通過知識點總結,我們可以更好地應用所學知識,解決實際問題。以下是小編為大家整理的知識點總結范文,供大家參考和學習。
高一數學知識點總結范文(16篇)篇一
一個東西是集合還是元素并不是絕對的,很多情況下是相對的,集合是由元素組成的集合,元素是組成集合的元素。
而整個學校又是由許許多多個班級組成的集合,你所在的班級只是其中的一分子,是一個元素。
班級相對于你是集合,相對于學校是元素,參照物不同,得到的結論也不同,可見,是集合還是元素,并不是絕對的。
解集合問題的關鍵:弄清集合是由哪些元素所構成的,也就是將抽象問題具體化、形象化,將特征性質描述法表示的集合用列舉法來表示,或用韋恩圖來表示抽象的集合,或用圖形來表示集合;比如用數軸來表示集合,或是集合的元素為有序實數對時,可用平面直角坐標系中的圖形表示相關的集合等。
高一數學知識點總結范文(16篇)篇二
學習數學,掌握基礎很重要,那么如何打好基本功呢?對此我有幾條幾解,同學們可以參考參考。
第一,做數學要運用到很多公式,很多同學都說公式記不熟,因此我經常看到有的同學拿著一本公式冊子在那里猛地背,這種方法我不太贊同,雖然能背熟公式,但一到做題和實際運用時,就會發現腦子有點亂,不知道運用哪條公式,而且背熟的公式沒過幾天可能會忘記,就因為這是硬性記性,不可靠。我認為記公式呢,要知道這條公式的原理,最好能把它推一下,做題時即使記不住了,也可舉個例子來推一下,像三角函數公式有很多,但我認為只要記住四條兩角和差的正弦余弦特殊值,有同學會記亂,但這根本不用刻意去記,做題時如果記不起來了,只要畫幾個特殊直角三角形,所有的特殊值就出來了,但最重要的是同學們要記住熟能生巧,做題目做多了,公式自然主熟練習,半夜叫醒都能說出來,要想長久記住公式,就必須這樣。
第二,就是計算能力,很多同學題目會做,但卻因計錯數而失分,想要改變這種狀況,就必須培養計算能力和養成良好的習慣,對于計算能力的培養,沒有什么秘訣,只能靠多做,還有計算不要把草稿本畫得太花,計算過程要有頭有尾,才不致于計算時不知西東。
以上的方法,同學們如果覺得有用,可以試一下,方法是人想出來的,如果同學們有更好的建議可以提出來,與大家一起分享一下。
高一數學知識點總結范文(16篇)篇三
本節主要包括函數的模型、函數的應用等知識點。主要是理解函數解應用題的一般步驟靈活利用函數解答實際應用題。
1、常見的函數模型有一次函數模型、二次函數模型、指數函數模型、對數函數模型、分段函數模型等。
2、用函數解應用題的基本步驟是:
(1)閱讀并且理解題意。(關鍵是數據、字母的實際意義);
(2)設量建模;
(3)求解函數模型;
(4)簡要回答實際問題。
常見考法:
本節知識在段考和高考中考查的形式多樣,頻率較高,選擇題、填空題和解答題都有。多考查分段函數和較復雜的函數的最值等問題,屬于拔高題,難度較大。
誤區提醒:
1、求解應用性問題時,不僅要考慮函數本身的定義域,還要結合實際問題理解自變量的取值范圍。
2、求解應用性問題時,首先要弄清題意,分清條件和結論,抓住關鍵詞和量,理順數量關系,然后將文字語言轉化成數學語言,建立相應的數學模型。
【典型例題】
例1:
(1)某種儲蓄的月利率是0。36%,今存入本金100元,求本金與利息的和(即本息和)y(元)與所存月數x之間的函數關系式,并計算5個月后的本息和(不計復利)。
(2)按復利計算利息的一種儲蓄,本金為a元,每期利率為r,設本利和為y,存期為x,寫出本利和y隨存期x變化的函數式。如果存入本金1000元,每期利率2。25%,試計算5期后的本利和是多少?解:(1)利息=本金×月利率×月數。y=100+100×0。36%·x=100+0。36x,當x=5時,y=101。8,∴5個月后的本息和為101。8元。
例2:
某民營企業生產a,b兩種產品,根據市場調查和預測,a產品的利潤與投資成正比,其關系如圖1,b產品的利潤與投資的算術平方根成正比,其關系如圖2(注:利潤與投資單位是萬元)
(1)分別將a,b兩種產品的利潤表示為投資的函數,并寫出它們的函數關系式。
(2)該企業已籌集到10萬元資金,并全部投入a,b兩種產品的生產,問:怎樣分配這10萬元投資,才能是企業獲得利潤,其利潤約為多少萬元。(精確到1萬元)。
