作為一位不辭辛勞的人民教師,常常要根據教學需要編寫教案,教案有利于教學水平的提高,有助于教研活動的開展。那么問題來了,教案應該怎么寫?這里我給大家分享一些最新的教案范文,方便大家學習。
滬教版七年級數學下冊教案篇一
1、了解一元一次不等式組的概念、
2、理解一元一次不等式組的解集,能求一元一次不等式組的解集、
3、會解一元一次不等式組、
通過具體問題得到一元一次不等式組,從而了解一元一次不等式組的概念,解出每個不等式,利用數軸求出各不等式解集的公共部分,從而得到不等式組的解集,通過解幾個有代表性的一元一次不等式組,總結出求不等式組解集的法則、
運用數軸確定不等式組的解集是行之有效的方法、這種“數形結合”的方法今后經常用到,鍛煉同學們數形結合的能力,提高學習興趣、
一元一次不等式組的解法、
確定一元一次不等式組的解集、
現有兩根木條a和b,a長10cm,b長3cm,如果要再找一根木條c,用這三根木條釘成一個三角形木框,那么木條c的長度有什么要求?
解:由于三角形中兩邊之____大于第三邊,兩邊之____小于第三邊,設c的長為xcm,則x<____,①
x>____,②
合起來,組成一個__________
由①解得_____________
由②解得_____________
在數軸上表示就是________________
容易看出:x的取值范圍是____________________
這就是說,當木條c比____cm長并且比____cm短時,它能與木條a和b一起釘成三角形木框、
由上面的解不等式組的過程用自己的語言歸納出一元一次不等式組的解法
全班同學可獨立作業,也可分組自由討論,10分鐘后交流成果,逐步得出結論
思考什么叫一元一次不等式組,什么叫一元一次不等式組的解集,什么叫解不等式組?
(1)一元一次不等式組:幾個含有相同未知數的一元一次不等式合起來組成一個一元一次不等式組、(2)一元一次不等式組的解集:幾個不等式的解集的公共部分,叫做由它們所組成的不等式的解集、(3)解不等式組:求一元一次不等式組的解集的過程叫解一元一次不等式組、
(1)求出每個一元一次不等式的解集、
(2)求出這些解集的公共部分,便得到一元一次不等式組的解集
滬教版七年級數學下冊教案篇二
使學生熟練地掌握多項式除以單項式的法則,并能準確地進行運算.
培養學生快速運算的能力.
培養學生耐心細致的學習習慣.
多項式除以單項式的法則是本節的重難點.
一、復習提問
1.計算并回答問題:
(1)4a3b4c÷2a2b2c;(2)(a2b2c)÷3ab2
(3)以上的計算是什么運算?能否敘述這種運算法則?
2.計算并回答問題:
(1)3x(x2x+1);(2)4a(a2a+2)
3.請同學利用2、3、6其間的數量關系,寫出僅含以上三個數的等式.
說明:希望學生能寫出
2×3=6,(2的3倍是6)
3×2=6,(3的2倍是6)
6÷2=3,(6是2的3倍)
6÷3=2.(6是3的2倍)
然后向大家指明,以上四個式子所表示的三個數間的關系是相同的,只是表示的角度不同,讓學生理解被除式、除式與商式間的關系.
二、新課引入
對照整式乘法的學習順序,下面我們應該研究整式除法的什么內容?在學生思考的基礎上,點明本節的主題,并板書標題.
1.法則的推導.
引例:(8x312x2+4x)÷4x=(?)
分析:
利用除法是乘法的逆運算的規定,我們可將上式化為4x·(?)=8x312x2+4x
然后充分利用單項式乘多項式的運算法則,引導學生對“待求的商式”做大膽的猜測:大體上可以從結構(應是單項式還是多項式)、項數、各項的符號能否確定、各具體的項能否“猜”出幾方面去思考.根據課上學生領悟的情況,考慮是否由學生完成引例的解答.
解:(8x312x2+4x)÷4x
=8x3÷4x12x2÷4x+4x÷4x
=2x23x+4x.
思考題:(8x312x2+4x)÷(4x)=?
滬教版七年級數學下冊教案篇三
1.經歷從性質公理推出性質的過程;
2.感受原命題與逆命題,從而了解平行線的性質公理與判定公理的區別,能在推理過程正確使用.
