作為一名教職工,就不得不需要編寫(xiě)教案,編寫(xiě)教案有利于我們科學(xué)、合理地支配課堂時(shí)間。那么教案應(yīng)該怎么制定才合適呢?下面我?guī)痛蠹艺覍げ⒄砹艘恍﹥?yōu)秀的教案范文,我們一起來(lái)了解一下吧。
初中數(shù)學(xué)九年級(jí)上冊(cè)教案篇一
1、通過(guò)類比一元一次方程,了解一元二次方程的概念及一般式ax2+bx+c=0(a≠0),分清二次項(xiàng)及其系數(shù)、一次項(xiàng)及其系數(shù)與常數(shù)項(xiàng)等概念。
2、了解一元二次方程的解的概念,會(huì)檢驗(yàn)一個(gè)數(shù)是不是一元二次方程的解。
重點(diǎn)
通過(guò)類比一元一次方程,了解一元二次方程的概念及一般式ax2+bx+c=0(a≠0)和一元二次方程的解等概念,并能用這些概念解決簡(jiǎn)單問(wèn)題。
難點(diǎn)
一元二次方程及其二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)和常數(shù)項(xiàng)的識(shí)別。
活動(dòng)1復(fù)習(xí)舊知
1、什么是方程?你能舉一個(gè)方程的例子嗎?
2、下列哪些方程是一元一次方程?并給出一元一次方程的概念和一般形式。
(1)2x-1(2)mx+n=0(3)1x+1=0(4)x2=1
3、下列哪個(gè)實(shí)數(shù)是方程2x-1=3的解?并給出方程的解的概念。
a.0b.1c.2d.3
活動(dòng)2探究新知
根據(jù)題意列方程。
1、教材第2頁(yè)問(wèn)題1.
提出問(wèn)題:
(1)正方形的大小由什么量決定?本題應(yīng)該設(shè)哪個(gè)量為未知數(shù)?
(2)本題中有什么數(shù)量關(guān)系?能利用這個(gè)數(shù)量關(guān)系列方程嗎?怎么列方程?
(3)這個(gè)方程能整理為比較簡(jiǎn)單的形式嗎?請(qǐng)說(shuō)出整理之后的方程。
2、教材第2頁(yè)問(wèn)題2.
提出問(wèn)題:
(1)本題中有哪些量?由這些量可以得到什么?
(2)比賽隊(duì)伍的數(shù)量與比賽的場(chǎng)次有什么關(guān)系?如果有5個(gè)隊(duì)參賽,每個(gè)隊(duì)比賽幾場(chǎng)?一共有20場(chǎng)比賽嗎?如果不是20場(chǎng)比賽,那么究竟比賽多少場(chǎng)?
(3)如果有x個(gè)隊(duì)參賽,一共比賽多少場(chǎng)呢?
3、一個(gè)數(shù)比另一個(gè)數(shù)大3,且兩個(gè)數(shù)之積為0,求這兩個(gè)數(shù)。
提出問(wèn)題:
本題需要設(shè)兩個(gè)未知數(shù)嗎?如果可以設(shè)一個(gè)未知數(shù),那么方程應(yīng)該怎么列?
4、一個(gè)正方形的面積的2倍等于25,這個(gè)正方形的邊長(zhǎng)是多少?
活動(dòng)3歸納概念
提出問(wèn)題:
(1)上述方程與一元一次方程有什么相同點(diǎn)和不同點(diǎn)?
(2)類比一元一次方程,我們可以給這一類方程取一個(gè)什么名字?
(3)歸納一元二次方程的概念。
1、一元二次方程:只含有________個(gè)未知數(shù),并且未知數(shù)的次數(shù)是________,這樣的________方程,叫做一元二次方程。
2、一元二次方程的一般形式是ax2+bx+c=0(a≠0),其中ax2是二次項(xiàng),a是二次項(xiàng)系數(shù);bx是一次項(xiàng),b是一次項(xiàng)系數(shù);c是常數(shù)項(xiàng)。
提出問(wèn)題:
(1)一元二次方程的一般形式有什么特點(diǎn)?等號(hào)的左、右分別是什么?
(2)為什么要限制a≠0,b,c可以為0嗎?
(3)2x2-x+1=0的一次項(xiàng)系數(shù)是1嗎?為什么?
3、一元二次方程的解(根):使一元二次方程左右兩邊相等的未知數(shù)的值叫做一元二次方程的解(根)。
活動(dòng)4例題與練習(xí)
例1在下列方程中,屬于一元二次方程的是________.
(1)4x2=81;(2)2x2-1=3y;(3)1x2+1x=2;
(4)2x2-2x(x+7)=0.
總結(jié):判斷一個(gè)方程是否是一元二次方程的依據(jù):(1)整式方程;(2)只含有一個(gè)未知數(shù);(3)含有未知數(shù)的項(xiàng)的次數(shù)是2.注意有些方程化簡(jiǎn)前含有二次項(xiàng),但是化簡(jiǎn)后二次項(xiàng)系數(shù)為0,這樣的方程不是一元二次方程。
例2教材第3頁(yè)例題。
例3以-2為根的一元二次方程是()
a.x2+2x-1=0 b.x2-x-2=0
c.x2+x+2=0 d.x2+x-2=0
總結(jié):判斷一個(gè)數(shù)是否為方程的解,可以將這個(gè)數(shù)代入方程,判斷方程左、右兩邊的值是否相等。
練習(xí):
1、若(a-1)x2+3ax-1=0是關(guān)于x的一元二次方程,那么a的取值范圍是________.
2、將下列一元二次方程化為一般形式,并分別指出它們的二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)和常數(shù)項(xiàng)。
(1)4x2=81;(2)(3x-2)(x+1)=8x-3.
3、教材第4頁(yè)練習(xí)第2題。
4、若-4是關(guān)于x的一元二次方程2x2+7x-k=0的一個(gè)根,則k的值為_(kāi)_______.
答案:1.a≠1;2.略;3.略;4.k=4.
活動(dòng)5課堂小結(jié)與作業(yè)布置
課堂小結(jié)
我們學(xué)習(xí)了一元二次方程的哪些知識(shí)?一元二次方程的一般形式是什么?一般形式中有什么限制?你能解一元二次方程嗎?
作業(yè)布置
教材第4頁(yè)習(xí)題21.1第1~7題。
解一元二次方程
21.2.1配方法(3課時(shí))
第1課時(shí)直接開(kāi)平方法
理解一元二次方程“降次”——轉(zhuǎn)化的數(shù)學(xué)思想,并能應(yīng)用它解決一些具體問(wèn)題。
提出問(wèn)題,列出缺一次項(xiàng)的一元二次方程ax2+c=0,根據(jù)平方根的意義解出這個(gè)方程,然后知識(shí)遷移到解a(ex+f)2+c=0型的一元二次方程。
重點(diǎn)
運(yùn)用開(kāi)平方法解形如(x+m)2=n(n≥0)的方程,領(lǐng)會(huì)降次——轉(zhuǎn)化的數(shù)學(xué)思想。
難點(diǎn)
通過(guò)根據(jù)平方根的意義解形如x2=n的方程,將知識(shí)遷移到根據(jù)平方根的意義解形如(x+m)2=n(n≥0)的方程。
一、復(fù)習(xí)引入
學(xué)生活動(dòng):請(qǐng)同學(xué)們完成下列各題。
問(wèn)題1:填空
(1)x2-8x+________=(x-________)2;(2)9x2+12x+________=(3x+________)2;(3)x2+px+________=(x+________)2.