高一數學知識點總結范文(16篇)篇四
3同角或等角的補角相等。
4同角或等角的余角相等。
5過一點有且只有一條直線和已知直線垂直。
6直線外一點與直線上各點連接的所有線段中,垂線段最短。
7平行公理經過直線外一點,有且只有一條直線與這條直線平行。
8如果兩條直線都和第三條直線平行,這兩條直線也互相平行。
9同位角相等,兩直線平行。
10內錯角相等,兩直線平行。
11同旁內角互補,兩直線平行。
12兩直線平行,同位角相等。
13兩直線平行,內錯角相等。
14兩直線平行,同旁內角互補。
15定理三角形兩邊的和大于第三邊。
16推論三角形兩邊的差小于第三邊。
17三角形內角和定理三角形三個內角的和等于180°。
18推論1直角三角形的兩個銳角互余。
19推論2三角形的一個外角等于和它不相鄰的兩個內角的和。
20推論3三角形的一個外角大于任何一個和它不相鄰的內角。
21全等三角形的對應邊、對應角相等。
22邊角邊公理(sas)有兩邊和它們的夾角對應相等的兩個三角形全等。
23角邊角公理(asa)有兩角和它們的夾邊對應相等的兩個三角形全等。
24推論(aas)有兩角和其中一角的對邊對應相等的兩個三角形全等。
25邊邊邊公理(sss)有三邊對應相等的兩個三角形全等。
高一數學知識點總結范文(16篇)篇五
棱錐的的性質:
(1)側棱交于一點。側面都是三角形
正棱錐的定義:如果一個棱錐底面是正多邊形,并且頂點在底面內的射影是底面的中心,這樣的棱錐叫做正棱錐。
正棱錐的性質:
(1)各側棱交于一點且相等,各側面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的斜高。
(3)多個特殊的直角三角形
esp:
a、相鄰兩側棱互相垂直的正三棱錐,由三垂線定理可得頂點在底面的射影為底面三角形的垂心。
b、四面體中有三對異面直線,若有兩對互相垂直,則可得第三對也互相垂直。且頂點在底面的射影為底面三角形的垂心。
高一數學知識點總結范文(16篇)篇六
11三視圖:
正視圖:從前往后。
側視圖:從左往右。
俯視圖:從上往下。
22畫三視圖的原則:
長對齊、高對齊、寬相等。
33直觀圖:斜二測畫法。
44斜二測畫法的步驟:
(1).平行于坐標軸的線依然平行于坐標軸;。
(2).平行于y軸的線長度變半,平行于x,z軸的線長度不變;。
(3).畫法要寫好。
5用斜二測畫法畫出長方體的步驟:(1)畫軸(2)畫底面(3)畫側棱(4)成圖。
1.3空間幾何體的表面積與體積。
(一)空間幾何體的表面積。
1棱柱、棱錐的表面積:各個面面積之和。
2圓柱的表面積3圓錐的表面積。
4圓臺的表面積。
5球的表面積。
(二)空間幾何體的體積。
1柱體的體積。
2錐體的體積。
3臺體的體積。
4球體的體積。
高一數學知識點總結范文(16篇)篇七
首先,新高一同學要明確的是:高一數學是高中數學的重點基礎。剛進入高一,有些學生還不是很適應,如果直接學習高考技巧仿佛是“沒學好走就想跑”。任何的技巧都是建立在牢牢的基礎知識之上,因此建議高一的學生多抓基礎,多看課本。
在應試教育中,只有多記公式,掌握解題技巧,熟悉各種題型,把自己變成一個做題機器,才能在考試中取得的成績。在高考中只會做題是不行的,一定要在會的基礎上加個“熟練”才行,小題一般要控制在每個兩分鐘左右。
高一數學的知識掌握較多,高一試題約占高考得分的70%,一學年要學五本書,只要把高一的數學掌握牢靠,高二,高三則只是對高一的復習與補充,所以進入高中后,要盡快適應新環境,上課認真聽,多做筆記,一定會學好數學。
因此,新高一同學應該在熟記概念的基礎上,多做練習,穩扎穩打,只有這樣,才能學好數學。
預習是學好數學的必要前提,可謂是“火燒赤壁”所需“東風”.總的來說,預習可以分為以下2步。
1.預習即將學習的章節的課本知識。在預習課本的過程中,要將課本中的定義、定理記熟,做到活學活用。有是要仔細做課本上的例題以及課后練習,這些基礎性的東西往往是最重要的。
2.自覺完成自學稿。自學稿是新課改以來歡迎的學習方式!首先應將自學稿上的《預習檢測》部分寫完,然后想后看題。在剛開始,可能會有一些不會做,記住不要苦心去鉆研,那樣往往會事倍功半!
