作為一名默默奉獻的教育工作者,通常需要用到教案來輔助教學,借助教案可以讓教學工作更科學化。既然教案這么重要,那到底該怎么寫一篇優質的教案呢?這里我給大家分享一些最新的教案范文,方便大家學習。
數學高中教案篇一
(1)使學生正確理解組合的意義,正確區分排列、組合問題;
(2)使學生掌握組合數的計算公式;
(3)通過學習組合知識,讓學生掌握類比的學習方法,并提高學生分析問題和解決問題的能力;
教學重點難點
重點是組合的定義、組合數及組合數的公式;
難點是解組合的應用題.
教學過程設計
(-)導入新課
(教師活動)提出下列思考問題,打出字幕.
[字幕]一條鐵路線上有6個火車站,(1)需準備多少種不同的普通客車票?(2)有多少種不同票價的普通客車票?上面問題中,哪一問是排列問題?哪一問是組合問題?
(學生活動)討論并回答.
答案提示:(1)排列;(2)組合.
[評述]問題(1)是從6個火車站中任選兩個,并按一定的順序排列,要求出排法的種數,屬于排列問題;(2)是從6個火車站中任選兩個并成一組,兩站無順序關系,要求出不同的組數,屬于組合問題.這節課著重研究組合問題.
設計意圖:組合與排列所研究的問題幾乎是平行的.上面設計的問題目的是從排列知識中發現并提出新的問題.
(二)新課講授
[提出問題 創設情境]
(教師活動)指導學生帶著問題閱讀課文.
[字幕]1.排列的定義是什么?
2.舉例說明一個組合是什么?
3.一個組合與一個排列有何區別?
(學生活動)閱讀回答.
(教師活動)對照課文,逐一評析.
設計意圖:激活學生的思維,使其將所學的知識遷移過渡,并盡快適應新的環境.
【歸納概括 建立新知】
(教師活動)承接上述問題的回答,展示下面知識.
[字幕]模型:從 個不同元素中取出 個元素并成一組,叫做從 個不同元素中取出 個元素的一個組合.如前面思考題:6個火車站中甲站→乙站和乙站→甲站是票價相同的車票,是從6個元素中取出2個元素的一個組合.
組合數:從 個不同元素中取出 個元素的所有組合的個數,稱之,用符號 表示,如從6個元素中取出2個元素的組合數為 .
[評述]區分一個排列與一個組合的關鍵是:該問題是否與順序有關,當取出元素后,若改變一下順序,就得到一種新的取法,則是排列問題;若改變順序,仍得原來的取法,就是組合問題.
(學生活動)傾聽、思索、記錄.
(教師活動)提出思考問題.
[投影] 與 的關系如何?
(師生活動)共同探討.求從 個不同元素中取出 個元素的排列數 ,可分為以下兩步:
第1步,先求出從這 個不同元素中取出 個元素的組合數為 ;
第2步,求每一個組合中 個元素的全排列數為 .
根據分步計數原理,得到
[字幕]公式1:
公式2:
(學生活動)驗算 ,即一條鐵路上6個火車站有15種不同的票價的普通客車票.
設計意圖:本著以認識概念為起點,以問題為主線,以培養能力為核心的宗旨,逐步展示知識的形成過程,使學生思維層層被激活、逐漸深入到問題當中去.
(三)小結
(師生活動)共同小結.
本節主要內容有
1.組合概念.
2.組合數計算的兩個公式.
(四)布置作業
1.課本作業:習題10 3第1(1)、(4),3題.
2.思考題:某學習小組有8個同學,從男生中選2人,女生中選1人參加數學、物理、化學三種學科競賽,要求每科均有1人參加,共有180種不同的選法,那么該小組中,男、女同學各有多少人?
3.研究性題:
在 的 邊上除頂點 外有 5個點,在 邊上有 4個點,由這些點(包括 )能組成多少個四邊形?能組成多少個三角形?
(五)課后點評
在學習了排列知識的基礎上,本節課引進了組合概念,并推導出組合數公式,同時調控進行訓練,從而培養學生分析問題、解決問題的能力.
作業參考答案
2.解;設有男同學 人,則有女同學 人,依題意有 ,由此解得 或 或2.即男同學有5人或6人,女同學相應為3人或2人.