解:根據(jù)完全平方公式可得:(1)164;(2)42;(3)(p2)2p2.
問(wèn)題2:目前我們都學(xué)過(guò)哪些方程?二元怎樣轉(zhuǎn)化成一元?一元二次方程與一元一次方程有什么不同?二次如何轉(zhuǎn)化成一次?怎樣降次?以前學(xué)過(guò)哪些降次的方法?
二、探索新知
上面我們已經(jīng)講了x2=9,根據(jù)平方根的意義,直接開(kāi)平方得x=±3,如果x換元為2t+1,即(2t+1)2=9,能否也用直接開(kāi)平方的方法求解呢?
(學(xué)生分組討論)
老師點(diǎn)評(píng):回答是肯定的,把2t+1變?yōu)樯厦娴膞,那么2t+1=±3
即2t+1=3,2t+1=-3
方程的兩根為t1=1,t2=-2
例1解方程:(1)x2+4x+4=1(2)x2+6x+9=2
分析:(1)x2+4x+4是一個(gè)完全平方公式,那么原方程就轉(zhuǎn)化為(x+2)2=1.
(2)由已知,得:(x+3)2=2
直接開(kāi)平方,得:x+3=±2
即x+3=2,x+3=-2
所以,方程的兩根x1=-3+2,x2=-3-2
解:略。
例2市政府計(jì)劃2年內(nèi)將人均住房面積由現(xiàn)在的10 m2提高到14.4 m2,求每年人均住房面積增長(zhǎng)率。
分析:設(shè)每年人均住房面積增長(zhǎng)率為x,一年后人均住房面積就應(yīng)該是10+10x=10(1+x);二年后人均住房面積就應(yīng)該是10(1+x)+10(1+x)x=10(1+x)2
解:設(shè)每年人均住房面積增長(zhǎng)率為x,
則:10(1+x)2=14.4
(1+x)2=1.44
直接開(kāi)平方,得1+x=±1.2
即1+x=1.2,1+x=-1.2
所以,方程的兩根是x1=0.2=20%,x2=-2.2
因?yàn)槊磕耆司》棵娣e的增長(zhǎng)率應(yīng)為正的,因此,x2=-2.2應(yīng)舍去。
所以,每年人均住房面積增長(zhǎng)率應(yīng)為20%。
(學(xué)生小結(jié))老師引導(dǎo)提問(wèn):解一元二次方程,它們的共同特點(diǎn)是什么?
共同特點(diǎn):把一個(gè)一元二次方程“降次”,轉(zhuǎn)化為兩個(gè)一元一次方程。我們把這種思想稱為“降次轉(zhuǎn)化思想”。
三、鞏固練習(xí)
教材第6頁(yè)練習(xí)。
四、課堂小結(jié)
本節(jié)課應(yīng)掌握:由應(yīng)用直接開(kāi)平方法解形如x2=p(p≥0)的方程,那么x=±p轉(zhuǎn)化為應(yīng)用直接開(kāi)平方法解形如(mx+n)2=p(p≥0)的方程,那么mx+n=±p,達(dá)到降次轉(zhuǎn)化之目的。若p<0則方程無(wú)解。
五、作業(yè)布置
教材第16頁(yè)復(fù)習(xí)鞏固1.第2課時(shí)配方法的基本形式
理解間接即通過(guò)變形運(yùn)用開(kāi)平方法降次解方程,并能熟練應(yīng)用它解決一些具體問(wèn)題。
通過(guò)復(fù)習(xí)可直接化成x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程的解法,引入不能直接化成上面兩種形式的一元二次方程的解題步驟。
重點(diǎn)
講清直接降次有困難,如x2+6x-16=0的一元二次方程的解題步驟。
難點(diǎn)
將不可直接降次解方程化為可直接降次解方程的“化為”的轉(zhuǎn)化方法與技巧。
一、復(fù)習(xí)引入
(學(xué)生活動(dòng))請(qǐng)同學(xué)們解下列方程:
(1)3x2-1=5(2)4(x-1)2-9=0(3)4x2+16x+16=9(4)4x2+16x=-7
老師點(diǎn)評(píng):上面的方程都能化成x2=p或(mx+n)2=p(p≥0)的形式,那么可得
x=±p或mx+n=±p(p≥0)。
如:4x2+16x+16=(2x+4)2,你能把4x2+16x=-7化成(2x+4)2=9嗎?
二、探索新知
列出下面問(wèn)題的方程并回答:
(1)列出的經(jīng)化簡(jiǎn)為一般形式的方程與剛才解題的方程有什么不同呢?
(2)能否直接用上面前三個(gè)方程的解法呢?
問(wèn)題:要使一塊矩形場(chǎng)地的長(zhǎng)比寬多6 m,并且面積為16 m2,求場(chǎng)地的長(zhǎng)和寬各是多少?
(1)列出的經(jīng)化簡(jiǎn)為一般形式的方程與前面講的三道題不同之處是:前三個(gè)左邊是含有x的完全平方式而后二個(gè)不具有此特征。
(2)不能。
既然不能直接降次解方程,那么,我們就應(yīng)該設(shè)法把它轉(zhuǎn)化為可直接降次解方程的方程,下面,我們就來(lái)講如何轉(zhuǎn)化:
x2+6x-16=0移項(xiàng)→x2+6x=16
兩邊加(6/2)2使左邊配成x2+2bx+b2的形式→x2+6x+32=16+9
左邊寫(xiě)成平方形式→(x+3)2=25降次→x+3=±5即x+3=5或x+3=-5
解一次方程→x1=2,x2=-8
可以驗(yàn)證:x1=2,x2=-8都是方程的根,但場(chǎng)地的寬不能是負(fù)值,所以場(chǎng)地的寬為2 m,長(zhǎng)為8 m.