聽講是學好數學的重要環節。可以這么說,不聽講,就不會有好成績。
1.在上課時,認真聽老師講課,積極發言。在遇到不懂的問題時,做上標記,課后及時的向老師請教!
2.記錄往往是一個細小的環節。注意老師重復的語句,以及寫在黑板上的大量文字(數學老師一般不多寫字),及時地用一個小本記錄下來,這樣日積月累,會形成一個知識小冊。
高一數學知識點總結范文(16篇)篇八
1.集合的含義。
2.集合的中元素的三個特性:
(1)元素的確定性如:世界上的山。
(2)元素的互異性如:由happy的字母組成的集合{h,a,p,y}。
(3)元素的無序性:如:{a,b,c}和{a,c,b}是表示同一個集合。
3.集合的表示:{…}如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}。
(1)用拉丁字母表示集合:a={我校的籃球隊員},b={1,2,3,4,5}。
(2)集合的表示方法:列舉法與描述法。
注意:常用數集及其記法:
非負整數集(即自然數集)記作:n。
正整數集:n-或n+。
整數集:z。
有理數集:q。
實數集:r。
1)列舉法:{a,b,c……}。
3)語言描述法:例:{不是直角三角形的三角形}。
4)venn圖:。
4、集合的分類:
(1)有限集含有有限個元素的集合。
(2)無限集含有無限個元素的集合。
(3)空集不含任何元素的集合例:{x|x2=-5}。
高一數學知識點總結范文(16篇)篇九
高中學生學數學靠的也是一個字:悟!
先看筆記后做作業。
有的高一學生感到,老師講過的,自己已經聽得明明白白了。但是,為什么自己一做題就困難重重了呢?其原因在于,學生對教師所講的內容的理解,還沒能達到教師所要求的層次。因此,每天在做作業之前,一定要把課本的有關內容和當天的課堂筆記先看一看。能否堅持如此,常常是好學生與差學生的最大區別。尤其練習題不太配套時,作業中往往沒有老師剛剛講過的題目類型,因此不能對比消化。如果自己又不注意對此落實,天長日久,就會造成極大損失。
做題之后加強反思。
有的學生認為,要想學好數學,只要多做題,功到自然成。其實不然。一般說做的題太少,很多熟能生巧的問題就會無從談起。因此,應該適當地多做題。但是,只顧鉆入題海,堆積題目,在考試中一般也是難有作為的。打個比喻:有很多人,因為工作的需要,幾乎天天都在寫字。結果,寫了幾十年的.字了,他寫字的水平能有什么提高嗎?一般說,他寫字的水平常常還是原來的水平。也就是說多寫字不等于是受到了寫字的訓練!要把提高當成自己的目標,要把自己的活動合理地系統地組織起來,要總結反思,水平才能長進。
主動復習總結提高。
打個比方,就象女孩洗頭那樣。1、把頭發弄散亂,加以清洗。2、中間分縫。3、將其一半分股編繞,捆結固定。4、再將另一半分股編繞,捆結固定。5、疏理辮稍。6、照鏡子調整。我們進行章節總結的過程也是大體如此。
1、要把課本,筆記,區單元測驗試卷,校周末測驗試卷,都從頭到尾閱讀一遍。要一邊讀,一邊做標記,標明哪些是過一會兒要摘錄的。要養成一個習慣,在讀材料時隨時做標記,告訴自己下次再讀這份材料時的閱讀重點。長期保持這個習慣,學生就能由博反約,把厚書讀成薄書。積累起自己的獨特的,也就是最適合自己進行復習的材料。這樣積累起來的資料才有活力,才能用的上。
2、把本章節的內容一分為二,一部分是基礎知識,一部分是典型問題。要把對技能的要求,列進這兩部分中的一部分,不要遺漏。
3、在基礎知識的疏理中,要羅列出所學的所有定義,定理,法則,公式。要做到三會兩用。即:會文字表述,會圖象符號表述,會推導證明。同時能從正反兩方面對其進行應用。