3.能組成 (注意不能用 點為頂點)個四邊形, 個三角形.
探究活動
同室四人各寫一張賀年卡,先集中起來,然后每人從中拿一張別人送出的賀年卡,那么四張不同的分配萬式可有多少種?
解 設四人分別為甲、乙、丙、丁,可從多種角度來解.
解法一 可將拿賀卡的情況,按甲分別拿乙、丙、丁制作的賀卡的情形分為三類,即:
甲拿乙制作的賀卡時,則賀卡有3種分配方法.
甲拿丙制作的賀卡時,則賀卡有3種分配方法.
甲拿丁制作的賀卡時,則賀卡有3種分配方法.
由加法原理得,賀卡分配方法有3+3+3=9種.
解法二 可從利用排列數和組合數公式角度來考慮.這時還存在正向與逆向兩種思考途徑.
正向思考,即從滿足題設條件出發,分步完成分配.先可由甲從乙、丙、丁制作的賀卡中選取1張,有 種取法,剩下的乙、丙、丁中所制作賀卡被甲取走后可在剩下的3張賀卡中選取1張,也有 種,最后剩下2人可選取的賀卡即是這2人所制作的賀卡,其取法只有互取對方制作賀卡1種取法.根據乘法原理,賀卡的分配方法有 (種).
逆向思考,即從4人取4張不同賀卡的所有取法中排除不滿足題設條件的取法.不滿足題設條件的取法為,其中只有1人取自己制作的賀卡,其中有2人取自己制作的賀卡,其中有3人取自己制作的賀卡(此時即為4人均拿自己制作的賀卡).其取法分別為 1.故符合題設要求的取法共有 (種).
數學高中教案篇二
一、預習目標
預習《平面向量應用舉例》,體會向量是一種處理幾何問題、物理問題等的工具,建立實際問題與向量的聯系。
二、預習內容
閱讀課本內容,整理例題,結合向量的運算,解決實際的幾何問題、物理問題。另外,在思考一下幾個問題:
1、例1如果不用向量的方法,還有其他證明方法嗎?
2、利用向量方法解決平面幾何問題的“三步曲”是什么?
3、例3中,
⑴為何值時,|f1|最小,最小值是多少?
⑵|f1|能等于|g|嗎?為什么?
三、提出疑惑
同學們,通過你的自主學習,你還有哪些疑惑,請把它填在下面的表格中疑惑點疑惑內容。
課內探究學案
一、學習內容
1、運用向量的有關知識(向量加減法與向量數量積的運算法則等)解決平面幾何和解析幾何中直線或線段的平行、垂直、相等、夾角和距離等問題。
2、運用向量的有關知識解決簡單的物理問題。
二、學習過程
探究一:
(1)向量運算與幾何中的結論"若,則,且所在直線平行或重合"相類比,你有什么體會?
(2)舉出幾個具有線性運算的幾何實例。
例1、證明:平行四邊形兩條對角線的平方和等于四條邊的平方和。
已知:平行四邊形abcd。
求證:
試用幾何方法解決這個問題,利用向量的方法解決平面幾何問題的“三步曲”?
(1)建立平面幾何與向量的聯系,
(2)通過向量運算,研究幾何元素之間的關系,
(3)把運算結果“翻譯”成幾何關系。
例2,如圖,平行四邊形abcd中,點e、f分別是ad、dc邊的中點,be、bf分別與ac交于r、t兩點,你能發現ar、rt、tc之間的關系嗎?
探究二:兩個人提一個旅行包,夾角越大越費力。在單杠上做引體向上運動,兩臂夾角越小越省力。這些力的問題是怎么回事?
例3,在日常生活中,你是否有這樣的經驗:兩個人共提一個旅行包,夾角越大越費力;在單杠上作引體向上運動,兩臂的夾角越小越省力。你能從數學的角度解釋這種現象嗎?
請同學們結合剛才這個問題,思考下面的問題:
⑴為何值時,|f1|最小,最小值是多少?
⑵|f1|能等于|g|嗎?為什么?
