學習的主人。

    1、使學生掌握圓錐體積的計算公式,會用公式計算圓錐的體積,解決日常生活中有關簡單的實際問題。

    2、讓學生經歷猜想——驗證,合作——探究的教學過程,理解圓錐體積公式的推導過程,體驗轉化的思想。

    3、培養學生動手操作、觀察、分析、推理能力,發展空間觀念,滲透事物是普遍聯系的唯物辯證思想。

    [點評:知識與技能目標的設計全面、具體、有針對性。不但使學生掌握圓錐體積的計算公式,而且培養了學生運用圓錐體積公式解決生活中的實際問題的能力,使學生體會到數學與生活的密切聯系注。并注重對學生“猜想——————驗證”、“合作——————探究”等學習方式的培養及“轉化”數學思想方法的滲透;同時關注學生空間觀念的培養及唯物辯證思想的滲透。

    掌握圓錐體積的計算公式,并能靈活利用公式求圓錐的體積。

    理解圓錐體積公式的推導過程及解決生活中的實際問題。

    一、 創設情境導入新課。

    1、出示圓錐體容器組織學生談一談通過前幾課的學習,你對圓錐有哪些了解?然后想一想關于圓錐你還有哪些問題?

    2、引導學生自己想辦法用多種方法來求這個圓錐體容器的體積,有困難的同學可以同桌交流,共同研究。(組織學生先獨立思考,然后同桌討論交流,最后匯報自己的想法。)

    3、教師出示一個圓錐體的木塊引導學生明確前面所想的方法太麻繁、不實用。并鼓勵學生研究出一種簡便快捷的方法來求圓錐的體積。

    [點評:本環節通過一系列的問題情境,激發學生學習新知識的興趣。首先讓學生結合前面所學的知識來談談自己對圓錐的認識,進而提出自己對圓錐還存在的問題。這樣不僅鞏固了前面所學的知識,而且培養了學生的問題意識。然后放手讓學生自己想辦法用不同的方法求它的體積,拓展了學生的思維,培養了學生的創新能力,真正體現了學生的主體地位。最后讓學生從具體的問題中體會到自己方法的太麻繁、不實用,從而讓學生有思索出一種更簡潔、廣泛的求圓錐體積的方法需要。]

    二、經歷體驗,探究新知

    (一)滲透轉化,幫助猜想

    1、先組織學生自由暢談圓錐的體積可能會與誰有關(圓柱)。先給學生獨立思考的時間,然后匯報。匯報時要闡述自己的理由。教師引導學生回憶圓柱體積公式的推導過程。

    2、組織學生拿出準備好的圓柱體鉛筆和轉筆刀來削鉛筆,同時教師也隨著學生一起來做。教師做好后要及時巡視,直到學生將鉛筆削得尖尖的為止。然后引導學生認真觀察削好后的鉛筆是什么形體的?(此時的鉛筆是由圓柱和圓錐兩部分組成的)并組織學生通過觀察比較、討論交流得出兩種形體的底與高及體積之間的關系。(削好后的圓柱與圓錐等底不等高,體積無關。)此時,教師要參與到小組討論中,及時引導學生發現削好后的圓錐的體積與未削之前的這部分圓柱等底等高,并且體積也有關。組織學生自己的話來總結。最后,將自己的發現進行匯報。

    3、課件出示:等底等高的圓柱和圓錐。組織學生認真觀察,大膽猜想他們體積之間可能存在怎樣的關系后說說理由。教師此時要引導學生展開想象的翅膀大膽去猜想……

    [點評:本環節教師先引導學生回憶圓柱體積的推導過程,向學生滲透“轉化”的思想。使學生感受到新知也可通過“轉化”的方法變成已學過的知識來解決。然后留給學生充分的時間親自動手去削鉛筆,感受到圓錐是怎樣轉化成圓柱的。通過觀察比較、討論交流一步一步得出圓錐的體積和它等底等高的圓柱有關。同時運用學生已有的知識和經驗讓學生進行猜想它們之間有怎樣的關系,發展了學生的想象空間,培養了學生的創新思維。]

    (二)小組合作,實驗驗證。

    1、教師發給每組學生一個準備好的等底等高的圓柱和圓錐、沙了,組織學生拿出等底等高的圓柱和圓錐進行實驗。實驗前小組成員進行組內分工,有的進行操作,有的記錄……實驗中教師要及時巡視指導并參與到小組實驗中去及時了解學生實驗的進展情況。并指導幫助學生順利完成實驗。

    2、實驗后組內成員進行交流。交流的過程中,要引導學生注重傾聽別人的想法,并說出自己不同的見解。

    3、首先各小組派代表進行匯報,其它小組可以補充。然后全班進行交流實驗結果:得出等底等高的圓錐的體積是圓柱體積的1/3,圓柱的體積是圓錐體積的3倍。由圓柱體的體積公式推導出圓錐的體積公式。預設板書如下:

    概括板書:

    等底到高

    v圓柱=sh v圓錐= 1/3sh

    4、深化公式。組織學生討論給出不同的條件求圓錐的體積,如:半徑、直徑、周長。預設板書如下:

    v =1/3πr2h v =1/3(c/2π)2h v =1/3(d/2)2h

    5、教師組織學生獨立完成書中例題后集體訂正。

    [點評:俗話說:“實踐是檢驗真理的唯一標準。”學生在前面猜想的基礎上通過小組合作動手實驗、具體操作,驗證得出等底等高的圓錐與圓柱體積間的關系,使自己的猜想在這里得到了驗證。這一過程的設計潛移默化地向學生滲透了“猜想——————驗證”這一完整的學習數學的方法。從而也培養了學生合作的意識、發展了學生的思維、培養了學生的創新意識和實踐能力。最后從等底等高的圓柱與圓錐體積間的關系及圓柱的體積公式中,得出了圓錐體的體積公式。這個過程,讓學生充分經歷了知識的.形成過程,體現了“動態生成”,為抽象的理論提供了感性材料。]

    (三)看書質疑:你還有哪些不懂的問題或不同的見解可以提出來我們共同研究。

    [點評:偉大的科學家愛因斯坦曾說過:“提出一個問題比解決一個問題更重要。”學生經歷了問題的探索過程后,再將他們引加到書本上。這時學生的可能提的更有價值、有深度。]

    三、鞏固新知,拓展應用。

    1、判斷并說明理由

    (1)圓柱體積是圓錐體積的3倍( )

    (2)一個圓錐的高不變,底面積越大,體積越大。( )

    (3)一個圓錐體的高是3分米,底面積10平方分米,它的體積是30立方分米。( )

    組織學生打手勢判斷后說明理由,并強調圓錐的體積是圓柱體積的1/3是以等底等高為前提的。

    2、求下列圓錐的體積(口答,只列式,不計算)

    s=4平方米,h=2平方米

    r=2分米,h=3分米

    d=6厘米,h=5厘米

    組織學生根據圓錐體積公式解答。

    3、實踐與應用:

    學校操場有一堆圓錐沙子,求它的體積需要什么條件,你有什么好辦法?

    組織學生進行討論,求圓錐體的沙堆的體積需要什么條件后并談如何來測量這些所需條件,有條件的可領學生實地操作一下。再求體積。

    [點評:練習設計由淺入深,由例題到實踐應用,層次鮮明,并注重培養學生解決實際問題的能力,達到學以致用的目的]

    四、課后總結,感情升華。

    這節課你有什么收獲?你是怎樣獲得的?