像上面的解題方法,通過(guò)配成完全平方形式來(lái)解一元二次方程的方法,叫配方法。
可以看出,配方法是為了降次,把一個(gè)一元二次方程轉(zhuǎn)化為兩個(gè)一元一次方程來(lái)解。
例1用配方法解下列關(guān)于x的方程:
(1)x2-8x+1=0(2)x2-2x-12=0
分析:(1)顯然方程的左邊不是一個(gè)完全平方式,因此,要按前面的方法化為完全平方式;(2)同上。
解:略。
三、鞏固練習(xí)
教材第9頁(yè)練習(xí)1,2.(1)(2)。
四、課堂小結(jié)
本節(jié)課應(yīng)掌握:
左邊不含有x的完全平方形式的一元二次方程化為左邊是含有x的完全平方形式,右邊是非負(fù)數(shù),可以直接降次解方程的方程。
五、作業(yè)布置
教材第17頁(yè)復(fù)習(xí)鞏固2,3.(1)(2)。第3課時(shí)配方法的靈活運(yùn)用
了解配方法的概念,掌握運(yùn)用配方法解一元二次方程的步驟。
通過(guò)復(fù)習(xí)上一節(jié)課的解題方法,給出配方法的概念,然后運(yùn)用配方法解決一些具體題目。
重點(diǎn)
講清配方法的解題步驟。
難點(diǎn)
對(duì)于用配方法解二次項(xiàng)系數(shù)為1的一元二次方程,通常把常數(shù)項(xiàng)移到方程右邊后,兩邊加上的常數(shù)是一次項(xiàng)系數(shù)一半的平方;對(duì)于二次項(xiàng)系數(shù)不為1的一元二次方程,要先化二次項(xiàng)系數(shù)為1,再用配方法求解。
一、復(fù)習(xí)引入
(學(xué)生活動(dòng))解下列方程:
(1)x2-4x+7=0(2)2x2-8x+1=0
老師點(diǎn)評(píng):我們上一節(jié)課,已經(jīng)學(xué)習(xí)了如何解左邊不含有x的完全平方形式的一元二次方程以及不可以直接開(kāi)方降次解方程的轉(zhuǎn)化問(wèn)題,那么這兩道題也可以用上面的方法進(jìn)行解題。
解:略。(2)與(1)有何關(guān)聯(lián)?
二、探索新知
討論:配方法解一元二次方程的一般步驟:
(1)先將已知方程化為一般形式;
(2)化二次項(xiàng)系數(shù)為1;
(3)常數(shù)項(xiàng)移到右邊;
(4)方程兩邊都加上一次項(xiàng)系數(shù)的一半的平方,使左邊配成一個(gè)完全平方式;
(5)變形為(x+p)2=q的形式,如果q≥0,方程的根是x=-p±q;如果q<0,方程無(wú)實(shí)根。
例1解下列方程:
(1)2x2+1=3x(2)3x2-6x+4=0(3)(1+x)2+2(1+x)-4=0
分析:我們已經(jīng)介紹了配方法,因此,我們解這些方程就可以用配方法來(lái)完成,即配一個(gè)含有x的完全平方式。
解:略。
三、鞏固練習(xí)
教材第9頁(yè)練習(xí)2.(3)(4)(5)(6)。
四、課堂小結(jié)
本節(jié)課應(yīng)掌握:
1、配方法的概念及用配方法解一元二次方程的步驟。
2、配方法是解一元二次方程的通法,它的重要性,不僅僅表現(xiàn)在一元二次方程的解法中,也可通過(guò)配方,利用非負(fù)數(shù)的性質(zhì)判斷代數(shù)式的正負(fù)性。在今后學(xué)習(xí)二次函數(shù),到高中學(xué)習(xí)二次曲線時(shí),還將經(jīng)常用到。
五、作業(yè)布置
教材第17頁(yè)復(fù)習(xí)鞏固3.(3)(4)。
補(bǔ)充:(1)已知x2+y2+z2-2x+4y-6z+14=0,求x+y+z的值。
(2)求證:無(wú)論x,y取任何實(shí)數(shù),多項(xiàng)式x2+y2-2x-4y+16的值總是正數(shù)。21.2.2公式法
理解一元二次方程求根公式的推導(dǎo)過(guò)程,了解公式法的概念,會(huì)熟練應(yīng)用公式法解一元二次方程。
復(fù)習(xí)具體數(shù)字的一元二次方程配方法的解題過(guò)程,引入ax2+bx+c=0(a≠0)的求根公式的推導(dǎo),并應(yīng)用公式法解一元二次方程。
重點(diǎn)
求根公式的推導(dǎo)和公式法的應(yīng)用。
難點(diǎn)
一元二次方程求根公式的推導(dǎo)。
一、復(fù)習(xí)引入
1、前面我們學(xué)習(xí)過(guò)解一元二次方程的“直接開(kāi)平方法”,比如,方程
(1)x2=4(2)(x-2)2=7
提問(wèn)1這種解法的(理論)依據(jù)是什么?
提問(wèn)2這種解法的局限性是什么?(只對(duì)那種“平方式等于非負(fù)數(shù)”的特殊二次方程有效,不能實(shí)施于一般形式的二次方程。)
2、面對(duì)這種局限性,怎么辦?(使用配方法,把一般形式的二次方程配方成能夠“直接開(kāi)平方”的形式。)
(學(xué)生活動(dòng))用配方法解方程2x2+3=7x
(老師點(diǎn)評(píng))略
總結(jié)用配方法解一元二次方程的步驟(學(xué)生總結(jié),老師點(diǎn)評(píng))。
(1)先將已知方程化為一般形式;
(2)化二次項(xiàng)系數(shù)為1;
(3)常數(shù)項(xiàng)移到右邊;
(4)方程兩邊都加上一次項(xiàng)系數(shù)的一半的平方,使左邊配成一個(gè)完全平方式;
(5)變形為(x+p)2=q的形式,如果q≥0,方程的根是x=-p±q;如果q<0,方程無(wú)實(shí)根。
二、探索新知
用配方法解方程:
(1)ax2-7x+3=0(2)ax2+bx+3=0
如果這個(gè)一元二次方程是一般形式ax2+bx+c=0(a≠0),你能否用上面配方法的步驟求出它們的兩根,請(qǐng)同學(xué)獨(dú)立完成下面這個(gè)問(wèn)題。
問(wèn)題:已知ax2+bx+c=0(a≠0),試推導(dǎo)它的兩個(gè)根x1=-b+b2-4ac2a,x2=-b-b2-4ac2a(這個(gè)方程一定有解嗎?什么情況下有解?)