例4如圖,一條河的兩岸平行,河的寬度m,一艘船從a處出發到河對岸。已知船的速度|v1|=10km/h,水流的速度|v2|=2km/h,問行駛航程最短時,所用的時間是多少(精確到0。1min)?
變式訓練:兩個粒子a、b從同一源發射出來,在某一時刻,它們的位移分別為,(1)寫出此時粒子b相對粒子a的位移s;(2)計算s在方向上的投影。
三、反思總結
結合圖形特點,選定正交基底,用坐標表示向量進行運算解決幾何問題,體現幾何問題。
代數化的特點,數形結合的數學思想體現的淋漓盡致。向量作為橋梁工具使得運算簡練標致,又體現了數學的美。有關長方形、正方形、直角三角形等平行、垂直等問題常用此法。
本節主要研究了用向量知識解決平面幾何問題和物理問題;掌握向量法和坐標法,以及用向量解決實際問題的步驟。
數學高中教案篇三
一、指導思想與理論依據
數學是一門培養人的思維,發展人的思維的重要學科。因此,在教學中,不僅要使學生“知其然”而且要使學生“知其所以然”。所以在學生為主體,教師為主導的原則下,要充分揭示獲取知識和方法的思維過程。因此本節課我以建構主義的“創設問題情境——提出數學問題——嘗試解決問題——驗證解決方法”為主,主要采用觀察、啟發、類比、引導、探索相結合的教學方法。在教學手段上,則采用多媒體輔助教學,將抽象問題形象化,使教學目標體現的更加完美。
二、教材分析
三角函數的誘導公式是普通高中課程標準實驗教科書(人教a版)數學必修四,第一章第三節的內容,其主要內容是三角函數誘導公式中的公式(二)至公式(六)。本節是第一課時,教學內容為公式(二)、(三)、(四)。教材要求通過學生在已經掌握的任意角的三角函數的定義和誘導公式(一)的基礎上,利用對稱思想發現任意角與、終邊的對稱關系,發現他們與單位圓的交點坐標之間關系,進而發現他們的三角函數值的關系,即發現、掌握、應用三角函數的誘導公式公式(二)、(三)、(四)。同時教材滲透了轉化與化歸等數學思想方法,為培養學生養成良好的學習習慣提出了要求。為此本節內容在三角函數中占有非常重要的地位。
三、學情分析
本節課的授課對象是本校高一(1)班全體同學,本班學生水平處于中等偏下,但本班學生具有善于動手的良好學習習慣,所以采用發現的教學方法應該能輕松的完成本節課的教學內容。
四、教學目標
(1)基礎知識目標:理解誘導公式的發現過程,掌握正弦、余弦、正切的誘導公式;
(2)能力訓練目標:能正確運用誘導公式求任意角的正弦、余弦、正切值,以及進行簡單的三角函數求值與化簡;
(3)創新素質目標:通過對公式的推導和運用,提高三角恒等變形的能力和滲透化歸、數形結合的數學思想,提高學生分析問題、解決問題的能力;
(4)個性品質目標:通過誘導公式的學習和應用,感受事物之間的普通聯系規律,運用化歸等數學思想方法,揭示事物的本質屬性,培養學生的唯物史觀。
五、教學重點和難點
1、教學重點
理解并掌握誘導公式。
2、教學難點
正確運用誘導公式,求三角函數值,化簡三角函數式。
六、教法學法以及預期效果分析
“授人以魚不如授之以魚”,作為一名老師,我們不僅要傳授給學生數學知識,更重要的是傳授給學生數學思想方法,如何實現這一目的,要求我們每一位教者苦心鉆研、認真探究。下面我從教法、學法、預期效果等三個方面做如下分析。
1、教法
數學教學是數學思維活動的教學,而不僅僅是數學活動的結果,數學學習的目的不僅僅是為了獲得數學知識,更主要作用是為了訓練人的思維技能,提高人的思維品質。
在本節課的教學過程中,本人以學生為主題,以發現為主線,盡力滲透類比、化歸、數形結合等數學思想方法,采用提出問題、啟發引導、共同探究、綜合應用等教學模式,還給學生“時間”、“空間”,由易到難,由特殊到一般,盡力營造輕松的學習環境,讓學生體味學習的快樂和成功的喜悅。
2、學法
“現代的文盲不是不識字的人,而是沒有掌握學習方法的人”,很多課堂教學常常以高起點、大容量、快推進的做法,以便教給學生更多的知識點,卻忽略了學生接受知識需要時間消化,進而泯滅了學生學習的興趣與熱情。如何能讓學生最大程度的消化知識,提高學習熱情是教者必須思考的問題。