    [不僅關注學生知識技能的掌握,更注重數學方法的提煉及學生的情感、態度、學習數學的信心等,促進了學生的可持續發展。]

    [總評:

    1、鉆研教材,創造性地使用教材。

    教師在充分了解學生、把握課程標準、教學目標、教材編寫意圖的基礎上,根據學生生活實際和學習實際,有目的地對教材內容進行改編和加工。如學生削鉛筆這一活動的設計,學生從“削”的過程中體驗到圓柱與圓錐的聯系;再如動手實驗這一環節的設計,使學生在觀察、比較、動手操作,合作交流中理解掌握新知。創造性地融入一些生活素材,加強了數學與生活的密切聯系。

    2、注重數學思想方法的滲透。

    數學思想方法是數學知識的精髓,又是知識轉化為能力的橋梁。新課伊始,便讓學生自己想辦法求圓錐的體積,此時學生便想辦法將圓錐體的容器裝滿水后倒入圓柱或長(正)方體的容器中,從而求出圓錐的體積。這一過程潛移默化地滲透“轉化”的數學思想方法。再如:讓學生將圓柱體的鉛筆削成圓錐體的這一活動,也同樣滲透了轉化的思想方法。

    3、猜想—————驗證、合作交流等學習方式體現了學生的主體地位。

    本節課在探究新知的過程中,借助削鉛筆這一學生熟知的活動幫助學生猜想圓錐的體積可能會與誰有關,再進一步猜想又會有怎樣的關系。緊接著讓學生在具體的實驗操作中去驗證自己的猜想是否正確,從而得出結論。整個過程是在教師的引導下,學生自主探索,發現問題,在合作交流中解決問題。教師留出了充足的時間,讓學生去思考、討論、探索、爭辯和交流。真正體現了人人學有價值的數學,不同的人在數學上得到不同的發展

    圓錐的體積教學設計意圖篇十

    本節內容是在學生了解了圓錐的特征,掌握了圓柱體積的計算方法基礎上進行教學的,教材重視類比,轉化思想的滲透,旨在讓學生理解掌握求圓錐體積的計算公式,會運用公式計算圓錐的體積。

    我的設計是“顛倒課堂”的一次嘗試,旨在讓學生晚上在家觀看教學視頻,進行深層次的掌握學習,一次學不會,還可以反復學習,直到學會為止。這是與傳統的“白天在課室聽老師講課,晚上回家做作業”的方式正好相反的課堂模式。

    1、理解掌握求圓錐體積的計算公式和推導過程,會運用公式計算圓錐的體積。

    2、會應用公式計算圓錐的體積并解決一些實際問題。

    3、幫助學生建立空間觀念,培養學生抽象的邏輯思維能力,激發學生的想象力。

    使學生初步掌握圓錐體積的計算方法并解決一些實際問題

    圓錐體積計算方法和推導過程。

    1、揭示課題:今天我們一起來探究如何計算圓錐的體積。

    2、以舊引新:我們知道,圓柱的體積=底面積×高,字母公式:v=sh。如何計算圓錐的體積呢?圓柱的底面是圓的,圓錐的底面也是圓的,圓錐的體積與圓柱的體積有沒有關系呢?

    1、請看接下來的2個實驗:

    2、實驗準備:2組等底等高的圓柱、圓錐容器;水與沙子。

    3、播放視頻:

    實驗一:我們將圓錐容器裝滿水,再往圓柱容器里面倒(倒3次),3次正好裝滿。

    實驗二:我們將圓柱容器裝滿沙,再往圓錐容器里面倒(倒3次),3次正好裝滿。

    4、通過實驗你們發現了什么?

    1、通過兩次的實驗我們可以得出結論:

    圓柱的體積是與它等底等高的圓錐體積的3倍;也就是說圓錐的體積是與它等底等高的圓柱體積的。

    2、寫成公式:圓錐的體積=與它等底等高的圓柱體積×;因為圓柱的體積=底面積×高,所以圓錐的體積=底面積×高×;寫成字母公式:v= sh。因此,要求圓錐的體積,必須知道圓錐的底面積與高。

    3、如果知道圓錐的.底面半徑r與高h,圓錐的體積公式還可以怎樣表示呢?因為底面圓的面積s=πr2,所以圓錐的體積v= πr2h。

    4、在應用圓錐體積公式時不要忘記乘!

    1、接下來我們應用公式解決實際問題。

    題:工地上有一堆沙子,近似于一個圓錐體,沙堆底面直徑4m,高1。2m。這堆沙子大約有多少立方米?(得數保留兩位小數)

    2、分析題意:要求這堆沙子大約有多少立方米,就是求圓錐體沙堆的體積。根據公式我們需要知道沙堆的底面積與高。根據底面直徑4m,可以先求出沙堆的底面積,再用底面積乘高求出沙堆的體積。

    3、列式解答。(分步與綜合)

    今天我們學習了圓錐的體積計算:v= sh= πr2h。

    在應用圓錐體積公式時我們要記住乘,還要留意單位名稱是否統一!

    1、學生看完視頻對于實驗成功的必要條件“等底等高”、“每次倒滿”等有了一定的認識,且會躍躍欲試,為課堂的實驗操作做了鋪墊。

    2、課堂上組織學生分小組實驗:

    圓柱與圓錐等底不等高時,實驗結果會怎樣?

    圓柱與圓錐等高不等底時,實驗結果會怎樣?

    “圓錐的體積是圓柱體積的”這一關系存在的條件是什么?

    圓錐與圓柱體積相等時,如果高相等,底面積有什么關系?如果底面積相等,高有什么關系?

    3、課堂檢測,促進知識內化。

    本節課教學目標定位為學生初步掌握圓錐體積的計算公式,并能運用公式正確地計算圓錐的體積,所以設計時力求每個環節都為教學目標服務。

    課前觀看視頻。首先回憶圓柱體積公式,通過圓柱與圓錐的底面都是圓的,讓學生猜測圓柱與圓錐體積之間的關系,然后通過兩次的實驗驗證圓錐體體積的計算方法,實現了一個“做數學”的過程。通過課外的視頻學習,能加深學生對圖形特征以及圖形之間的內在聯系的認識,進一步領會轉化的數學思想。

    課內通過小組實驗操作進一步驗證“圓錐的體積是圓柱體積的”這一關系存在的必要條件是等底等高,從而推導出圓錐的體積計算公式:v= sh= πr2h,從而培養了學生構建知識系統的能力和知識遷移及綜合整理的能力。課堂上不再重復學習微課程中的知識,把時間花在完成練習上,通過不同的練習檢測學生的掌握情況,對暴露的問題進行有針對性的輔導,從而提高教學效率。

    圓錐的體積教學設計意圖篇十一

    (1)(老師出示鉛錘):你有辦法知道這個鉛錘的體積嗎?

    (2)學生發言:(把它放進盛水的量杯里,看水面升高多少……)

    (3)教師評價:這種方法可行,你利用上升的這部分水的體積就是鉛錘的體積,間接地求出了鉛錘的體積。真是一個愛動腦筋的孩子。

    (4)提出疑問:是不是每一個圓錐體都可以這樣測量呢?(學生思考后發言)

    (5)引入:如果每個圓錐都這樣測,太麻煩了!類似圓錐的麥堆也能這樣測嗎?(學生發表看法),那我們今天就來共同探究解決這類問題的普遍方法。(老師板書課題)

    設計意圖:情景的創設,激發了學生學習的興趣,使學生產生了自己想探索的需求,情緒高漲地積極投入到學習活動中去。

    (一)、探究圓錐體積的計算公式。

    1、大膽猜測:

    (1)圓錐的體積該怎樣求呢?能不能通過我們已學過的圖形來求呢?(指出:我們可以通過實驗的方法,得到計算圓錐體積的公式)

    (2)圓錐和我們認識的哪種立體圖形有共同點?(學生答:圓柱)為什么?(圓柱的底面是圓,圓錐的底面也是圓……)

    (3)請你猜猜圓錐的體積和圓柱的體積有沒有關系呢?有什么關系?(學生大膽猜測后,課件出示一個圓錐與3個底、高都不同的圓柱,其中一個圓柱與圓錐等底等高),請同學們猜一猜,哪一個圓錐的體積與這個圓柱的體積關系最密切?(學生答:等底等高的)

    (4)老師拿教具演示等底等高。拿出等底等高的圓柱和圓錐各一個,通過演示,使學生發現“這個圓錐和圓柱是等底等高的。”

    (5)學生用上面的方法驗證自己做的圓錐與圓柱是否等底等高。(把等底等高的放在桌上備用。)

    2、試驗探究圓錐和圓柱體積之間的關系

    我們通過試驗來研究等底等高的圓錐體積和圓柱體積的關系。

    (1)課件出示試驗記錄單:

    a、提問:我們做幾次實驗?選擇一個圓柱和圓錐我們比較什么?

    b、通過實驗,你發現了什么?