〖探索1反過來也成立嗎
過去我們學過:如果兩個數的和為0,這兩個數互為相反數.反過來,如果兩個數互為相反數,那么這兩個數的和為0.顯然,這兩個句子都是正確的.
現在換一個例子:如果一個整數個位上的數字是5,那么它一定能夠被5整除.對嗎?這句話反過來怎么說?對不對?
結論:如果一個句子是正確的`,反過來說(因果對調),就未必正確.
〖探索2
上一節課,我們學過:同位角相等,兩直線平行.反過來怎么說?猜一猜:它還是對的嗎?
〖探索3
(1)用三角尺畫兩條平行線a、b.說一說:不利用第三條直線能畫出兩條平行線嗎?請畫出第三條直線(把它記為c),并說明判定這兩條直線平行的根據(公理或定理);
(2)在(1)中再畫一條直線d與直線a、b都相交,找出其中的一對同位角,用量角器量出它們的度數驗證你原來的猜測.
結論:兩條平行線被第三條直線所截,同位角相等.
與平行線的判定公理一樣,這個結論也是基本事實,即人們在長期實踐中出來的結論,我們把它叫做平行線的性質公理,它是平行線的第一條性質.
〖探索4
如圖,請畫直線c截兩條平行線a、b;再在圖中找出一對內錯角.同學們一定能從直覺判斷這對內錯角也是相等的.也就是說:
兩條平行線被第三條直線所截,內錯角相等.它是平行線的第二條性質.
現在我們來試一試:如何根據性質1說出性質2成立的道理.
如圖,
∵a∥b(已知),
∴∠1=∠3(____________________).
又∠3=________(對頂角相等),
∴∠1=∠2(___________).
以上過程說明了:由性質1可以得出性質2.
〖探索5
我們學過判定兩直線平行的第三種方法:
兩條直線被第三條直線所截,如果同旁內角互補,那么這兩條直線平行.(簡單地說:同旁內角互補,兩直線平行.)
把這條定理反過來,可以簡單說成_____________________.
猜一猜:把這條定理反過來以后,還成立嗎?
〖練習
p22練習
說一說:求這三個角的度數分別根據平行線的哪一條性質?
〖作業
p25.1、2、3
〖補充作業
如圖:直線a、b被直線c所截,
(1)若a∥b,可以得到∠1=∠2.根據什么?
(2)若∠1=∠2,可以得到a∥b.根據什么?
(注意:(1)、(2)的根據一樣嗎?)
滬教版七年級數學下冊教案篇四
1.掌握數軸三要素,能正確畫出數軸.
2.能將已知數在數軸上表示出來,能說出數軸上已知點所表示的數.
數軸的概念.
從直觀認識到理性認識,從而建立數軸概念.
(一)創設情境,導入新課
課件展示課本p7的“問題”(學生畫圖)
(二)合作交流,解讀探究
師:對照大家畫的圖,為了使表達更清楚,我們把0左右兩邊的數分別用正數和負數來表示,即用一直線上的點把正數、負數、0都表示出來,也就是本節要學的內容——數軸.
【點撥】(1)引導學生學會畫數軸.
第一步:畫直線,定原點.
第二步:規定從原點向右的方向為正(左邊為負方向).
第三步:選擇適當的長度為單位長度(據情況而定).
第四步:拿出教學溫度計,由學生觀察溫度計的結構和數軸的結構是否有共同之處.
對比思考原點相當于什么;正方向與什么一致;單位長度又是什么?
(2)有了以上基礎,我們可以來試著定義數軸:
規定了原點、正方向和單位長度的直線叫數軸.
做一做學生自己練習畫出數軸.
試一試你能利用你自己畫的數軸上的點來表示數4,1.5,-3,-2,0嗎?
討論若a是一個正數,則數軸上表示數a的點在原點的什么位置上?與原點相距多少個單位長度?表示-a的點在原點的什么位置上?與原點又相距多少個單位長度?
小結整數在數軸上都能找到點表示嗎?分數呢?
可見,所有的都可以用數軸上的點表示;都在原點的左邊,都在原點的右邊.
(三)應用遷移,鞏固提高
【例1】下列所畫數軸對不對?如果不對,指出錯在哪里?