4、把重要的,典型的各種問題進行編隊。要盡量地把他們分類,找出它們之間的位置關系,總結出問題間的來龍去脈。就象我們欣賞一場團體操表演,我們不能只盯住一個人看,看他從哪跑到哪,都做了些什么動作。我們一定要居高臨下地看,看全場的結構和變化。不然的話,陷入題海,徒勞無益。這一點,是提高高中數學水平的關鍵所在。
5、總結那些尚未歸類的問題,作為備注進行補充說明。
6、找一份適當的測驗試卷,例如北京四中的本章節測試試卷,電腦網校的本節試卷,我校去年此時所用的試卷。一定要計時測驗。然后再對照答案,查漏補缺。
高一數學知識點總結范文(16篇)篇十
主要是考函數和導數,因為這是整個高中階段中最核心的部分,這部分里還重點考察兩個方面:第一個函數的性質,包括函數的單調性、奇偶性;第二是函數的解答題,重點考察的是二次函數和高次函數,分函數和它的一些分布問題,但是這個分布重點還包含兩個分析。
對于這部分知識重點考察三個方面:是劃減與求值,第一,重點掌握公式和五組基本公式;第二,掌握三角函數的圖像和性質,這里重點掌握正弦函數和余弦函數的性質;第三,正弦定理和余弦定理來解三角形,這方面難度并不大。
數列這個板塊,重點考兩個方面:一個通項;一個是求和。
在里面重點考察兩個方面:一個是證明;一個是計算。
概率和統計主要屬于數學應用問題的范疇,需要掌握幾個方面:……等可能的概率;……事件;獨立事件和獨立重復事件發生的概率。
這部分內容說起來容易做起來難,需要掌握幾類問題,第一類直線和曲線的位置關系,要掌握它的通法;第二類動點問題;第三類是弦長問題;第四類是對稱問題;第五類重點問題,這類題往往覺得有思路卻沒有一個清晰的答案,但需要要掌握比較好的算法,來提高做題的準確度。
同學們在最后的備考復習中,還應該把重點放在不等式計算的方法中,難度雖然很大,但是也切忌在試卷中留空白,平時多做些壓軸題真題,爭取能解題就解題,能思考就思考。
高一數學知識點總結范文(16篇)篇十一
集合:數學中最基礎,最通用的數學語言。貫穿整個高中以及現代數學都是以集合語言為基礎的。一定要學明白了。
函數:通過初中對具體函數的學習,在其基礎上研究任意函數研究其性質,如單調性,奇偶性,對稱性,周期性等。這一部分相對有一定的難度,而且與初中的聯系比較緊。基本初等函數:指數和對數的運算以及利用前面學到的函數性質研究指數函數,對數函數和冪函數。這部分知識有新的計算,并且應用前面的函數性質學習新的函數。
三角函數:對于初中的角的概念進行擴充,涉及到三角函數的運算以及三角函數的性質。
平面向量:這是數學里面一種新的常用的工具,通過向量的方法可以方便的解決很多三角函數的問題。這種方法與平面直角坐標系的聯系比較多,但與函數有所不同,應注意區別與聯系。
三角恒等變換:這部分主要是三角的運算,屬于公式很多,運算量也比較大的'內容。統觀上述高一第一學期的內容可見知識非常多,而且這些知識在高考中的比重也比較大,因此若在高一一開始不能學好,對于后面的學習是會有一定影響的。因此,要考慮到初高中知識的差異,對自己的學法進行改進,最后要適當的預習一下新高一的內容,以期很快的適應高中的數學學習。
高一數學知識點總結范文(16篇)篇十二
兩個平面的位置關系:
(1)兩個平面互相平行的定義:空間兩平面沒有公共點。
(2)兩個平面的位置關系:
兩個平面平行-----沒有公共點;兩個平面相交-----有一條公共直線。
a、平行。
兩個平面平行的判定定理:如果一個平面內有兩條相交直線都平行于另一個平面,那么這兩個平面平行。
兩個平面平行的性質定理:如果兩個平行平面同時和第三個平面相交,那么交線平行。
b、相交。
二面角。
(1)半平面:平面內的一條直線把這個平面分成兩個部分,其中每一個部分叫做半平面。
(3)二面角的棱:這一條直線叫做二面角的棱。
(4)二面角的面:這兩個半平面叫做二面角的面。