    (2)學生分組用等底等高的圓柱圓錐試驗,做好記錄。教師在組間巡回指導。

    (3)匯報交流:

    你們的試驗結果都一樣嗎?這個試驗說明了什么?

    (4)老師用等底等高的圓柱圓錐裝紅色水演示。

    先在圓錐里裝滿水,然后倒入圓柱。讓學生注意觀察,倒幾次正好把圓柱裝滿?把圓柱裝滿水往圓錐里倒,幾次才能倒完?

    (教師讓學生注意記錄幾次,使學生清楚地看到倒3次正好把圓柱裝滿。)

    (5)學生拿小組內不等底等高的圓錐,換圓錐做這個試驗幾次,看看有沒有這樣的關系?(學生匯報,有的說我用自己的圓錐裝了5次,才把圓柱裝滿;有的說,我裝了2次半……)

    (6)試驗小結:上面的試驗說明了什么?(學生小組內討論后交流)

    (這說明圓柱的體積是與它等底等高圓錐體積的3倍.也可以說成圓錐的體積是和它等底等高的圓柱的體積的三分之一。)

    3、公式推導

    (1)你能把上面的試驗結果用式子表示嗎?(學生嘗試)

    (2)老師結合學生的`回答板書:

    圓錐的體積公式及字母公式:

    (3)在探究圓錐體積公式的過程中,你認為哪個條件最重要?(等底等高)

    進一步強調等底等高的圓錐和圓柱才存在這種關系。

    設計意圖:放手讓學生自主探究,在實踐中真正去體驗圓柱和圓錐之間的關系。

    (二)圓錐的體積計算公式的應用

    1、已知圓錐的底面積和高,求圓錐的體積。

    (1)出示例2:現在你能求出老師手中的鉛錘的體積嗎?(已知鉛錘底面積24平方厘米,高8厘米)學生嘗試解決。

    (2)提問:已知圓錐的底面積和高應該怎樣計算?

    (3)引導學生對照圓錐體積的計算公式代入數據,然后讓學生自己進行計算。

    2、已知圓錐的底面半徑和高,求圓錐的體積。

    (1)出示例題:

    底面半徑是3平方厘米,高12厘米的圓錐的體積。

    (2)學生嘗試解答

    (3)提問:已知圓錐的底面半徑和高,可以直接利用公式

    v=1/3兀r2h來求圓錐的體積。

    3、已知圓錐的底面直徑和高,求圓錐的體積。

    (1)出示例3:

    工地上有一些沙子,堆起來近似于一個圓錐,這堆沙子大約多少立方米?(得數保留兩位小數)

    (2)要求沙堆的體積需要已知哪些條件?(由于這堆沙堆近似圓錐形,所以可利用圓錐的體積公式來求,需先已知沙堆的底面積和高)

    (3)題目的條件中不知道圓錐的底面積,應該怎么辦?(先算出沙堆的底面半徑,再利用圓的面積公式算出麥堆的底面積,然后根據圓錐的體積公式求出沙堆的體積)

    (4)分析完后,指定兩名學生板演,其余學生將計算步驟寫在教科書第26頁上.做完后集體訂正。(注意學生最后得數的取舍方法是否正確)

    (5)提問

    4、已知圓錐的底面直徑和高,可以直接利用公式。

    v=1/3兀(d/2)2h來求圓錐的體積。

    設計意圖:公式的延伸讓學生對所學知識做到靈活應用,培養了學生活學活用的本領。

    圓錐的體積教學設計意圖篇十二

    本節課的教學內容是圓錐體積公式的推導,是一節幾何課,新課程標準指出:教學的任務是引導和幫助學生主動去從事觀察、猜想、實驗、驗證、推理與交流等數學活動,從而使學生形成自己對數學知識的理解和有效的學習策略。因此,在設計本節課時,我力求為學生創造一個自主探索與合作交流的環境,使學生能夠從情境中發現數學問題,學生會產生探究問題的需要,然后再通過自己的探索去發現和歸納公式,體驗過程。

    (一)教學內容分析:

    1、教材內容:

    本節教材是在學生已經掌握了圓柱體體積計算及其應用和認識了圓錐的基本特征的基礎上學習的,是小學階段學習幾何知識的最后一課時內容。讓學生學好這一部分內容,有利于進一步發展學生的空間觀念,為進一步解決一些實際問題打下基礎。教材按照實驗、觀察、推導、歸納、實際應用的程序進行安排。

    2、研讀完教材后,自己的幾個問題:

    (1)在教學的過程中如何將圓錐體積推導過程與圓柱構建起聯系,還不會使學生感到生硬?

    (2)學生對三分之一好理解,怎樣去認識是等底等高的柱、錐。

    (3)大家都知道本節課必少不了學生的操作,怎么操作才是有效操作?怎么操作才能滿足學生的求知欲?怎么操作才能使學生更好體驗這個過程?

    (4)本節課的教學內容只能挖掘到圓錐的體積嗎?能不能再深入一些?

    3、自己的創新認識:

    首先,研讀教材后,我認為這幾個問題的根本是一致的都是要把握住“誰在學?怎么學?”首先,在設計本節課時我想不只是讓學生學會一個公式,而是學會一種數學學習的方式,一種數學學習的思想,體驗一種數學學習的過程。

    其次,是要提供給同學們一個可操作的空間。

    (二)學情分析:

    1、學生在前面的學習中對點、線、面、體有一定的基礎知識,同時也獲得了轉化、對應、比較等數學思想。尤其是對于高年級段的同學來講他們獲取知識的渠道十分豐富,自己又有一定探究能力,對于圓錐體積的知識相信是有一定認識的,在進行教學設計前我們應該了解到他們認識到哪兒了?了解學生的起點,為制定教學目標和選擇教學策略做好準備。

    2、自己的認識:(結合自己在講課時發現的問題而談)

    學生能夠根據以前的學習經驗圓柱和圓錐的底面都是圓形認識到二者之間存在一定聯系,而且又是剛學完圓柱學生認識到這一點看來并不難,難的是等底等高。因此,在教學設計過程中要注意柱、錐間聯系的設計,突破學生對“圓錐的體積是與它等底等高的圓柱體積的三分之一”中的“等底等高”。

    (三)教學方式與教學手段分析:

    根據本節課的教學內容及特點,在教學設計過程中我選擇了 “操作——實驗”的學習方式。學習任何知識的最佳途徑是由自已去發現,因為這種發現理解最深,也最容易掌握其中的內在規律、性質和聯系。”我認為這也正是我在設計這節課中所要體現的核心內容。第一次學習方式的指導:體現在出示生活情境后,先讓學生進行大膽猜測“買哪個蛋糕更劃算”。本次學習方式的指導是通過學生對生活問題進行猜想,使學生認識到其中所包含的數學問題,并由此引導學生再想一想你有什么解決方法。

    (四)技術準備與教學媒體:

    在創設情境中利用多媒體出示主題圖,然后要從圖中剝離出圖形來,并演示整個實驗過程。

    (一)教學目標:

    1、使學生掌握圓錐體積的計算公式,并能運用公式正確地計算圓錐的體積。

    2、通過操作——實驗的學習方式,使學生體驗圓錐體積公式的推導過程,對實驗過程進行正確歸納得到圓錐的體積公式,能利用公式正確計算,并會解決簡單的實際問題。

    3、培養學生的觀察、分析的綜合能力。

    (二)教學重點:理解圓錐體積的計算公式并能運用圓錐體積公式正確地計算圓錐的體積

    (三)教學難點:通過實驗的方法,得到計算圓錐體積的公式。

    圓錐的體積教學設計意圖篇十三

    1、圓柱的體積公式是什么?用字母怎樣表示?