【例2】試一試:用你畫的數軸上的點表示4,1.5,-3,-,0.
【例3】下列語句:
①數軸上的點只能表示整數;②數軸是一條直線;③數軸上的一個點只能表示一個數;④數軸上找不到既不表示正數,又不表示負數的點;⑤數軸上的點所表示的數都是有理數.正確的說法有()
a.1個b.2個c.3個d.4個
【例4】在數軸上表示-2和1,并根據數軸指出所有大于-2而小于1的.整數.
【例5】數軸上表示整數的點稱為整點,某數軸的單位長度是1cm,若在這個數軸上隨意畫出一條長為20xxcm的線段ab,則線段ab蓋住的整點有()
a.1998個或1999個b.1999個或20xx個
c.20xx個或20xx個d.20xx個或20xx個
(四)總結反思,拓展升華
數軸是非常重要的工具,它使數和直線上的點建立了一一對應的關系.它揭示了數和形的內在聯系,為我們今后進一步研究問題提供了新方法和新思想.大家要掌握數軸的三要素,正確畫出數軸.提醒大家,所有的有理數都可以用數軸上的相關點來表示,但反過來并不成立,即數軸上的點并不都表示有理數.
(五)課堂跟蹤反饋
夯實基礎
1.規定了、 、的直線叫做數軸,所有的有理數都可從用上的點來表示.
2.p從數軸上原點開始,向右移動2個單位長度,再向左移5個單位長度,此時p點所表示的數是.
3.把數軸上表示2的點移動5個單位長度后,所得的對應點表示的數是()
a.7 b.-3
c.7或-3 d.不能確定
4.在數軸上,原點及原點左邊的點所表示的數是()
a.正數b.負數
c.不是負數d.不是正數
5.數軸上表示5和-5的點離開原點的距離是,但它們分別表示.
提升能力
6.與原點距離為3.5個單位長度的點有2個,它們分別是和.
7.畫出一條數軸,并把下列數表示在數軸上:
+2,-3,0.5,0,-4.5,4,3.
開放探究
8.在數軸上與-1相距3個單位長度的點有個,為;長為3個單位長度的木條放在數軸上,最多能覆蓋個整數點.
9.下列四個數中,在-2到0之間的數是()
a.-1 b.1 c.-3 d.3
滬教版七年級數學下冊教案篇五
恰當的信息技術與初中數學教學深度融合,課堂本著以學生為主體,教師為導體的原則,精心設計情境教學活動,為學生營造自主學習和探索交流的學習環境,活躍學生思維,激發學習興趣.為提高教學質量,利用現代教育技術手段,采用啟發式、討論式、研究式的教學方法,讓學生在自主探究、合作交流中提高學習積極性,培養學生分析問題、解決問題的能力。我以北師大版數學七年級下冊《兩條直線的位置關系》一課為例,談談如何應用101教育ppt引導學生由動手操作到理性思考,由自主探索到合作交流,由生活實際到建立模型解決問題,讓學生積累數學活動經驗,完成對本節知識的探索與交流。
本節是七下第二章相交線、平行線中的第一節,本節主要是了解平面內兩條直線的位置關系,由學生動手畫出相交線圖形,觀察圖形產生具有特殊位置關系的對頂角的概念和對頂角相等的性質,由此圖產生具有特殊數量關系的余角、補角的概念,由生活實例(打臺球)引出并推導余角補角性質采用類比的方法,培養學生觀察、推理、歸納等能力。
學生在小學已經認識了平行線、相交線、角,在七年級上冊中,已經對角及其分類有了一定的認識。這些知識儲備為本節課的學習奠定了良好的基礎,使學生具備了掌握本節知識的基本技能。在前面知識的學習過程中,學生已具備了一定的圖形認識能力和借助圖形分析問題解決問題的能力;能夠將直觀與簡單推理相結合;在合作探究的過程中,學生在以前的數學學習中學生已經經歷了小組合作的學習過程,積累了大量的方法和經驗,具備了一定的合作與交流能力。