在本節課的教學過程中,本人引導學生的學法為思考問題、共同探討、解決問題簡單應用、重現探索過程、練習鞏固。讓學生參與探索的全部過程,讓學生在獲取新知識及解決問題的方法后,合作交流、共同探索,使之由被動學習轉化為主動的自主學習。
3、預期效果
本節課預期讓學生能正確理解誘導公式的發現、證明過程,掌握誘導公式,并能熟練應用誘導公式了解一些簡單的化簡問題。
七、教學流程設計
(一)創設情景
1、復習銳角300,450,600的三角函數值;
2、復習任意角的三角函數定義;
3、問題:由你能否知道sin2100的值嗎?引如新課。
設計意圖
高中數學優秀教案高中數學教學設計與教學反思
自信的鼓勵是增強學生學習數學的自信,簡單易做的題加強了每個學生學習的熱情,具體數據問題的出現,讓學生既有好像會做的心理但又有迷惑的茫然,去發掘潛力期待尋找機會證明我能行,從而思考解決的辦法。
(二)新知探究
1、讓學生發現300角的終邊與2100角的終邊之間有什么關系;
2、讓學生發現300角的終邊和2100角的終邊與單位圓的交點的坐標有什么關系;
3、sin2100與sin300之間有什么關系。
設計意圖
由特殊問題的引入,使學生容易了解,實現教學過程的平淡過度,為同學們探究發現任意角與的三角函數值的關系做好鋪墊。
(三)問題一般化
探究一
1、探究發現任意角的終邊與的終邊關于原點對稱;
2、探究發現任意角的終邊和角的終邊與單位圓的交點坐標關于原點對稱;
3、探究發現任意角與的三角函數值的關系。
設計意圖
首先應用單位圓,并以對稱為載體,用聯系的觀點,把單位圓的性質與三角函數聯系起來,數形結合,問題的設計提問從特殊到一般,從線對稱到點對稱到三角函數值之間的關系,逐步上升,一氣呵成誘導公式二。同時也為學生將要自主發現、探索公式三和四起到示范作用,下面練習設計為了熟悉公式一,讓學生感知到成功的喜悅,進而敢于挑戰,敢于前進
(四)練習
利用誘導公式(二),口答下列三角函數值。
喜悅之后讓我們重新啟航,接受新的挑戰,引入新的問題。
(五)問題變形
由sin3000=—sin600出發,用三角的定義引導學生求出sin(—3000),sin1500值,讓學生聯想若已知sin3000=—sin600,能否求出sin(—3000),sin1500)的值。學生自主探究
數學高中教案篇四
內容分析:
1、 集合是中學數學的一個重要的基本概念
在小學數學中,就滲透了集合的初步概念,到了初中,更進一步應用集合的語言表述一些問題。例如,在代數中用到的有數集、解集等;在幾何中用到的有點集。至于邏輯,可以說,從開始學習數學就離不開對邏輯知識的掌握和運用,基本的邏輯知識在日常生活、學習、工作中,也是認識問題、研究問題不可缺少的工具。這些可以幫助學生認識學習本章的意義,也是本章學習的基礎。
把集合的初步知識與簡易邏輯知識安排在高中數學的最開始,是因為在高中數學中,這些知識與其他內容有著密切聯系,它們是學習、掌握和使用數學語言的基礎
例如,下一章講函數的概念與性質,就離不開集合與邏輯。
本節首先從初中代數與幾何涉及的集合實例入手,引出集合與集合的元素的概念,并且結合實例對集合的概念作了說明
然后,介紹了集合的常用表示方法,包括列舉法、描述法,還給出了畫圖表示集合的例子。
這節課主要學習全章的引言和集合的基本概念
學習引言是引發學生的學習興趣,使學生認識學習本章的意義
本節課的教學重點是集合的基本概念。
集合是集合論中的原始的、不定義的概念
在開始接觸集合的概念時,主要還是通過實例,對概念有一個初步認識
教科書給出的“一般地,某些指定的對象集在一起就成為一個集合,也簡稱集
”這句話,只是對集合概念的描述性說明。
教學過程:
一、復習引入:
1.簡介數集的發展,復習最大公約數和最小公倍數,質數與和數;
2.教材中的章頭引言;
3.集合論的創始人——康托爾(德國數學家)(見附錄);
4.“物以類聚”,“人以群分”;
5.教材中例子(p4)。
二、講解新課:
閱讀教材第一部分,問題如下:
(1)有那些概念?是如何定義的?