    2、求下列各圓柱的體積。(口答)

    (1)底面積是5平方厘米,高是6厘米。

    (2)底面半徑4分米,高是10分米。

    (3)底面直徑2米,高是3米。

    師:剛才我們復習了圓柱的體積公式并應用這個公式計算出了圓柱的體積,那么圓柱和圓錐有什么關系呢?這節課我們就來研究圓錐的體積。

    師:圓錐的底面是什么形狀的?什么是圓錐的高?請拿出一個同學們自己做的圓錐講一講。

    生:圓錐的底面是圓形的。

    生:從圓錐的頂點到底面圓心的距離是圓錐的高。

    師:你能上來指出這個圓錐的高嗎?

    師:很好,因為圓錐的高我們一般無法到里面去測量,所以常常這樣量出它的高。

    師:你們看到過哪些物體是圓錐形狀的?(略)

    師:對。在生活中有很多圓錐形的物體。

    師:剛才我們已經認識了圓錐。現在我們再來研究圓錐的體積。請同學們拿出一對等底等高圓錐和圓柱。想一想用什么辦法能研究出等地等高的圓錐和圓柱的體積之間存在什么關系,然后把你的想法放在小組中交流,再分工進行實驗。下面我們采用實驗的方法來推導圓錐體的體積公式(邊說邊演示),先在圓錐內裝滿水,然后把水倒入圓柱內,看看幾次可將圓柱倒滿。現在我們分小組做實驗,大家邊做邊討論實驗要求,如有困難可以看書第23頁。

    出示小黑板:

    1、圓錐的體積和同它等底等高的圓柱的體積有什么關系?

    2、圓錐的體積怎么算?體積公式是怎樣的?

    學生分組做實驗,老師巡回指導。

    師:我們先來回答第一個問題。在你們做實驗用的圓錐的體積和同它等底等高的圓柱的體積有什么關系?

    生:圓柱的體積是圓錐體積的3倍。

    生:圓錐的體積是同它等底等高的圓柱體權的1/3。

    板書:圓錐的體積等于同它等底等高的圓柱體積的1/3。

    師:得出這個結論的同學請舉手。(略)你們是怎么得出這個結論的呢?

    生:我們先在圓錐內裝滿沙,然后倒人圓柱內。這樣倒了三次,正好將圓柱裝滿。所以,圓錐的體積是同它等底等高的圓柱體積的1/3。

    師:說得很好。那么圓錐的體積怎么算呢?

    生:可以先算出與它等底等高的圓柱的體積,用底面積乘以高,再除以3,就是圓錐的體積。

    師:誰能說說圓錐的體積公式。

    生:圓錐的體積公式是v=1/3sh。

    師:老師也做了一個同樣實驗請同學認真看一看。想一想有什么話對老師說嗎?請看電視。

    師:請大家把書翻到第42頁,將你認為重要的字、詞、句圈圈劃劃,并說說理由。

    生:我認為"圓錐的體積v等于和它等底等高的圓柱體積的三分之一。"這句話很重要。

    生:我認為這句話中"等底等高"和"三分之一"這幾個字特別重要。

    師:大家說得很對,那么為什么這幾個字特別重要?如果底和高不相等的圓錐和圓柱有沒有三分之一這個關系呢?我們也來做個實驗。大家還有兩個是等底不等高的圓錐和圓柱,請同學們用剛才做實驗的方法試試看。

    師:等底不等高或者等高不等底的圓錐體積不是圓柱體積的1/3。師:可見圓錐的體積等于圓柱體積的.三分之一的關鍵條件是等地等高。

    師:下面我們就根據"等底等高的圓錐體積是圓柱體積的1/3"這個關系來解決下列問題。

    例l :一個圓錐形零件,底面積是19平方厘米,高是12厘米。這個零件的體積是多少?

    (兩名學生板演,老師巡視)

    師:這位同學做的對不對?

    生:對!

    師:和他做的一-樣的同學請舉手。(絕大多數同學舉手)

    師:那么這位同學做錯在哪里呢?(指那位做錯的同學做的)

    生:他漏寫了1/3。用底面積乘以高算出來的是圓柱的體積,圓錐的體積還要再乘以1/3。

    師:對了。剛才我們通過實驗知道了圓錐的體積等于同它等底等高的圓柱體積的三分之一,從而推導出圓錐的體積計算公式,即v=1/3sh。我們在用這個公式計算圓錐的體積時,要特別注意,1/3不能漏掉。

    (1)、一個圓錐的底面積是25平方分米,高是9分米,它體積是多少?

    (2)、求圓錐的體積(看圖)

    (3)、一個圓錐的底面直徑是20厘米,高是8厘米,它體積是多少?(圖)師:三題都填對了。接下來我要考考你們,看是不是掌握了今天的知識。

    2、填空。

    (1) 一個圓錐的體積是8立方分米,底面積是2平方分米,高( )分米、。(2)圓錐形的容器高12厘米,容器中盛滿水,如將水全部倒入等底的圓柱形的器中,水面高是( )厘米。

    3、選擇

    (1) 兩個體積相等的等底的圓柱和圓錐,圓錐的高一定是圓柱高的( ) 。

    (2) 把一段圓柱形的木棒削成一個最大的圓錐,削去部分的體積是圓錐體積的( )。

    師:今天,我們學習了什么內容?怎樣計算圓錐的體積?

    對,這節課我們認識了圓錐,并推導出了圓錐的體積計算公式。回去以后,先回憶一下今天學過的內容,想一想,在運用v=1/3sh這個公式算圓錐體積時,要特別注意什么。

    課外作業:有一個高9厘米,底面積是20平方厘米的圓柱內裝滿水,用一個與它等底等高的圓錐擠壓,最多能擠出多少水?圓柱內還剩多少水?(邊做實驗邊討論)

    1、使學生理解和掌握求圓錐體積的計算公式,并能正確求出圓錐的體積。

    2、培養學生初步的空間觀念、邏輯思維能力、動手操作能力。

    3、向學生滲透知識間"相互轉化"的辯證唯物主義思想,在聯系實際中對學生進行學習目的方面的思想教育。

    圓錐的體積計算。

    圓錐的體積公式推導。

    圓錐的體積是與它等底等高的圓柱體積的三分之一。

    多媒體、等底等高的圓柱和圓錐空心實物各一個,水若干。

    空心圓錐和圓柱實物各一個,沙土若干。

    圓錐的體積教學設計意圖篇十四

    1、知識與技能

    理解圓錐體積公式的推導過程,初步掌握圓錐體積的計算公式,并能運用公式正確地計算圓錐的體積。

    2、過程與方法

    通過操作、實驗、觀察等方式,引導學生進行比較、分析、綜合、猜測,在感知的基礎上加以判斷、推理來獲取新知識。

    3、情感態度與價值觀

    滲透知識是“互相轉化”的辨證思想,養成善于猜測的習慣,在探索合作中感受教學與我的生活的密切聯系,讓學生感受探究成功的快樂。

    重點:掌握圓錐的體積計算方法及運用圓錐的體積計算方法解決實際問題。

    難點:理解圓錐體積公式的推導過程。

    不同型號的圓柱、圓錐實物、容器;沙子、水、杯子;多媒體課件一套。

    (一)創設情境,提出問題

    師:五一節放假期間,老師帶著自己的小外甥去商場購物,正巧商場在搞冰淇淋促銷活動。促銷的冰淇淋有三種(課件出示三個大小不同的冰淇淋),每種都是2元錢,小外甥吵著鬧著要買一只,請同學們幫老師參考一下買哪一種合算?