基于教材特點與學生情況的分析,為有效開發各層次學生的潛在智能,制定教法、學法如下:
1、遵循學生是學習的主人的原則,在為學生創造大量實例的基礎上,,故選用探究式教學主動學習的教學策略以及動手實踐,自主探索,合作交流的重要學習方式.引導學生根據現實生活的經歷和體驗及收集到的信息來理解理論知識。
2.借用多媒體課件輔助教學,力求使每個學生都能在原有的基礎上得到發展,既滿足了學生對新知識的強烈探索欲望,又排除學生對幾何學習方法的缺乏,和學無所用的顧慮,讓他們在學習過程中獲得愉快與進步。
1.知識與技能:在具體情境中了解相交線、平行線、補角、余角、對頂角的定義,知道同角或等角的余角相等、同角或等角的補角相等、對頂角相等,并能解決一些實際問題。
2.過程與方法:經歷操作、觀察、猜想、交流、推理等獲取信息的過程,進一步發展空間觀念、推理能力和有條理表達的能力。
3.情感與態度:激發學生學習數學的興趣,認識現實生活中蘊含著大量的與數學有關問題,培養學生用數學方法解決問題的能力。
教學重點:對頂角、余角、補角的概念及性質。
教學難點:余角、補角性質的應用。
多媒體課件、三角板
新課標指出,數學教學過程是學生在教師指導下的數學學習活動,是師,是教師和學生互動的過程,是師生共同發展的過程。本課時我遵循“開放”的原則,重組教材,恰當地創設情境,以問題串的方式激發學生的好奇心和求知欲,通過獨立思考,不斷提出問題分析問題,并創造性地解決問題;通過動手操作、合作交流等方式,為學生構建了有效開放的學習環境。本節課共設計以下環節:第一環節:創設情境、引入課題;第二環節:動手實踐、探究新知;第三環節:合作交流,再探新知;第四環節: 聯系生活,解決問題;第五環節:學有所思,歸納總結; 第六環節:布置作業,能力延伸。
第一環節 創設情境 引入課題
活動內容一:兩條直線的位置關系
教師展示一組生活圖片,由學生觀察圖片,回答問題:
(1)圖片中兩條直線有哪幾種位置關系?
引入課題:《兩條直線的位置關系(1)》
出示本節教學目標、重難點。
(2)那么什么叫相交線和平行線呢?
結論:1.一般地,在同一平面內,兩條直線的位置關系有兩種;相交和平行。
2:定義:若兩條直線只有一個公共點,我們稱這兩條直線為相交線。
在同一平面內,不相交的兩條直線叫做平行線。
【設計意圖】:利用生活圖片引入課題,讓學生體會數學與生活的聯系,激發學生學習的興趣,通過觀察總結出同一平面內兩條直線的位置關系,經歷知識的形成過程中,激發學生學習積極性,從而提高學課堂效率,通過練習加深他們對概念的理解。
賦能路徑:學生對平行線、相交線概念的表述不清楚,對于同一平面的重要性理解不到位,應大膽讓學生表述,培養學生的語言表達能力,利用101ppt展示空間中兩條異面直線存在既不相交也不平行的位置關系,從而更深入地理解同一平面的意義。
第二環節 動手實踐 探究新知
動手實踐一:
利用101中的幾何畫板讓學生畫出:兩條直線ab和cd相交于點o。
通過觀察圖形,小組合作交流,嘗試用自己的語言描述對頂角的定義。
賦能路徑: 利用多媒體技術讓直線cd繞著點o旋轉,在旋轉過程中發現具有這種位置關系的兩角不會隨著角度的變化而變化,在利用多媒體出示剪刀模型,隨著剪刀的動畫,讓學生生動形象的理解對頂角相等這一性質,激發學習興趣,從而突破本節教學重點。
鞏固練習:
1、下列各圖中,∠1和∠2是對頂角的是( )
2、如圖3所示,有一個破損的扇形零件,利用圖中的量角器可以量出這個扇形零件的圓心角的度數嗎?你能說出所量角是多少度嗎?為什么?