(2)有那些符號?是如何表示的?
(3)集合中元素的特性是什么?
(一)集合的有關概念:由一些數、一些點、一些圖形、一些整式、一些物體、一些人組成的.我們說,每一組對象的全體形成一個集合,或者說,某些指定的對象集在一起就成為一個集合,也簡稱集.集合中的每個對象叫做這個集合的元素.
定義:一般地,某些指定的對象集在一起就成為一個集合.
1、集合的概念
(1)集合:某些指定的對象集在一起就形成一個集合(簡稱集)
(2)元素:集合中每個對象叫做這個集合的元素
2、常用數集及記法
(1)非負整數集(自然數集):全體非負整數的集合,記作n,n={0,1,2,…}
(2)正整數集:非負整數集內排除0的集,記作n__或n+,n__={1,2,3,…}
(3)整數集:全體整數的集合,記作z ,z={0,±1,±2,…}
(4)有理數集:全體有理數的集合,記作q,q={整數與分數}
(5)實數集:全體實數的集合,記作r,r={數軸上所有點所對應的數}
注:(1)自然數集與非負整數集是相同的,也就是說,自然數集包括數0
(2)非負整數集內排除0的集,記作n__或n+
q、z、r等其它數集內排除0的集,也是這樣表示,例如,整數集內排除0的集,表示成z__
3、元素對于集合的隸屬關系
(1)屬于:如果a是集合a的元素,就說a屬于a,記作a∈a
(2)不屬于:如果a不是集合a的元素,就說a不屬于a,記作aa
4、集合中元素的特性
(1)確定性:按照明確的判斷標準給定一個元素或者在這個集合里,或者不在,不能模棱兩可
(2)互異性:集合中的元素沒有重復
(3)無序性:集合中的元素沒有一定的順序(通常用正常的順序寫出)
5、⑴集合通常用大寫的拉丁字母表示,如a、b、c、p、q……
元素通常用小寫的拉丁字母表示,如a、b、c、p、q……
⑵“∈”的開口方向,不能把a∈a顛倒過來寫。
數學高中教案篇五
[學習目標]
(1)會用坐標法及距離公式證明cα+β;
(2)會用替代法、誘導公式、同角三角函數關系式,由cα+β推導cα—β、sα±β、tα±β,切實理解上述公式間的關系與相互轉化;
(3)掌握公式cα±β、sα±β、tα±β,并利用簡單的三角變換,解決求值、化簡三角式、證明三角恒等式等問題。
[學習重點]
兩角和與差的正弦、余弦、正切公式
[學習難點]
余弦和角公式的推導
[知識結構]
1、兩角和的余弦公式是三角函數一章和、差、倍公式系列的基礎。其公式的證明是用坐標法,利用三角函數定義及平面內兩點間的距離公式,把兩角和α+β的余弦,化為單角α、β的三角函數(證明過程見課本)
2、通過下面各組數的值的比較:①cos(30°—90°)與cos30°—cos90°②sin(30°+60°)和sin30°+sin60°。我們應該得出如下結論:一般情況下,cos(α±β)≠cosα±cosβ,sin(α±β)≠sinα±sinβ。但不排除一些特例,如sin(0+α)=sin0+sinα=sinα。
3、當α、β中有一個是的整數倍時,應首選誘導公式進行變形。注意兩角和與差的三角函數是誘導公式等的基礎,而誘導公式是兩角和與差的三角函數的特例。
4、關于公式的正用、逆用及變用