分析:因?yàn)榍懊婢唧w數(shù)字已做得很多,我們現(xiàn)在不妨把a(bǔ),b,c也當(dāng)成一個(gè)具體數(shù)字,根據(jù)上面的解題步驟就可以一直推下去。
解:移項(xiàng),得:ax2+bx=-c
二次項(xiàng)系數(shù)化為1,得x2+bax=-ca
配方,得:x2+bax+(b2a)2=-ca+(b2a)2
即(x+b2a)2=b2-4ac4a2
∵4a2>0,當(dāng)b2-4ac≥0時(shí),b2-4ac4a2≥0
∴(x+b2a)2=(b2-4ac2a)2
直接開(kāi)平方,得:x+b2a=±b2-4ac2a
即x=-b±b2-4ac2a
∴x1=-b+b2-4ac2a,x2=-b-b2-4ac2a
由上可知,一元二次方程ax2+bx+c=0(a≠0)的根由方程的系數(shù)a,b,c而定,因此:
(1)解一元二次方程時(shí),可以先將方程化為一般形式ax2+bx+c=0,當(dāng)b2-4ac≥0時(shí),將a,b,c代入式子x=-b±b2-4ac2a就得到方程的根。
(2)這個(gè)式子叫做一元二次方程的求根公式。
(3)利用求根公式解一元二次方程的方法叫公式法。
公式的理解
(4)由求根公式可知,一元二次方程最多有兩個(gè)實(shí)數(shù)根。
例1用公式法解下列方程:
(1)2x2-x-1=0(2)x2+1.5=-3x
(3)x2-2x+12=0(4)4x2-3x+2=0
分析:用公式法解一元二次方程,首先應(yīng)把它化為一般形式,然后代入公式即可。
補(bǔ):(5)(x-2)(3x-5)=0
三、鞏固練習(xí)
教材第12頁(yè)練習(xí)1.(1)(3)(5)或(2)(4)(6)。
四、課堂小結(jié)
本節(jié)課應(yīng)掌握:
(1)求根公式的概念及其推導(dǎo)過(guò)程;
(2)公式法的概念;
(3)應(yīng)用公式法解一元二次方程的步驟:1)將所給的方程變成一般形式,注意移項(xiàng)要變號(hào),盡量讓a>0;2)找出系數(shù)a,b,c,注意各項(xiàng)的系數(shù)包括符號(hào);3)計(jì)算b2-4ac,若結(jié)果為負(fù)數(shù),方程無(wú)解;4)若結(jié)果為非負(fù)數(shù),代入求根公式,算出結(jié)果。
(4)初步了解一元二次方程根的情況。
五、作業(yè)布置
教材第17頁(yè)習(xí)題4,5.21.2.3因式分解法
掌握用因式分解法解一元二次方程。
通過(guò)復(fù)習(xí)用配方法、公式法解一元二次方程,體會(huì)和探尋用更簡(jiǎn)單的方法——因式分解法解一元二次方程,并應(yīng)用因式分解法解決一些具體問(wèn)題。
重點(diǎn)
用因式分解法解一元二次方程。
難點(diǎn)
讓學(xué)生通過(guò)比較解一元二次方程的多種方法感悟用因式分解法使解題更簡(jiǎn)便。
一、復(fù)習(xí)引入
(學(xué)生活動(dòng))解下列方程:
(1)2x2+x=0(用配方法)(2)3x2+6x=0(用公式法)
老師點(diǎn)評(píng):(1)配方法將方程兩邊同除以2后,x前面的系數(shù)應(yīng)為12,12的一半應(yīng)為14,因此,應(yīng)加上(14)2,同時(shí)減去(14)2.(2)直接用公式求解。
二、探索新知
(學(xué)生活動(dòng))請(qǐng)同學(xué)們口答下面各題。
(老師提問(wèn))(1)上面兩個(gè)方程中有沒(méi)有常數(shù)項(xiàng)?
(2)等式左邊的各項(xiàng)有沒(méi)有共同因式?
(學(xué)生先答,老師解答)上面兩個(gè)方程中都沒(méi)有常數(shù)項(xiàng);左邊都可以因式分解。
因此,上面兩個(gè)方程都可以寫(xiě)成:
(1)x(2x+1)=0(2)3x(x+2)=0
因?yàn)閮蓚€(gè)因式乘積要等于0,至少其中一個(gè)因式要等于0,也就是(1)x=0或2x+1=0,所以x1=0,x2=-12.
(2)3x=0或x+2=0,所以x1=0,x2=-2.(以上解法是如何實(shí)現(xiàn)降次的?)
因此,我們可以發(fā)現(xiàn),上述兩個(gè)方程中,其解法都不是用開(kāi)平方降次,而是先因式分解使方程化為兩個(gè)一次式的乘積等于0的形式,再使這兩個(gè)一次式分別等于0,從而實(shí)現(xiàn)降次,這種解法叫做因式分解法。
例1解方程:
(1)10x-4.9x2=0(2)x(x-2)+x-2=0(3)5x2-2x-14=x2-2x+34(4)(x-1)2=(3-2x)2
思考:使用因式分解法解一元二次方程的條件是什么?
解:略(方程一邊為0,另一邊可分解為兩個(gè)一次因式乘積。)
練習(xí):下面一元二次方程解法中,正確的是()
a.(x-3)(x-5)=10×2,∴x-3=10,x-5=2,∴x1=13,x2=7
b.(2-5x)+(5x-2)2=0,∴(5x-2)(5x-3)=0,∴x1=25,x2=35
c.(x+2)2+4x=0,∴x1=2,x2=-2
d.x2=x,兩邊同除以x,得x=1
三、鞏固練習(xí)
教材第14頁(yè)練習(xí)1,2.
四、課堂小結(jié)
本節(jié)課要掌握:
(1)用因式分解法,即用提取公因式法、十字相乘法等解一元二次方程及其應(yīng)用。
(2)因式分解法要使方程一邊為兩個(gè)一次因式相乘,另一邊為0,再分別使各一次因式等于0.
五、作業(yè)布置
教材第17頁(yè)習(xí)題6,8,10,11.21.2.4一元二次方程的根與系數(shù)的關(guān)系
1、掌握一元二次方程的根與系數(shù)的關(guān)系并會(huì)初步應(yīng)用。
2、培養(yǎng)學(xué)生分析、觀察、歸納的能力和推理論證的能力。
3、滲透由特殊到一般,再由一般到特殊的認(rèn)識(shí)事物的規(guī)律。
4、培養(yǎng)學(xué)生去發(fā)現(xiàn)規(guī)律的積極性及勇于探索的精神。
重點(diǎn)
根與系數(shù)的關(guān)系及其推導(dǎo)
難點(diǎn)
正確理解根與系數(shù)的關(guān)系。一元二次方程根與系數(shù)的關(guān)系是指一元二次方程兩根的和、兩根的積與系數(shù)的關(guān)系。
二次根式
教材內(nèi)容
1、本單元教學(xué)的主要內(nèi)容:
二次根式的概念;二次根式的加減;二次根式的乘除;最簡(jiǎn)二次根式。
2、本單元在教材中的地位和作用:
二次根式是在學(xué)完了八年級(jí)下冊(cè)第十七章《反比例正函數(shù)》、第十八章《勾股定理及其應(yīng)用》等內(nèi)容的基礎(chǔ)之上繼續(xù)學(xué)習(xí)的,它也是今后學(xué)習(xí)其他數(shù)學(xué)知識(shí)的基礎(chǔ)。
教學(xué)目標(biāo)
1、知識(shí)與技能
(1)理解二次根式的概念。
(2)理解 (a≥0)是一個(gè)非負(fù)數(shù),( )2=a(a≥0), =a(a≥0)。
(3)掌握 ? = (a≥0,b≥0), = ? ;