【設計意圖】:通過創設生動有趣的活動情景,為學生提供了觀察、操作、推理、交流等豐富的活動素材,使學生在自主學習的過程中,學會對頂角的概念及其性質。從而進一步培養學生抽象幾何圖形進行建模的能力。設計練習主要是檢測學生對頂角的概念及其性質的應用的理解程度,體會數學與生活的聯系,增加濃郁的學習氛圍。
課堂實施情況:利用幾何畫板建立數學模型,提高學生運用信息技術工具來學習數學的興趣,增強邏輯推理能力教學目標的完成。學生對于對頂角概念的表述不到位,教師應鼓勵學生用自己的語言表述,強調反向延長線,規范語言。討論對頂角相等這一性質時,教師積極引導,讓學生充分思考,再合作交流,最后歸納、總結,讓學生經歷知識的形成過程。
第三環節 合作交流 、再探新知
利用學生動手操作畫出的圖形,探究補角、余角定義
補角定義:一般地,如果兩個角的和是180°,那么稱這兩個角互為補角。
余角定義:如果兩個角的和是90°,那么稱這兩個角互為余角。
強調:互余或互補是指兩個角,與角的的位置無關
【設計意圖】:在合作交流中,經歷知識的形成過程,獲得成功的樂趣,鍛煉克服困難的意志,建立自信心,可以更好地掌握新知識。
賦能路徑:利用幾何畫板畫出的相交線圖形,學生通過觀察具有補角、余角位置關系的兩角給出補角,余角定義,利用多媒體動畫展示補角、余角定義與角的位置無關,定義只和兩角的和是否是180度或90度有關,讓學生更深刻理解補角余角定義,突破本節教學重點。
鞏固練習:
問題1:指出下列圖中,哪兩個角互為余角?哪兩個角互為補角
2、圖中∠1、∠2、∠3互補嗎?
【設計意圖】:據學生活潑好動、爭強好勝的心理,設置問題1和問題2可以更好地激發學生的參與意識,在競爭中加深對概念的理解,提升所編題的質量,促進合作交流的意識。
第四環節 聯系生活 解決問題
動手實踐二 :
打臺球時,選擇適當的方向,用白球擊打紅球,反彈后的紅球會直接入袋,此時∠1=∠2,將圖2.1—7抽象成圖2.1—8,on與dc交于點o,∠don=∠con=90°,∠1=∠2
小組合作交流,解決下列問題:在圖2.1—8中
問題1:哪些角互為補角?哪些角互為余角?
問題2:∠3與∠4有什么關系?為什么?
問題3:∠aoc與∠bod有什么關系?為什么?
歸納:同角或等角的補角相等。
同角或等角的余角相等。
鞏固練習:
如圖所示, 因為∠1+∠3=180°,∠2+∠3=180°,所以∠1= ,理由是 ________________.
【設計意圖】:通過生動有趣的活動情景,培養學生觀察、操作、推理、交流等活動能力,使學生在自主學習的過程中,經歷知識形成過程,培養學生抽象幾何圖形進行建模的能力。通過鞏固練習檢測學生對余角、補角性質的應用情況。
賦能路徑:利用多媒體動畫演示打臺球進球路徑,更生動形象,吸引學生注意力,激發探索知識的欲望,讓學生體會數學源于生活并運用于生活,讓學生經歷怎么把實際問題轉化成數學問題,培養建立數學模型的能力,突破難點。
課堂實施效果:對于補角、余角的性質的推導是本節課的難點,教師應積極引導學生列出式子,讓學生通過觀察表達式得出補角的性質,再通過類比補角性質得出余角的性質。在鞏固練習中,理由大部分填對頂角相等,對于補角性質的應用多加練習。
課堂檢測:本環節利用多媒體技術設計一個超鏈接,每組選一道題,根據選題派學生代表回答問題,根據情況得分。
【設計意圖】:本環節是本節課的一個亮點,以小組競賽的形式完成課堂檢測環節,既檢測學生對本節重點知識掌握情況,活躍課堂氣氛的同時,還培養學生拼搏進取的精神。
賦能路徑:教師提前把設計好的練習提前展示在多媒體上,待新課講完后,以小組競賽形式出示,學生有小組競賽的精神,同學們回答問題積極,并且對于回答不具體的同學,同小組同學積極補充,活躍了課堂氣氛,啟到了很好的教學效果。
第五環節 學有所思 歸納總結
你學到了哪些知識點?
你學到了哪些方法?
你認為還有哪些問題?