(5)二面角的平面角:以二面角的棱上任意一點為端點,在兩個面內分別作垂直于棱的兩條射線,這兩條射線所成的角叫做二面角的平面角。
(6)直二面角:平面角是直角的二面角叫做直二面角。
esp.兩平面垂直。
兩個平面垂直的性質定理:如果兩個平面互相垂直,那么在一個平面內垂直于交線的直線垂直于另一個平面。
1、培養良好的學習習慣。
(1)制定計劃明確學習目的。合理的學習計劃是推動我們主動學習和克服困難的內在動力。計劃先由老師指導督促,再一定要由自己切實完成,既有長遠打算,又有短期安排,執行過程中嚴格要求自己,磨煉學習意志。
(2)課前預習是取得較好學習效果的基礎。課前預習不僅能培養自學能力,而且能提高學習新課的興趣,掌握學習的主動權。預習不能搞走過場,要講究質量,力爭在課前把教材弄懂,上課著重聽老師講思路,把握重點,突破難點,盡可能把問題解決在課堂上。
(3)上課是理解和掌握基本知識、基本技能和基本方法的關鍵環節。學然后知不足,上課更能專心聽重點難點,把老師補充的內容記錄下來,而不是全抄全錄,顧此失彼。
(4)及時復習是提高效率學習的重要一環。通過反復閱讀教材,多方面查閱有關資料,強化對基本概念知識體系的理解與記憶,將所學的新知識與有關舊知識聯系起來,進行分析比效,一邊復習一邊將復習成果整理在筆記本上,使對所學的新知識由懂到會。
(5)獨立作業是通過自己的獨立思考,靈活地分析問題、解決問題,進一步加深對所學新知識的理解和對新技能的掌握過程。這一過程也是對我們意志毅力的考驗,通過運用使我們對所學知識由會到熟。
(6)解決疑難是指對獨立完成作業過程中暴露出來對知識理解的錯誤,或由于思維受阻遺漏解答,通過點撥使思路暢通,補遺解答的過程。解決疑難一定要有鍥而不舍的精神。做錯的作業再做一遍。對錯誤的地方沒弄清楚要反復思考。實在解決不了的要請教老師和同學,并要經常把易錯的地方拿來復習強化,作適當的重復性練習,把求老師問同學獲得的東西消化變成自己的知識,長期堅持使對所學知識由熟到活。
(7)系統小結是通過積極思考,達到全面系統深刻地掌握知識和發展認識能力的重要環節。小結要在系統復習的基礎上以教材為依據,參照筆記與資料,通過分析、綜合、類比、概括,揭示知識間的內在聯系,以達到對所學知識融會貫通的目的。經常進行多層次小結,能對所學知識由活到悟。
(8)課外學習包括閱讀課外書籍與報刊,參加學科競賽與講座,走訪高年級同學或老師交流學習心得等。課外學習是課內學習的補充和繼續,它不僅能豐富同學們的文化科學知識,加深和鞏固課內所學的知識,而且能夠滿足和發展我們的興趣愛好,培養獨立學習和工作的能力,激發求知欲與學習熱情。
2、循序漸進,積極歸因,防止急躁。
由于高一同學年齡較小,閱歷有限,為數不少的同學容易急躁。有的同學貪多求快,囫圇吞棗,想靠幾天沖刺一蹴而就。學習是一個長期的鞏固舊知、發現新知的積累過程,決非一朝一夕可以完成的。許多優秀的同學能取得好成績,其中一個重要原因是他們的基本功扎實,他們的閱讀、書寫、運算技能達到了自動化或半自動化的熟練程度。讓高一同學學會積極歸因,樹立自信心,如:取得一點成績及時體會成功,強化學習能力;遇到挫折及時調整學習方法、策略,更加努力改變挫折,循序漸進,爭取在高考成功。
3、注意研究學科特點,尋找學習方法。
數學學科擔負著培養運算能力、邏輯思維能力、空間想象能力,以及運用所學知識分析問題、解決問題的能力的重任。其中運算能力的培養一定要講究活,只看書不做題不行,只埋頭做題不總結積累也不行,教學中進行一題多解思考,優化運算策略;邏輯思維能力是具有高度的抽象性、邏輯性和廣泛的適用性,對能力要求較高,使用歸類、網聯策略,區別好幾個概念:三段式推理、四種命題和充要條件的關系;空間想象能力對平面知識的擴充既要能鉆進去,又要能跳出來,結合立體幾何,體會圖形、符號和文字之間的互化;運用所學知識分析問題、解決問題的能力,就是要重視應用題的轉化訓練,歸類數學模型,體會數學語言。華羅庚先生倡導的由薄到厚和由厚到薄的學習過程就是這個道理,方法因人而異,但學習的四個環節(預習、上課、作業、復習)和一個步驟(歸納總結)是少不了的。