= (a≥0,b>0), = (a≥0,b>0)。
(4)了解最簡(jiǎn)二次根式的概念并靈活運(yùn)用它們對(duì)二次根式進(jìn)行加減。
2、過(guò)程與方法
(1)先提出問(wèn)題,讓學(xué)生探討、分析問(wèn)題,師生共同歸納,得出概念。再對(duì)概念的內(nèi)涵進(jìn)行分析,得出幾個(gè)重要結(jié)論,并運(yùn)用這些重要結(jié)論進(jìn)行二次根式的計(jì)算和化簡(jiǎn)。
(2)用具體數(shù)據(jù)探究規(guī)律,用不完全歸納法得出二次根式的乘(除)法規(guī)定,并運(yùn)用規(guī)定進(jìn)行計(jì)算。
(3)利用逆向思維,得出二次根式的乘(除)法規(guī)定的逆向等式并運(yùn)用它進(jìn)行化簡(jiǎn)。
(4)通過(guò)分析前面的計(jì)算和化簡(jiǎn)結(jié)果,抓住它們的共同特點(diǎn),給出最簡(jiǎn)二次根式的概念。利用最簡(jiǎn)二次根式的概念,來(lái)對(duì)相同的二次根式進(jìn)行合并,達(dá)到對(duì)二次根式進(jìn)行計(jì)算和化簡(jiǎn)的目的。
3、情感、態(tài)度與價(jià)值觀
通過(guò)本單元的學(xué)習(xí)培養(yǎng)學(xué)生:利用規(guī)定準(zhǔn)確計(jì)算和化簡(jiǎn)的嚴(yán)謹(jǐn)?shù)目茖W(xué)精神,經(jīng)過(guò)探索二次根式的重要結(jié)論,二次根式的乘除規(guī)定,發(fā)展學(xué)生觀察、分析、發(fā)現(xiàn)問(wèn)題的能力。
教學(xué)重點(diǎn)
1、二次根式 (a≥0)的內(nèi)涵。 (a≥0)是一個(gè)非負(fù)數(shù);( )2=a(a≥0); =a(a≥0)及其運(yùn)用。
2、二次根式乘除法的規(guī)定及其運(yùn)用。
3、最簡(jiǎn)二次根式的概念。
4、二次根式的加減運(yùn)算。
教學(xué)難點(diǎn)
1、對(duì) (a≥0)是一個(gè)非負(fù)數(shù)的理解;對(duì)等式( )2=a(a≥0)及 =a(a≥0)的理解及應(yīng)用。
2、二次根式的乘法、除法的條件限制。
3、利用最簡(jiǎn)二次根式的概念把一個(gè)二次根式化成最簡(jiǎn)二次根式。
教學(xué)關(guān)鍵
1、潛移默化地培養(yǎng)學(xué)生從具體到一般的推理能力,突出重點(diǎn),突破難點(diǎn)。
2、培養(yǎng)學(xué)生利用二次根式的規(guī)定和重要結(jié)論進(jìn)行準(zhǔn)確計(jì)算的能力,培養(yǎng)學(xué)生一絲不茍的科學(xué)精神。
單元課時(shí)劃分
本單元教學(xué)時(shí)間約需11課時(shí),具體分配如下:
21.1 二次根式 3課時(shí)
21.2 二次根式的乘法 3課時(shí)
21.3 二次根式的加減 3課時(shí)
教學(xué)活動(dòng)、習(xí)題課、小結(jié) 2課時(shí)
21.1 二次根式
第一課時(shí)
教學(xué)內(nèi)容
二次根式的概念及其運(yùn)用
教學(xué)目標(biāo)
理解二次根式的概念,并利用 (a≥0)的意義解答具體題目。
提出問(wèn)題,根據(jù)問(wèn)題給出概念,應(yīng)用概念解決實(shí)際問(wèn)題。
教學(xué)重難點(diǎn)關(guān)鍵
1、重點(diǎn):形如 (a≥0)的式子叫做二次根式的概念;
2、難點(diǎn)與關(guān)鍵:利用“ (a≥0)”解決具體問(wèn)題。
教學(xué)過(guò)程
一、復(fù)習(xí)引入
(學(xué)生活動(dòng))請(qǐng)同學(xué)們獨(dú)立完成下列三個(gè)問(wèn)題:
問(wèn)題1:已知反比例函數(shù)y= ,那么它的圖象在第一象限橫、縱坐標(biāo)相等的點(diǎn)的坐標(biāo)是___________.
問(wèn)題2:如圖,在直角三角形abc中,ac=3,bc=1,∠c=90°,那么ab邊的長(zhǎng)是__________.
問(wèn)題3:甲射擊6次,各次擊中的環(huán)數(shù)如下:8、7、9、9、7、8,那么甲這次射擊的方差是s2,那么s=_________.
老師點(diǎn)評(píng):
問(wèn)題1:橫、縱坐標(biāo)相等,即x=y,所以x2=3.因?yàn)辄c(diǎn)在第一象限,所以x= ,所以所求點(diǎn)的坐標(biāo)( , )。
問(wèn)題2:由勾股定理得ab=
問(wèn)題3:由方差的概念得s= 。
二、探索新知
很明顯 、 、 ,都是一些正數(shù)的算術(shù)平方根。像這樣一些正數(shù)的算術(shù)平方根的式子,我們就把它稱二次根式。因此,一般地,我們把形如 (a≥0)的式子叫做二次根式,“ ”稱為二次根號(hào)。
(學(xué)生活動(dòng))議一議:
1.-1有算術(shù)平方根嗎?
2.0的算術(shù)平方根是多少?
3、當(dāng)a<0, 有意義嗎?
老師點(diǎn)評(píng):(略)
例1.下列式子,哪些是二次根式,哪些不是二次根式: 、 、 、 (x>0)、 、 、- 、 、 (x≥0,y≥0)。
分析:二次根式應(yīng)滿足兩個(gè)條件:第一,有二次根號(hào)“ ”;第二,被開(kāi)方數(shù)是正數(shù)或0.
解:二次根式有: 、 (x>0)、 、- 、 (x≥0,y≥0);不是二次根式的有: 、 、 、 。
例2.當(dāng)x是多少時(shí), 在實(shí)數(shù)范圍內(nèi)有意義?
分析:由二次根式的定義可知,被開(kāi)方數(shù)一定要大于或等于0,所以3x-1≥0, 才能有意義。
解:由3x-1≥0,得:x≥
當(dāng)x≥ 時(shí), 在實(shí)數(shù)范圍內(nèi)有意義。
三、鞏固練習(xí)
教材p練習(xí)1、2、3.
四、應(yīng)用拓展
例3.當(dāng)x是多少時(shí), + 在實(shí)數(shù)范圍內(nèi)有意義?
分析:要使 + 在實(shí)數(shù)范圍內(nèi)有意義,必須同時(shí)滿足 中的≥0和 中的x+1≠0.
解:依題意,得
由①得:x≥-
由②得:x≠-1
當(dāng)x≥- 且x≠-1時(shí), + 在實(shí)數(shù)范圍內(nèi)有意義。
例4(1)已知y= + +5,求 的值。(答案:2)
(2)若 + =0,求a2004+b2004的值。(答案: )
五、歸納小結(jié)(學(xué)生活動(dòng),老師點(diǎn)評(píng))
本節(jié)課要掌握:
1、形如 (a≥0)的式子叫做二次根式,“ ”稱為二次根號(hào)。
2、要使二次根式在實(shí)數(shù)范圍內(nèi)有意義,必須滿足被開(kāi)方數(shù)是非負(fù)數(shù)。
六、布置作業(yè)
1、教材p8復(fù)習(xí)鞏固1、綜合應(yīng)用5.