    生:我選擇底面最大的;

    生:我選擇高是最高的;

    生:我選擇介于二者之間的。

    師:每個人都認為自己選擇的哪種最合算,那么誰的意見正確呢?

    生:只要求出冰淇淋的體積就可以了。

    師:冰淇淋是個什么形狀?(圓錐體)

    生:你會求嗎?

    師:通過這節課的學習,相信這個問題就很容易解答了。下面我們一起來研究圓錐的體積。并板書課題:圓錐的體積。

    (二)設疑激趣,探求新知

    師:那么你能想辦法求出圓錐的體積嗎?

    (學生猜想求圓錐體積的方法。)

    生:我們可以利用求不規則物體體積的方法,把它放進一個有水的容器里,求出上升那部分水的體積。

    師:如果這樣,你覺得行嗎?

    教師根據學生的回答做出最后的評價;

    生:老師,我們前面學過把圓轉化成長方形來研究,我想圓錐是不是也可以這樣做呢?

    師:大家猜一猜圓錐體可能會轉化成哪一種圖形,你的根據是什么?

    小組中大家商量。

    生:我們組認為可以將圓錐轉化成長方體或正方體,比如:先用橡皮泥捏一個圓錐體,再把這塊橡皮泥捏成長方體或正方體。

    師:此種方法是否可行?

    學生進行評價。

    師:哪個小組還有更好的辦法?

    生:我們組認為:圓錐體轉化成長方體后,長方體的長、寬、高與圓錐的底面和高之間沒有直接的聯系。如果將圓錐轉化成圓柱,就更容易進行研究。)

    師:既然大家都認為圓錐與圓柱的聯系最為密切,請各組先拿出學具袋的圓錐與圓柱,觀察比較他們的底與高的大小關系。

    1、各小組進行觀察討論。

    2、各小組進行交流,教師做適當的板書。

    通過學生的交流出現以下幾種情況:一是圓柱與圓錐等底不等高;二是圓柱與圓錐等高不等底;三是圓柱與圓錐不等底不等高;四是圓柱與圓錐等底等高。

    3、師啟發談話:現在我們面前擺了這么多的圓柱和圓錐,我們是否有必要把每一種情況都進行研究?能否找到一種既簡便又容易操作且能代表所有圓柱和圓錐關系的一組呢?(小組討論)

    4、小組交流,在此環節著重讓學生說出選擇等底等高的圓錐體與圓柱體進行探究的理由。

    師:我們大家一致認為應該選擇等底等高的一組,那么我們就跟求圓柱體的體積一樣,就用“底面積×高”來表示圓錐體的體積行不行?為什么?

    師:圓錐體的體積小,那你猜測一下這兩個形體的體積的大小有什么樣的關系?

    生:大約是圓柱的一半。

    生:……

    師:到底誰的意見正確呢?

    師:下面請同學們三人一組利用你桌子的學具,找出兩組等底等高的圓錐與圓柱,共同探討它們之間的體積關系驗證我們的猜想,不過在實驗前先閱讀實驗要求,(課件演示)只有目標明確,才能更好的合作。開始吧!

    要求:1、實驗材料,任選沙、米、水中的一種。

    2、實驗方法可選擇用圓錐向圓柱里倒,到滿為止;或用圓柱向圓錐里倒,到空為止。

    (生進行實驗操作、小組交流)

    師:1、誰來匯報一下,你們組是怎樣做實驗的?

    2、通過做實驗,你們發現它們有什么關系?

    生:我們利用空圓柱裝滿水到入空圓錐,三次倒完。圓柱的體積是等底等高圓錐體積的三倍。

    生:我們利用空圓錐裝滿米到入空圓柱,三次倒滿。圓錐的體積是等底等高圓柱的體積的1/3。)

    師:同學們得出這個結論非常重要,其他組也是這樣的嗎?生略

    師:請看大屏幕,看數學小博士是怎樣做的?(課件演示)

    齊讀結論:

    師:你能根據剛才我們的實驗和課件演示的情況,也給圓錐的體積寫一個公式?

    (小組討論,得出圓錐的體積公式,得到以下公式:圓柱體積÷3=圓錐體積,則v圓錐=sh÷3即v圓錐=1/3sh

    師:同學們剛才我們得到了圓錐的體積公式,(請看課件)你能求出三種冰淇淋的體積?

    (噢!三種冰淇淋的體積原來一樣大)

    1、基本練習

    (1)判斷對錯,并說明理由。

    圓柱的體積相當于圓錐體積的3倍。( )

    一個圓柱木料,把它加工成最大的圓錐,削去的部分的體積和圓錐的體積比是( )

    一個圓柱和一個圓錐等底等高體積相差21立方厘米,圓錐的體積是7立方厘米。( )

    (2)計算下面圓錐的體積。(單位:厘米)

    s=25.12 h=2.5

    r=4, h=6

    2、變形練習

    出示學校沙堆:我班數學小組的同學利用課余時間測量了那堆沙子,

    得到了以下信息:底面半徑:2米,底面直徑4米,底面周長12.56米,底面積:12.56平方米,高1.2米,

    (1)、你能根據這些信息,用不同的方法計算出這堆沙子的體積嗎?

    (2)、找一找這些計算方法有什么共同的特點? v錐=1/3sh

    (3)、準備把這堆沙填在一個長3米,寬1、5米的沙坑里,請同學們算一算能填多深?

    3、拓展練習

    一個近似圓錐形的煤堆,測得它的底面周長是31.4米,高是2.4米。如果每立方米煤重1.4噸,這堆煤大約重多少噸?

    活動五:整理歸納,回顧體驗

    (通過小結展示學生個性,學生在學習中的自我體驗,使孩子情感態度,價值觀得到升華。)