將本文的word文檔下載到電腦,方便收藏和打印。
高一數學知識點總結范文(16篇)篇十三
(2)指數函數的值域為大于0的實數集合。
(3)函數圖形都是下凹的。
(4)a大于1,則指數函數單調遞增;a小于1大于0,則為單調遞減的。
(5)可以看到一個顯然的規律,就是當a從0趨向于無窮大的過程中(當然不能等于0),函數的曲線從分別接近于y軸與x軸的正半軸的單調遞減函數的位置,趨向分別接近于y軸的正半軸與x軸的負半軸的單調遞增函數的位置。其中水平直線y=1是從遞減到遞增的一個過渡位置。
(6)函數總是在某一個方向上無限趨向于x軸,永不相交。
(7)函數總是通過(0,1)這點。
(8)顯然指數函數無界。
奇偶性。
定義。
一般地,對于函數f(x)。
(1)如果對于函數定義域內的任意一個x,都有f(—x)=—f(x),那么函數f(x)就叫做奇函數。
(2)如果對于函數定義域內的任意一個x,都有f(—x)=f(x),那么函數f(x)就叫做偶函數。
(3)如果對于函數定義域內的任意一個x,f(—x)=—f(x)與f(—x)=f(x)同時成立,那么函數f(x)既是奇函數又是偶函數,稱為既奇又偶函數。
(4)如果對于函數定義域內的任意一個x,f(—x)=—f(x)與f(—x)=f(x)都不能成立,那么函數f(x)既不是奇函數又不是偶函數,稱為非奇非偶函數。
高一數學知識點總結范文(16篇)篇十四
定義:
從平面解析幾何的角度來看,平面上的直線就是由平面直角坐標系中的一個二元一次方程所表示的圖形。求兩條直線的交點,只需把這兩個二元一次方程聯立求解,當這個聯立方程組無解時,兩直線平行;有無窮多解時,兩直線重合;只有一解時,兩直線相交于一點。常用直線向上方向與x軸正向的夾角(叫直線的傾斜角)或該角的正切(稱直線的斜率)來表示平面上直線(對于x軸)的傾斜程度。可以通過斜率來判斷兩條直線是否互相平行或互相垂直,也可計算它們的交角。直線與某個坐標軸的交點在該坐標軸上的坐標,稱為直線在該坐標軸上的截距。直線在平面上的位置,由它的斜率和一個截距完全確定。在空間,兩個平面相交時,交線為一條直線。因此,在空間直角坐標系中,用兩個表示平面的三元一次方程聯立,作為它們相交所得直線的方程。
表達式:
斜截式:y=kx+b。
兩點式:(y-y1)/(y1-y2)=(x-x1)/(x1-x2)。
點斜式:y-y1=k(x-x1)。
截距式:(x/a)+(y/b)=0。
補充一下:最基本的標準方程不要忘了,ax+by+c=0,。
因為,上面的四種直線方程不包含斜率k不存在的情況,如x=3,這條直線就不能用上面的四種形式表示,解題過程中尤其要注意,k不存在的情況。
練習題:
1.已知直線的方程是y+2=-x-1,則()。
a.直線經過點(2,-1),斜率為-1。
b.直線經過點(-2,-1),斜率為1。
c.直線經過點(-1,-2),斜率為-1。
d.直線經過點(1,-2),斜率為-1。
高一數學知識點總結范文(16篇)篇十五
函數與導數。主要考查集合運算、函數的有關概念定義域、值域、解析式、函數的極限、連續、導數。
平面向量與三角函數、三角變換及其應用。這一部分是高考的重點但不是難點,主要出一些基礎題或中檔題。
數列及其應用。這部分是高考的重點而且是難點,主要出一些綜合題。
不等式。主要考查不等式的求解和證明,而且很少單獨考查,主要是在解答題中比較大小。是高考的重點和難點。