2、選用課時(shí)作業(yè)設(shè)計(jì)。
3、課后作業(yè):《同步訓(xùn)練》
初中數(shù)學(xué)九年級(jí)上冊(cè)教案篇二
一、目的
以提高學(xué)生中考成績(jī)?yōu)槌霭l(fā)點(diǎn),注重培養(yǎng)學(xué)生的基礎(chǔ)知識(shí)和基本技能,提高學(xué)生解題答題的能力。同時(shí)通過(guò)本學(xué)期的課堂教學(xué),完成九年級(jí)上冊(cè)數(shù)學(xué)教學(xué)任務(wù)。并根據(jù)實(shí)際情況,適當(dāng)完成九年級(jí)下冊(cè)新授教學(xué)內(nèi)容。
二、知識(shí)技能目標(biāo)
掌握二次根式的概念、性質(zhì)及計(jì)算;會(huì)解一元二次方程;理解旋轉(zhuǎn)的基本性質(zhì);掌握?qǐng)A及與圓有關(guān)的概念、性質(zhì);理解概率在生活中的應(yīng)用。過(guò)程方法目標(biāo):培養(yǎng)學(xué)生的觀察、探究、推理、歸納的能力,發(fā)展學(xué)生合情推理能力、邏輯推理能力和推理認(rèn)證表達(dá)能力,提高知識(shí)綜合應(yīng)用能力。態(tài)度情感目標(biāo):進(jìn)一步感受數(shù)學(xué)與日常生活密不可分的聯(lián)系,同時(shí)對(duì)學(xué)生進(jìn)行辯證唯物主義世界觀教育。
三、教材分析
第二十一章二次根式:本章主要內(nèi)容是二次根式的概念、性質(zhì)、化簡(jiǎn)和有關(guān)的計(jì)算。本章重點(diǎn)是理解二次根式的性質(zhì),及二次根式的化簡(jiǎn)和計(jì)算。本章的難點(diǎn)是正確理解二次根式的性質(zhì)和運(yùn)算法則。
第二十二章一元二次方程:本章主要是掌握配方法、公式法和因式分解法解一元二次方程,并運(yùn)用一元二次方程解決實(shí)際問(wèn)題。本章重點(diǎn)是解一元二次方程的思路及具體方法。本章的難點(diǎn)是解一元二次方程。
第二十三章旋轉(zhuǎn):本章主要是探索和理解旋轉(zhuǎn)的性質(zhì),能夠按要求作出簡(jiǎn)單平面圖形旋轉(zhuǎn)后的圖形。本章的重點(diǎn)是中心對(duì)稱的概念、性質(zhì)與作圖。本章的難點(diǎn)是辨認(rèn)中心對(duì)稱圖形,按要求作出簡(jiǎn)單平面圖形旋轉(zhuǎn)后的圖形。
第二十四章圓:理解圓及有關(guān)概念,掌握弧、弦、圓心角的關(guān)系,探索點(diǎn)與圓、直線與圓、圓與圓之間的位置關(guān)系,探索圓周角與圓心角的關(guān)系,直徑所對(duì)圓周角的特點(diǎn),切線與過(guò)切點(diǎn)的半徑之間的關(guān)系,正多邊形與圓的關(guān)系……。本章內(nèi)容知識(shí)點(diǎn)多,而且都比較復(fù)雜,是整個(gè)初中幾何中最難的一個(gè)教學(xué)內(nèi)容。
第二十五章概率初步:理解概率的意義及其在生活中的廣泛應(yīng)用。本章的重點(diǎn)是理解概率的意義和應(yīng)用,掌握概率的計(jì)算方法。本章的難點(diǎn)是會(huì)用列舉法求隨機(jī)事件的概率。
四、教學(xué)措施
1、精心備課,設(shè)置好每個(gè)教學(xué)情境,激發(fā)學(xué)生學(xué)習(xí)興趣和欲望。深入淺出,幫助學(xué)生理解各個(gè)知識(shí)點(diǎn),突出重點(diǎn),講透難點(diǎn)。
2、加強(qiáng)對(duì)學(xué)生課后的輔導(dǎo),尤其是中等生和后進(jìn)生的基礎(chǔ)知識(shí)的輔導(dǎo),提高他們的解題作答能力和正確率。
3、精心組織單元測(cè)試,認(rèn)真分析試卷中暴露出來(lái)的問(wèn)題,并對(duì)其中大多數(shù)學(xué)生存在的問(wèn)題集中進(jìn)行分析與講解,力求透徹。對(duì)于少部分學(xué)生存在的問(wèn)題進(jìn)行小組輔導(dǎo),突破難點(diǎn)。
4、做好學(xué)生的思想教育工作,促進(jìn)學(xué)生學(xué)習(xí)的積極性,從而提高學(xué)生的`學(xué)習(xí)成績(jī)。
初中數(shù)學(xué)九年級(jí)上冊(cè)教案篇三
教學(xué)目標(biāo)
知識(shí)與技能目標(biāo):理解生活中的百分率,掌握求百分率的方法,能正確求出百分率。 過(guò)程與方法目標(biāo):通過(guò)自主探究、合作交流,理解常用百分率的含義及計(jì)算方法。 情感、態(tài)度與價(jià)值觀目標(biāo):體會(huì)求百分率的用處和必要性,感受百分率源于生活,滲透數(shù)學(xué)來(lái)源于生活并服務(wù)于生活的數(shù)學(xué)思想。
教學(xué)重難點(diǎn)
教學(xué)重點(diǎn):理解生活中常見(jiàn)的百分率的含義。
教學(xué)難點(diǎn):正確計(jì)算常見(jiàn)的百分率。
教學(xué)過(guò)程
一、創(chuàng)設(shè)情境,探究導(dǎo)入
1、課件出示
看圖,回答下面的問(wèn)題。
(1)圖中陰影部分占整個(gè)圖形的幾分之幾?用百分?jǐn)?shù)怎樣表示?
(2)圖中空白部分占陰影部分的幾分之幾?用百分?jǐn)?shù)怎樣表示?
2、百分?jǐn)?shù)的意義
我們班有36%的學(xué)生參加了美術(shù)興趣小組。
世界總?cè)丝谥写蠹s有50%的人口年齡低于25歲。
一瓶農(nóng)夫果園飲料中果汁含量大約是10%。
我們班學(xué)生的近視率是45%。
3、小剛做了10道題,錯(cuò)了2道
做對(duì)的題數(shù)占總題數(shù)的幾分之幾?
做錯(cuò)的題數(shù)占總題數(shù)的幾分之幾?
做對(duì)的題數(shù)占總題數(shù)的百分之幾?
做錯(cuò)的題數(shù)占總題數(shù)的百分之幾?
求a是b的百分之幾和求a是b的幾分之幾方法是相同的,都是:a÷b
4、六年級(jí)有學(xué)生160人,已達(dá)到《國(guó)家體育鍛煉標(biāo)準(zhǔn)》(兒童組)的有120人,占六年級(jí)學(xué)生人數(shù)的幾分之幾? 六年級(jí)有學(xué)生160人,已達(dá)到《國(guó)家體育鍛煉標(biāo)準(zhǔn)》(兒童組)的有120人,占六年級(jí)學(xué)生人數(shù)的 百分之幾?