    猜你喜歡 網友關注 本周熱點 精品推薦
    無論是身處學校還是步入社會,大家都嘗試過寫作吧,借助寫作也可以提高我們的語言組織能力。相信許多人會覺得范文很難寫?接下來小編就給大家介紹一下優秀的范文該怎么寫,
    為了保障事情或工作順利、圓滿進行,就不得不需要事先制定方案,方案是在案前得出的方法計劃。方案的格式和要求是什么樣的呢?以下就是小編給大家講解介紹的相關方案了,希
    光陰的迅速,一眨眼就過去了,成績已屬于過去,新一輪的工作即將來臨,寫好計劃才不會讓我們努力的時候迷失方向哦。那關于計劃格式是怎樣的呢?而個人計劃又該怎么寫呢?下
    時間流逝得如此之快,我們的工作又邁入新的階段,請一起努力,寫一份計劃吧。計劃書寫有哪些要求呢?我們怎樣才能寫好一篇計劃呢?這里給大家分享一些最新的計劃書范文,方
    無論是身處學校還是步入社會,大家都嘗試過寫作吧,借助寫作也可以提高我們的語言組織能力。范文書寫有哪些要求呢?我們怎樣才能寫好一篇范文呢?以下是我為大家搜集的優質
    當我們備受啟迪時,常常可以將它們寫成一篇心得體會,如此就可以提升我們寫作能力了。優質的心得體會該怎么樣去寫呢?接下來我就給大家介紹一下如何才能寫好一篇心得體會吧
    計劃是提高工作與學習效率的一個前提。做好一個完整的工作計劃,才能使工作與學習更加有效的快速的完成。寫計劃的時候需要注意什么呢?有哪些格式需要注意呢?以下是小編收
    光陰的迅速,一眨眼就過去了,成績已屬于過去,新一輪的工作即將來臨,寫好計劃才不會讓我們努力的時候迷失方向哦。計劃怎么寫才能發揮它最大的作用呢?這里給大家分享一些
    光陰的迅速,一眨眼就過去了,成績已屬于過去,新一輪的工作即將來臨,寫好計劃才不會讓我們努力的時候迷失方向哦。寫計劃的時候需要注意什么呢?有哪些格式需要注意呢?以
    光陰的迅速,一眨眼就過去了,很快就要開展新的工作了,來為今后的學習制定一份計劃。怎樣寫計劃才更能起到其作用呢?計劃應該怎么制定呢?那么下面我就給大家講一講計劃書
    制定計劃前,要分析研究工作現狀,充分了解下一步工作是在什么基礎上進行的,是依據什么來制定這個計劃的。怎樣寫計劃才更能起到其作用呢?計劃應該怎么制定呢?以下我給大
    隨著社會一步步向前發展,報告不再是罕見的東西,多數報告都是在事情做完或發生后撰寫的。那么我們該如何寫一篇較為完美的報告呢?下面是小編為大家帶來的報告優秀范文,希
    作為一名專為他人授業解惑的人民教師,就有可能用到教案,編寫教案助于積累教學經驗,不斷提高教學質量。優秀的教案都具備一些什么特點呢?這里我給大家分享一些最新的教案
    在當下這個社會中,報告的使用成為日常生活的常態,報告具有成文事后性的特點。報告書寫有哪些要求呢?我們怎樣才能寫好一篇報告呢?下面是小編為大家帶來的報告優秀范文,
    在當下這個社會中,報告的使用成為日常生活的常態,報告具有成文事后性的特點。寫報告的時候需要注意什么呢?有哪些格式需要注意呢?下面我就給大家講一講優秀的報告文章怎
    在當下社會,接觸并使用報告的人越來越多,不同的報告內容同樣也是不同的。大家想知道怎么樣才能寫一篇比較優質的報告嗎?下面是小編給大家帶來的報告的范文模板,希望能夠
    總結是指對某一階段的工作、學習或思想中的經驗或情況加以總結和概括的書面材料,它可以明確下一步的工作方向,少走彎路,少犯錯誤,提高工作效益,因此,讓我們寫一份總結
    “報告”使用范圍很廣,按照上級部署或工作計劃,每完成一項任務,一般都要向上級寫報告,反映工作中的基本情況、工作中取得的經驗教訓、存在的問題以及今后工作設想等,以
    總結是對某一特定時間段內的學習和工作生活等表現情況加以回顧和分析的一種書面材料,它能夠使頭腦更加清醒,目標更加明確,讓我們一起來學習寫總結吧。優秀的總結都具備一
    時間就如同白駒過隙般的流逝,我們又將迎來新的喜悅、新的收獲,讓我們一起來學習寫計劃吧。計劃書寫有哪些要求呢?我們怎樣才能寫好一篇計劃呢?下面是我給大家整理的計劃
    總結是在一段時間內對學習和工作生活等表現加以總結和概括的一種書面材料,它可以促使我們思考,我想我們需要寫一份總結了吧。優秀的總結都具備一些什么特點呢?又該怎么寫
    范文為教學中作為模范的文章,也常常用來指寫作的模板。常常用于文秘寫作的參考,也可以作為演講材料編寫前的參考。那么我們該如何寫一篇較為完美的范文呢?以下是小編為大
    無論是身處學校還是步入社會,大家都嘗試過寫作吧,借助寫作也可以提高我們的語言組織能力。相信許多人會覺得范文很難寫?下面是小編幫大家整理的優質范文,僅供參考,大家
    心得體會是指一種讀書、實踐后所寫的感受性文字。大家想知道怎么樣才能寫得一篇好的心得體會嗎?下面是小編幫大家整理的心得體會范文大全,供大家參考借鑒,希望可以幫助到
    總結是把一定階段內的有關情況分析研究,做出有指導性的經驗方法以及結論的書面材料,它可以使我們更有效率,不妨坐下來好好寫寫總結吧。優秀的總結都具備一些什么特點呢?
    報告是指向上級機關匯報本單位、本部門、本地區工作情況、做法、經驗以及問題的報告,那么報告應該怎么制定才合適呢?下面是小編給大家帶來的報告的范文模板,希望能夠幫到
    隨著個人素質的提升,報告使用的頻率越來越高,我們在寫報告的時候要注意邏輯的合理性。那么,報告到底怎么寫才合適呢?下面我給大家整理了一些優秀的報告范文,希望能夠幫
    在日常學習、工作或生活中,大家總少不了接觸作文或者范文吧,通過文章可以把我們那些零零散散的思想,聚集在一塊。范文怎么寫才能發揮它最大的作用呢?以下是小編為大家收
    心得體會是指一種讀書、實踐后所寫的感受性文字。那么心得體會怎么寫才恰當呢?下面是小編幫大家整理的心得體會范文大全,供大家參考借鑒,希望可以幫助到有需要的朋友。班
    在日常的學習、工作、生活中,肯定對各類范文都很熟悉吧。相信許多人會覺得范文很難寫?下面我給大家整理了一些優秀范文,希望能夠幫助到大家,我們一起來看一看吧。暑假生
    為了確保事情或工作得以順利進行,通常需要預先制定一份完整的方案,方案一般包括指導思想、主要目標、工作重點、實施步驟、政策措施、具體要求等項目。大家想知道怎么樣才
    工作學習中一定要善始善終,只有總結才標志工作階段性完成或者徹底的終止。通過總結對工作學習進行回顧和分析,從中找出經驗和教訓,引出規律性認識,以指導今后工作和實踐
    總結是指對某一階段的工作、學習或思想中的經驗或情況加以總結和概括的書面材料,它可以明確下一步的工作方向,少走彎路,少犯錯誤,提高工作效益,因此,讓我們寫一份總結
    心中有不少心得體會時,不如來好好地做個總結,寫一篇心得體會,如此可以一直更新迭代自己的想法。大家想知道怎么樣才能寫得一篇好的心得體會嗎?那么下面我就給大家講一講
    當我們經歷一段特殊的時刻,或者完成一項重要的任務時,我們會通過反思和總結來獲取心得體會。心得體會對于我們是非常有幫助的,可是應該怎么寫心得體會呢?那么下面我就給