概率和統計。這部分和我們的生活聯系比較大,屬應用題。
空間位置關系的定性與定量分析。主要是證明平行或垂直,求角和距離。主要考察對定理的熟悉程度、運用程度。
解析幾何。高考的難點,運算量大,一般含參數。
高考對數學基礎知識的考查,既全面又突出重點,扎實的數學基礎是成功解題的關鍵。
掌握分類計數原理與分步計數原理,并能用它們分析和解決一些簡單的應用問題。
理解排列的意義,掌握排列數計算公式,并能用它解決一些簡單的應用問題。
理解組合的意義,掌握組合數計算公式和組合數的性質,并能用它們解決一些簡單的應用問題。
掌握二項式定理和二項展開式的性質,并能用它們計算和證明一些簡單的問題。
了解隨機事件的發生存在著規律性和隨機事件概率的意義。
了解等可能性事件的概率的意義,會用排列組合的基本公式計算一些等可能性事件的概率。
了解互斥事件、相互獨立事件的意義,會用互斥事件的概率加法公式與相互獨立事件的概率乘法公式計算一些事件的概率。
會計算事件在n次獨立重復試驗中恰好發生k次的概率。
高一數學知識點總結范文(16篇)篇十六
有些“自我感覺良好”的學生,常輕視課本中基礎知識、基本技能和基本方法的學習與訓練,經常是知道怎么做就算了,而不去認真演算書寫,但對難題很感興趣,以顯示自己的“水平”,好高騖遠,重“量”輕“質”,陷入題海,到正規作業或考試中不是演算出錯就是中途“卡殼”。因此,同學們應從高一開始,增強自己從課本入手進行研究的意識。可以把每條定理、每道例題都當作習題,認真地重證、重解,并適當加些批注,特別是通過對典型例題的講解分析,最后要抽象出解決這類問題的數學思想和方法,并做好書面的解題后的反思,總結出解題的一般規律和特殊規律,以便推廣和靈活運用。另外,學生要盡可能獨立解題,因為求解過程,也是培養分析問題和解決問題能力的一個過程,同時更是一個研究過程。
首先,在課堂教學中培養好的聽課習慣是很重要的。當然聽是主要的,聽能使注意力集中,要把老師講的關鍵性部分聽懂、聽會。聽的時候注意思考、分析問題,但是光聽不記,或光記不聽必然顧此失彼,課堂效益低下,因此應適當地有目的性的記好筆記,領會課上老師的主要精神與意圖。科學的記筆記可以提高45分鐘課堂效益。
其次,要提高數學能力,當然是通過課堂來提高,要充分利用好課堂這塊陣地,學習數學的過程是活的,老師教學的對象也是活的,都在隨著教學過程的發展而變化,尤其是當老師注重能力教學的時候,教材是反映不出來的。數學能力是隨著知識的發生而同時形成的,無論是形成一個概念,掌握一條法則,會做一個習題,都應該從不同的能力角度來培養和提高。課堂上通過老師的教學,理解所學內容在教材中的地位,弄清與前后知識的聯系等,只有把握住教材,才能掌握學習的主動。
最后,在數學課堂中,老師一般少不了提問與板演,有時還伴隨著問題討論,因此可以聽到許多的信息,這些問題是很有價值的。對于那些典型問題,帶有普遍性的問題都必須及時解決,不能把問題的結癥遺留下來,甚至沉淀下來,有價值的問題要及時抓住,遺留問題要有針對性地補,注重實效。
一個人不斷接受新知識,不斷遭遇挫折產生疑問,不斷地總結,才有不斷地提高。"不會總結的同學,他的能力就不會提高,挫折經驗是成功的基石。"自然界適者生存的生物進化過程便是最好的例證。學習要經常總結規律,目的就是為了更一步的發展。通過與老師、同學平時的接觸交流,逐步總結出一般性的學習步驟,它包括:制定計劃、課前自學、專心上課、及時復習、獨立作業、解決疑難、系統小結和課外學習幾個方面,簡單概括為四個環節(預習、上課、整理、作業)和一個步驟(復習總結)。每一個環節都有較深刻的內容,帶有較強的目的性、針對性,要落實到位。堅持“兩先兩后一小結”(先預習后聽課,先復習后做作業,寫好每個單元的總結)的學習習慣。