學(xué)生獨(dú)立思考、同桌交流:嘗試計(jì)算,得出結(jié)論。
5、談話,導(dǎo)入新課
在我們的日常生活中像這樣的百分率還有很多,如發(fā)芽率、及格率、出米率等,它可以幫助我們解決生活中的一些實(shí)際問(wèn)題。
下面,讓我們共同走進(jìn)百分率,探究它的計(jì)算方法(板書(shū):百分率的計(jì)算)。
二、學(xué)習(xí)新知
1、教學(xué)例1——在具體情境中認(rèn)識(shí)百分率,探究計(jì)算方法
(1)出示例1:六年級(jí)有學(xué)生160人,已達(dá)到《國(guó)家體育鍛煉標(biāo)準(zhǔn)》(兒童組)的有120人。六年級(jí)學(xué)生的達(dá)標(biāo)率是多少?
(2)學(xué)生讀題,分析題意,思考達(dá)標(biāo)率的含義,嘗試計(jì)算。
(3)指名板演并交流思維過(guò)程,集體訂正。
(4)教師小結(jié)
指導(dǎo)學(xué)生明確達(dá)標(biāo)率是百分率的一種,它的含義即“達(dá)標(biāo)人數(shù)是測(cè)試總?cè)藬?shù)的百分之幾”,與“求一個(gè)數(shù)是另一個(gè)數(shù)的幾分之幾”問(wèn)題的計(jì)算方法相同,因此用“達(dá)標(biāo)人數(shù)÷測(cè)試總?cè)藬?shù)”就行;因?yàn)榘俜致适前俜謹(jǐn)?shù),計(jì)算結(jié)果應(yīng)是百分?jǐn)?shù)形式,所以完整的計(jì)算方法應(yīng)是“達(dá)標(biāo)率=達(dá)標(biāo)人數(shù) 除以 測(cè)試總?cè)藬?shù) ×100%”。
談話:《國(guó)家學(xué)生體質(zhì)健康標(biāo)準(zhǔn)》要求小學(xué)生體質(zhì)健康達(dá)標(biāo)率不得低于60%,通過(guò)計(jì)算、比較,說(shuō)明我們班學(xué)生的體質(zhì)是達(dá)到健康標(biāo)準(zhǔn)的,這也是百分率的價(jià)值所在。
2、教學(xué)例2——掌握百分率計(jì)算方法,認(rèn)識(shí)百分率的價(jià)值
(1)出示例2:科學(xué)課上,五(2)班同學(xué)做的種子發(fā)芽實(shí)驗(yàn)結(jié)果如下:
種子名稱 實(shí)驗(yàn)種子總數(shù) 發(fā)芽數(shù) 發(fā)芽率
綠豆 80 78
花生 50 46
大蒜 20 19
(2)學(xué)生讀題,弄清已知條件和問(wèn)題,討論發(fā)芽率的含義,嘗試計(jì)算各種種子的發(fā)芽率。 (3)指名學(xué)生交流發(fā)芽率的含義及計(jì)算方法,板演算式,集體訂正。
(4)比較,認(rèn)識(shí)發(fā)芽率在生產(chǎn)實(shí)踐中的價(jià)值。
通過(guò)計(jì)算我們發(fā)現(xiàn)哪種種子的發(fā)芽率要高一些?哪種要低一些呢?講解:發(fā)芽率對(duì)于農(nóng)民種田是十分重要的,他們需要根據(jù)發(fā)芽率的高低,決定種子品種和播種面積。
3、小組合作探究,尋找生活中的百分率,總結(jié)百分率計(jì)算公式。
(1)談話,明確合作學(xué)習(xí)要求:在實(shí)際生活中,像命中率、達(dá)標(biāo)率、發(fā)芽率等這樣的百分率還有很多,請(qǐng)小組四位同學(xué)在一起開(kāi)動(dòng)腦筋、積極協(xié)作,尋找生活中的百分率,寫(xiě)出它的計(jì)算方法,比一比哪個(gè)小組找得最多。
(2)小組合作,尋找生活中的百分率,探究其含義及其計(jì)算方法,寫(xiě)出計(jì)算公式,教師巡視了解小組合作情況及結(jié)果。
(3)小組代表匯報(bào)本組收集的百分率,闡明其含義,在投影儀上展示計(jì)算方法,師生共同訂正。
(4)羅列不同百分率的計(jì)算方法,引導(dǎo)學(xué)生發(fā)現(xiàn)共同點(diǎn),總結(jié)百分率的計(jì)算公式: ?率= 量 ? 除以總數(shù)量 ×100%
(5)舉實(shí)例,加深對(duì)百分率計(jì)算公式的認(rèn)識(shí),掌握百分率計(jì)算方法。
4、某縣種子推廣站,用300粒玉米種子作發(fā)芽試驗(yàn),結(jié)果發(fā)芽的種子有288粒。求發(fā)芽率。
5、探討、交流:生活中的百分率哪些可能大于100%?哪些只會(huì)等于或小于100%? 三、鞏固練習(xí)
1、填一填
①稻谷的出米率是85%,是指( )
的千克數(shù)占( )的千克數(shù)的百
分之八十五。
②甲數(shù)是乙數(shù)的 4/5 ,乙數(shù)是甲數(shù)的
( )%。
③20÷( )= 4/8 =( )︰24=( )%
2、選一選:
種一批樹(shù),活了100棵,死了1棵,求成活率的正確算式是( )。
一根鋼管截成2段,第一段長(zhǎng) 米,第二段占全長(zhǎng)的60%,這兩段鋼管比較( )。 布置作業(yè)
1、小組合作,整理生活中常見(jiàn)的百分率的計(jì)算方法,寫(xiě)在數(shù)學(xué)書(shū)第86頁(yè)上。
2、完成練習(xí)二十第2、3、4題。
四、課堂小結(jié)
今天你有什么收獲?生談收獲。
初中數(shù)學(xué)九年級(jí)上冊(cè)教案篇四
活動(dòng)目標(biāo)
1、嘗試實(shí)驗(yàn),獲得有關(guān)容量守恒的經(jīng)驗(yàn)。
2、樂(lè)意動(dòng)手動(dòng)腦探究水的變化,了解它的主要特性。
活動(dòng)準(zhǔn)備
1、趣味練習(xí):容量比較)
2、標(biāo)有刻度的瓶子,水,記錄紙,筆。
活動(dòng)過(guò)程
一、觀察提問(wèn)
1.出示趣味練習(xí):容量比較
教師:小朋友看一看這六瓶水是一樣多的嗎?你是怎么知道的?
小結(jié):現(xiàn)在我們想辦法做一下實(shí)驗(yàn),比較一下水的多少吧。
二、實(shí)驗(yàn)操作
1、教師:用什么辦法驗(yàn)證呢?怎么操作?