    總結是寫給人看的,條理不清,人們就看不下去,即使看了也不知其所以然,這樣就達不到總結的目的。總結書寫有哪些要求呢?我們怎樣才能寫好一篇總結呢?這里給大家分享一些
    光陰的迅速,一眨眼就過去了,很快就要開展新的工作了,來為今后的學習制定一份計劃。計劃書寫有哪些要求呢?我們怎樣才能寫好一篇計劃呢?下面是我給大家整理的計劃范文,
    心得體會是我們在成長和進步的過程中所獲得的寶貴財富。那么心得體會該怎么寫?想必這讓大家都很苦惱吧。以下我給大家整理了一些優質的心得體會范文,希望對大家能夠有所幫
    當我們備受啟迪時,常常可以將它們寫成一篇心得體會,如此就可以提升我們寫作能力了。我們想要好好寫一篇心得體會,可是卻無從下手嗎?下面是小編幫大家整理的優秀心得體會
    無論是身處學校還是步入社會,大家都嘗試過寫作吧,借助寫作也可以提高我們的語言組織能力。寫范文的時候需要注意什么呢?有哪些格式需要注意呢?以下是我為大家搜集的優質
    在現在社會,報告的用途越來越大,要注意報告在寫作時具有一定的格式。報告幫助人們了解特定問題或情況,并提供解決方案或建議。下面是小編給大家帶來的報告的范文模板,希
    總結是在一段時間內對學習和工作生活等表現加以總結和概括的一種書面材料,它可以促使我們思考,我想我們需要寫一份總結了吧。相信許多人會覺得總結很難寫?以下是小編精心
    在經濟發展迅速的今天,報告不再是罕見的東西,報告中提到的所有信息應該是準確無誤的。通過報告,人們可以獲取最新的信息,深入分析問題,并采取相應的行動。這里我整理了
    當工作或學習進行到一定階段或告一段落時,需要回過頭來對所做的工作認真地分析研究一下,肯定成績,找出問題,歸納出經驗教訓,提高認識,明確方向,以便進一步做好工作,
    總結是把一定階段內的有關情況分析研究,做出有指導性的經驗方法以及結論的書面材料,它可以使我們更有效率,不妨坐下來好好寫寫總結吧。總結書寫有哪些要求呢?我們怎樣才
    范文為教學中作為模范的文章,也常常用來指寫作的模板。常常用于文秘寫作的參考,也可以作為演講材料編寫前的參考。范文怎么寫才能發揮它最大的作用呢?下面是小編幫大家整
    我們在一些事情上受到啟發后,應該馬上記錄下來,寫一篇心得體會,這樣我們可以養成良好的總結方法。好的心得體會對于我們的幫助很大,所以我們要好好寫一篇心得體會下面是
    我們在一些事情上受到啟發后,應該馬上記錄下來,寫一篇心得體會,這樣我們可以養成良好的總結方法。心得體會對于我們是非常有幫助的,可是應該怎么寫心得體會呢?以下我給
    人的記憶力會隨著歲月的流逝而衰退,寫作可以彌補記憶的不足,將曾經的人生經歷和感悟記錄下來,也便于保存一份美好的回憶。大家想知道怎么樣才能寫一篇比較優質的范文嗎?
    總結是對過去一定時期的工作、學習或思想情況進行回顧、分析,并做出客觀評價的書面材料,它有助于我們尋找工作和事物發展的規律,從而掌握并運用這些規律,是時候寫一份總
    每個人都曾試圖在平淡的學習、工作和生活中寫一篇文章。寫作是培養人的觀察、聯想、想象、思維和記憶的重要手段。范文怎么寫才能發揮它最大的作用呢?接下來小編就給大家介
    隨著人們對法律的了解日益加深,越來越多事情需要用到合同,它也是減少和防止發生爭議的重要措施。優秀的合同都具備一些什么特點呢?又該怎么寫呢?這里我整理了一些優秀的
    在日常學習、工作或生活中,大家總少不了接觸作文或者范文吧,通過文章可以把我們那些零零散散的思想,聚集在一塊。范文書寫有哪些要求呢?我們怎樣才能寫好一篇范文呢?下
    隨著法律觀念的日漸普及,我們用到合同的地方越來越多,正常情況下,簽訂合同必須經過規定的方式。那么一般合同是怎么起草的呢?下面是小編為大家整理的合同范本,僅供參考
    人的記憶力會隨著歲月的流逝而衰退,寫作可以彌補記憶的不足,將曾經的人生經歷和感悟記錄下來,也便于保存一份美好的回憶。寫范文的時候需要注意什么呢?有哪些格式需要注
    現今社會公眾的法律意識不斷增強,越來越多事情需要用到合同,合同協調著人與人,人與事之間的關系。相信很多朋友都對擬合同感到非常苦惱吧。下面是小編為大家整理的合同范
    現今社會公眾的法律意識不斷增強,越來越多事情需要用到合同,合同協調著人與人,人與事之間的關系。相信很多朋友都對擬合同感到非常苦惱吧。下面是小編給大家帶來的合同的
    在日常學習、工作或生活中,大家總少不了接觸作文或者范文吧,通過文章可以把我們那些零零散散的思想,聚集在一塊。范文書寫有哪些要求呢?我們怎樣才能寫好一篇范文呢?下
    合同是適應私有制的商品經濟的客觀要求而出現的,是商品交換在法律上的表現形式。合同是適應私有制的商品經濟的客觀要求而出現的,是商品交換在法律上的表現形式。優秀的合
    在日常學習、工作或生活中,大家總少不了接觸作文或者范文吧,通過文章可以把我們那些零零散散的思想,聚集在一塊。范文書寫有哪些要求呢?我們怎樣才能寫好一篇范文呢?這
    范文為教學中作為模范的文章,也常常用來指寫作的模板。常常用于文秘寫作的參考,也可以作為演講材料編寫前的參考。相信許多人會覺得范文很難寫?以下是我為大家搜集的優質
    每個人都曾試圖在平淡的學習、工作和生活中寫一篇文章。寫作是培養人的觀察、聯想、想象、思維和記憶的重要手段。相信許多人會覺得范文很難寫?接下來小編就給大家介紹一下
    做任何工作都應改有個計劃,以明確目的,避免盲目性,使工作循序漸進,有條不紊。大家想知道怎么樣才能寫一篇比較優質的計劃嗎?那么下面我就給大家講一講計劃書怎么寫才比
    作為一名專為他人授業解惑的人民教師,就有可能用到教案,編寫教案助于積累教學經驗,不斷提高教學質量。那么教案應該怎么制定才合適呢?下面是小編帶來的優秀教案范文,希
    每個人都曾試圖在平淡的學習、工作和生活中寫一篇文章。寫作是培養人的觀察、聯想、想象、思維和記憶的重要手段。那么我們該如何寫一篇較為完美的范文呢?接下來小編就給大
    光陰的迅速,一眨眼就過去了,很快就要開展新的工作了,來為今后的學習制定一份計劃。我們該怎么擬定計劃呢?以下我給大家整理了一些優質的計劃書范文,希望對大家能夠有所
    為確保事情或工作順利開展,常常要根據具體情況預先制定方案,方案是綜合考量事情或問題相關的因素后所制定的書面計劃。那么方案應該怎么制定才合適呢?以下就是小編給大家
    光陰的迅速,一眨眼就過去了,成績已屬于過去,新一輪的工作即將來臨,寫好計劃才不會讓我們努力的時候迷失方向哦。優秀的計劃都具備一些什么特點呢?又該怎么寫呢?以下我
    無論是身處學校還是步入社會,大家都嘗試過寫作吧,借助寫作也可以提高我們的語言組織能力。大家想知道怎么樣才能寫一篇比較優質的范文嗎?以下是我為大家搜集的優質范文,
    總結是對過去一定時期的工作、學習或思想情況進行回顧、分析,并做出客觀評價的書面材料,它可使零星的、膚淺的、表面的感性認知上升到全面的、系統的、本質的理性認識上來
    在日常學習、工作或生活中,大家總少不了接觸作文或者范文吧,通過文章可以把我們那些零零散散的思想,聚集在一塊。相信許多人會覺得范文很難寫?這里我整理了一些優秀的范
    在日常學習、工作或生活中,大家總少不了接觸作文或者范文吧,通過文章可以把我們那些零零散散的思想,聚集在一塊。大家想知道怎么樣才能寫一篇比較優質的范文嗎?下面我給
    每個人都曾試圖在平淡的學習、工作和生活中寫一篇文章。寫作是培養人的觀察、聯想、想象、思維和記憶的重要手段。相信許多人會覺得范文很難寫?下面我給大家整理了一些優秀
    在日常的學習、工作、生活中,肯定對各類范文都很熟悉吧。大家想知道怎么樣才能寫一篇比較優質的范文嗎?以下是我為大家搜集的優質范文,僅供參考,一起來看看吧自動化專業
    范文為教學中作為模范的文章,也常常用來指寫作的模板。常常用于文秘寫作的參考,也可以作為演講材料編寫前的參考。相信許多人會覺得范文很難寫?以下是我為大家搜集的優質
    人的記憶力會隨著歲月的流逝而衰退,寫作可以彌補記憶的不足,將曾經的人生經歷和感悟記錄下來,也便于保存一份美好的回憶。范文怎么寫才能發揮它最大的作用呢?接下來小編
    在日常的學習、工作、生活中,肯定對各類范文都很熟悉吧。范文怎么寫才能發揮它最大的作用呢?這里我整理了一些優秀的范文,希望對大家有所幫助,下面我們就來了解一下吧。
    在日常的學習、工作、生活中,肯定對各類范文都很熟悉吧。范文怎么寫才能發揮它最大的作用呢?下面我給大家整理了一些優秀范文,希望能夠幫助到大家,我們一起來看一看吧。
    在日常的學習、工作、生活中,肯定對各類范文都很熟悉吧。范文書寫有哪些要求呢?我們怎樣才能寫好一篇范文呢?下面是小編幫大家整理的優質范文,僅供參考,大家一起來看看
    總結是對過去一定時期的工作、學習或思想情況進行回顧、分析,并做出客觀評價的書面材料,它有助于我們尋找工作和事物發展的規律,從而掌握并運用這些規律,是時候寫一份總
    總結是對某一特定時間段內的學習和工作生活等表現情況加以回顧和分析的一種書面材料,它能夠使頭腦更加清醒,目標更加明確,讓我們一起來學習寫總結吧。優秀的總結都具備一
    總結是指對某一階段的工作、學習或思想中的經驗或情況加以總結和概括的書面材料,它可以明確下一步的工作方向,少走彎路,少犯錯誤,提高工作效益,因此,讓我們寫一份總結
    在日常的學習、工作、生活中,肯定對各類范文都很熟悉吧。大家想知道怎么樣才能寫一篇比較優質的范文嗎?這里我整理了一些優秀的范文,希望對大家有所幫助,下面我們就來了
    范文為教學中作為模范的文章,也常常用來指寫作的模板。常常用于文秘寫作的參考,也可以作為演講材料編寫前的參考。范文書寫有哪些要求呢?我們怎樣才能寫好一篇范文呢?這
    在日常的學習、工作、生活中,肯定對各類范文都很熟悉吧。范文怎么寫才能發揮它最大的作用呢?以下是小編為大家收集的優秀范文,歡迎大家分享閱讀。《小河與青草》教學反思
    作為一位兢兢業業的人民教師,常常要寫一份優秀的教案,教案是保證教學取得成功、提高教學質量的基本條件。怎樣寫教案才更能起到其作用呢?教案應該怎么制定呢?以下是小編
    在日常的學習、工作、生活中,肯定對各類范文都很熟悉吧。范文書寫有哪些要求呢?我們怎樣才能寫好一篇范文呢?下面是小編幫大家整理的優質范文,僅供參考,大家一起來看看
    范文為教學中作為模范的文章,也常常用來指寫作的模板。常常用于文秘寫作的參考,也可以作為演講材料編寫前的參考。范文書寫有哪些要求呢?我們怎樣才能寫好一篇范文呢?接
    每個人都曾試圖在平淡的學習、工作和生活中寫一篇文章。寫作是培養人的觀察、聯想、想象、思維和記憶的重要手段。大家想知道怎么樣才能寫一篇比較優質的范文嗎?接下來小編
    每個人都曾試圖在平淡的學習、工作和生活中寫一篇文章。寫作是培養人的觀察、聯想、想象、思維和記憶的重要手段。范文怎么寫才能發揮它最大的作用呢?下面是小編幫大家整理
    總結是把一定階段內的有關情況分析研究,做出有指導性的經驗方法以及結論的書面材料,它可以使我們更有效率,不妨坐下來好好寫寫總結吧。寫總結的時候需要注意什么呢?有哪
    總結不僅僅是總結成績,更重要的是為了研究經驗,發現做好工作的規律,也可以找出工作失誤的教訓。這些經驗教訓是非常寶貴的,對工作有很好的借鑒與指導作用,在今后工作中
    總結是對某一特定時間段內的學習和工作生活等表現情況加以回顧和分析的一種書面材料,它能夠使頭腦更加清醒,目標更加明確,讓我們一起來學習寫總結吧。總結書寫有哪些要求
    總結是在一段時間內對學習和工作生活等表現加以總結和概括的一種書面材料,它可以促使我們思考,我想我們需要寫一份總結了吧。優秀的總結都具備一些什么特點呢?又該怎么寫
    范文為教學中作為模范的文章,也常常用來指寫作的模板。常常用于文秘寫作的參考,也可以作為演講材料編寫前的參考。寫范文的時候需要注意什么呢?有哪些格式需要注意呢?下
    無論是身處學校還是步入社會,大家都嘗試過寫作吧,借助寫作也可以提高我們的語言組織能力。那么我們該如何寫一篇較為完美的范文呢?以下是我為大家搜集的優質范文,僅供參
    在日常學習、工作或生活中,大家總少不了接觸作文或者范文吧,通過文章可以把我們那些零零散散的思想,聚集在一塊。相信許多人會覺得范文很難寫?接下來小編就給大家介紹一
    在日常學習、工作或生活中,大家總少不了接觸作文或者范文吧,通過文章可以把我們那些零零散散的思想,聚集在一塊。相信許多人會覺得范文很難寫?下面是小編幫大家整理的優
    人的記憶力會隨著歲月的流逝而衰退,寫作可以彌補記憶的不足,將曾經的人生經歷和感悟記錄下來,也便于保存一份美好的回憶。寫范文的時候需要注意什么呢?有哪些格式需要注
    人的記憶力會隨著歲月的流逝而衰退,寫作可以彌補記憶的不足,將曾經的人生經歷和感悟記錄下來,也便于保存一份美好的回憶。寫范文的時候需要注意什么呢?有哪些格式需要注
    主站蜘蛛池模板: 野狼精品社区| 久久久无码人妻精品无码| 亚洲精品第一国产综合精品99| 91精品全国免费观看青青| 久久久久久久亚洲精品| 色综合久久精品中文字幕首页| 亚洲国产精品一区二区成人片国内 | 国产精品JIZZ在线观看老狼| 精品综合久久久久久888蜜芽| 91久久精品国产成人久久| 精品久久一区二区| 国产精品毛片一区二区| 99re6在线精品免费观看| 亚洲国产另类久久久精品黑人| 日本精品自产拍在线观看中文| 国语自产精品视频| 国产精品hd免费观看| 欧美777精品久久久久网| 国产精品高清一区二区三区| 四虎国产精品永久在线观看| 日韩福利视频精品专区| 久久99精品九九九久久婷婷| 国产精品国产三级国产a| 91大神精品全国在线观看| 国产乱码精品一区二区三区四川人 | 日韩欧美亚洲国产精品字幕久久久 | 真实国产乱子伦精品视频| 久久久精品国产亚洲成人满18免费网站 | 2021最新国产精品一区| 精品久久久久久久| 久久99精品国产| 精品一区二区三区免费| 欧美极品欧美精品欧美视频| 日韩精品www| 99精品伊人久久久大香线蕉| 国产成人精品久久一区二区三区av | 日韩精品人妻系列无码专区免费| 亚洲国产另类久久久精品| 亚洲精品无码久久一线| 无码人妻精品一区二区三区久久久| 亚洲日韩国产AV无码无码精品|