要求:實(shí)驗(yàn)用的兩瓶水不能混在一起,實(shí)驗(yàn)時(shí)動(dòng)作慢一點(diǎn),避免將水灑出影響實(shí)驗(yàn)結(jié)果。
2、記錄實(shí)驗(yàn)結(jié)果
(1)高矮不同的兩只瓶子
方法是通過(guò)比較水位 的高低,我們可以看出瓶子的水是一樣的。
原來(lái)瓶子的高矮是不影響水的多少的。
(2)粗細(xì)不同的兩只瓶子小
選擇兩個(gè)相同的空瓶,把裝在大小不同的瓶?jī)?nèi)的飲料倒入其中,比較出飲料一樣多。
方法,任選一個(gè)瓶子,將一瓶飲料倒入,用筆畫(huà)或粘紙條的方法做標(biāo)記,
把飲料倒出后再將另一瓶飲料倒入該瓶,看飲料位置與原來(lái)留下的標(biāo)記是否一致,
比較出飲料一樣多原來(lái)瓶子的粗細(xì)是不影響水的多少的。
(3)一只含內(nèi)容物的的瓶子內(nèi)容物為石子
方法是取出瓶中石子,比較水位的高低。
內(nèi)容物為海綿小結(jié):方法是將海綿中的水?dāng)D回瓶中,比較水位的高低。
原來(lái)瓶子里面是否有物體是不影響水的多少的。
3、總結(jié):瓶子的高矮、粗細(xì)、內(nèi)含物是不影響水的多少的,這種現(xiàn)象就叫做容量守恒。
三、活動(dòng)延伸
想一想,如果把兩塊一樣重的橡皮泥塞進(jìn)不同形狀的瓶子里,橡皮泥會(huì)變重嗎?
回去試試看吧!
初中數(shù)學(xué)九年級(jí)上冊(cè)教案篇五
一、基本情況:
本學(xué)期是初中學(xué)習(xí)的關(guān)鍵時(shí)期本學(xué)期我擔(dān)任初三年級(jí)(29、30)兩個(gè)班的數(shù)學(xué)教學(xué)工作,是新課程標(biāo)準(zhǔn)實(shí)驗(yàn)教材,如何用新理念使用好新課程標(biāo)準(zhǔn)教材?如何在教學(xué)中貫徹新課標(biāo)精神?這要求在教學(xué)過(guò)程中的創(chuàng)新意識(shí)、引導(dǎo)學(xué)生進(jìn)行思考問(wèn)題方式都必須不同與以往的教學(xué)。因此,在完成教學(xué)任務(wù)的同時(shí),必須盡可能性的創(chuàng)設(shè)情景,讓學(xué)生經(jīng)歷探索、猜想、發(fā)現(xiàn)的過(guò)程。并結(jié)合教學(xué)內(nèi)容和學(xué)生實(shí)際,把握好重點(diǎn)、難點(diǎn)。樹(shù)立素質(zhì)教育觀念,以培養(yǎng)全面發(fā)展的`高素質(zhì)人才為目標(biāo),面向全體學(xué)生,使學(xué)生在德、智、體、美、勞等諸方面都得到發(fā)展。為做好本學(xué)期的教育教學(xué)工作,特制定本計(jì)劃。
二、指導(dǎo)思想:
初三數(shù)學(xué)是以黨和國(guó)家的教育教學(xué)方針為指導(dǎo),按照九年義務(wù)教育數(shù)學(xué)課程標(biāo)準(zhǔn)來(lái)實(shí)施的,其目的是教書(shū)育人,使每個(gè)學(xué)生都能夠在此數(shù)學(xué)學(xué)習(xí)過(guò)程中獲得最適合自己的發(fā)展。通過(guò)初三數(shù)學(xué)的教學(xué),提供參加生產(chǎn)和進(jìn)一步學(xué)習(xí)所必需的數(shù)學(xué)基礎(chǔ)知識(shí)與基本技能,進(jìn)一步培養(yǎng)學(xué)生的運(yùn)算能力、思維能力和空間想象能力,能夠運(yùn)用所學(xué)知識(shí)解決簡(jiǎn)單的實(shí)際問(wèn)題,培養(yǎng)學(xué)生的數(shù)學(xué)創(chuàng)新意識(shí)、良好個(gè)性品質(zhì)以及初步的唯物主義觀。
三、教學(xué)內(nèi)容:
本學(xué)期所教初三數(shù)學(xué)包括第一章證明(二),第二章一元二次方程,第三章證明(三),第四章視圖與投影,第五章反比例函數(shù),第六章頻率與概率。其中證明(二),證明(三),視圖與投影,這三章是與幾何圖形有關(guān)的。一元二次方程,反比例函數(shù)這兩章是與數(shù)及數(shù)的運(yùn)用有關(guān)的。頻率與概率則是與統(tǒng)計(jì)有關(guān)。
四、教學(xué)目的:
在新課方面通過(guò)講授《證明(二)》和《證明(三)》的有關(guān)知識(shí),使學(xué)生經(jīng)歷探索、猜測(cè)、證明的過(guò)程,進(jìn)一步發(fā)展學(xué)生的推理論證能力,并能運(yùn)用這些知識(shí)進(jìn)行論證、計(jì)算、和簡(jiǎn)單的作圖。進(jìn)一步掌握綜合法的證明方法,能證明與三角形、平行四邊形、等腰梯形、矩形、菱形、以及正方形等有關(guān)的性質(zhì)定理及判定定理,并能夠證明其他相關(guān)的結(jié)論。在《視圖與投影》這一章通過(guò)具體活動(dòng),積累數(shù)學(xué)活動(dòng)經(jīng)驗(yàn),進(jìn)一步增強(qiáng)學(xué)生的動(dòng)手能力發(fā)展學(xué)生的空間思維。在《頻率與概率》這一章》讓學(xué)生理解頻率與概率的關(guān)頻率與概率系進(jìn)一步體會(huì)概率是描述隨機(jī)現(xiàn)象的數(shù)學(xué)模型。
在《一元二次方程》和《反比例函數(shù)》這兩章,讓學(xué)生了解一元二次方程的各種解法,并能運(yùn)用一元二次方程和函數(shù)解決一些數(shù)學(xué)問(wèn)題逐步提高觀察和歸納分析能力,體驗(yàn)數(shù)學(xué)結(jié)合的數(shù)學(xué)方法。同時(shí)學(xué)會(huì)對(duì)知識(shí)的歸納、整理、和運(yùn)用。從而培養(yǎng)學(xué)生的思維能力和應(yīng)變能力。
五、教學(xué)措施:
針對(duì)上述情況,我計(jì)劃在即將開(kāi)始的學(xué)年教學(xué)工作中采取以下幾點(diǎn)措施:
1、新課開(kāi)始前,用一個(gè)周左右的時(shí)間簡(jiǎn)要復(fù)習(xí)上學(xué)期的所有內(nèi)容,特別是幾何部分。
2、教學(xué)過(guò)程中盡量采取多鼓勵(lì)、多引導(dǎo)、少批評(píng)的教育方法。
3、教學(xué)速度以適應(yīng)大多數(shù)學(xué)生為主,盡量兼顧后進(jìn)生,注重整體推進(jìn)。
4、新課教學(xué)中涉及到舊知識(shí)時(shí),對(duì)其作相應(yīng)的復(fù)習(xí)回顧。
5、復(fù)習(xí)階段多讓學(xué)生動(dòng)腦、動(dòng)手,通過(guò)各種習(xí)題、綜合試題和模擬試題的訓(xùn)練,使學(xué)生逐步熟悉各知識(shí)點(diǎn),并能熟練運(yùn)用。