【設計意圖】:本環節使學生把知識結構化、網絡化,引導學生時刻注意新舊知識之間的聯系;鼓勵學生暢談自己學習的知識和體會,激發學生對數學的學習興趣與信心,培養學生獨自梳理知識,歸納學習方法及解題方法的能力,體會與同伴分享成果的快樂過程。
課堂實施情況:學生們積極的對本節知識、學法進行歸納總結,對對不理解的問題課下進行反思。
第六環節 布置作業 能力延伸
基礎題:1.習題2.1 第 1,2,3,4,5題
提高題: 2.已知一個角的補角是這個角余角的4倍,求這個角的度數。
3.如圖,將一個長方形紙片按如圖所示的方式折疊,使點a落在點a’處,點b落在b’處,并且點e,a’,b’在同一條直線上。
問題1:∠feg等于多少度?為什么?
問題2:∠fea與∠geb互余嗎?為什么? 問題3:上述折紙的圖形中,還有哪些(除直角外外)相等的角?
【設計意圖】:作業應該體現出課堂學習的延續性,因此本節課我也精心設計了一道探究性的題目,實現了作業分層,可以讓不同程度的學生都能有不同的收獲。
課程標準要求初中學生在操作感知的基礎上滲透理性思考,以體現自主學習、合作探究理,而七年級大部分學生的自主探索、合作意識不強,但對數學學習有著較濃厚的興趣,思維比較開闊,在數學課堂中抓住學生的認知水平,從生活實際出發,培養學生學習興趣、建立自信,親身經歷知識的形成,不斷提高學生的觀察、探索,合作、歸納等能力。另外班中還存在相當一部分學習有困難的學生,對于這部分學生應給予更多的關注,通過同桌兒小組學習等方式,讓能力較強的學生帶動這些學生盡量給能力較弱的學生創造表現的機會,使各層次的學生都能在學習中體驗成功。
本課例較好實現了信息技術與傳統教學的優勢互補,搭建支架幫助學生實現從操作感知到自主探索、合作交流,充分體現學生的主體地位,從而順應課程改革,提高課堂效率。
數學來源于生活,又運用于生活。本課時我遵循“開放”的原則,引導學生從身邊熟悉的情境出發,使學生經歷從現實生活中抽象出數學模型的過程,激發了學生的學習興趣,恰當地創設情境,以問題串的方式激發學生的好奇心和求知欲,通過獨立思考,不斷提出問題分析問題,體驗了知識的形成過程和發現的快樂,并創造性地解決問題,通過動手操作、合作交流等方式,為學生構建了開放有效的學習環境,同時聯系生活,融合建模思想,讓學生體會學習數學的樂趣。以小組競賽的形式完成課堂檢測,既對本節重點知識進行了考查,活躍了課堂氣氛,又培養了學生拼搏進取的精神。
啟示:課堂上讓學生充分發表自己的見解,從激勵學生的角度出發,給予學生一個充分展示自我的舞臺。在活動中提高學生與他人合作交流的能力,激發學生的學習興趣。針對不同的問題,應大膽放手給學生,注意培養學生抽象幾何圖形的能力,簡單合情說理的能力,觀察分析的能力,總結歸納的能力等。討論時,應該留給學生充分的獨立思考的時間,注重學生幾何語言的培養,對課堂生成的問題,應予以重視,教師可以激勵學生課后繼續探究,將課內學習延伸到課外,開闊學生的視野。
滬教版七年級數學下冊教案篇六
一、情景引入(復習引入)
1、求下列和數的算術平方根4、9、100、9/16、0.25
2、如果一個數的平方等于9,這個數是多少?
討論:這樣的數有兩個,它們是3和-3.注意中括號的作用.
又如:,則x等于多少呢?
二、探索新知
1、平方根的概念:如果一個數的平方等于a,那么這個數就叫做a的平方根.即:如果=a,那么x叫做a的平方根.
求一個數的平方根的運算,叫做開平方.
例如:3的平方等于9,9的平方根是3,所以平方與開平方互為逆運算.
2、觀察:課本p45的圖6.1-2.
圖6.1-2中的兩個圖描述了平方與開平方互為逆運算的運算過程,揭示了開平方運算的本質.并根據這個關系說出1,4,9的平方根.
例4求下列各數的平方根。
(1) 100 (2) (3) 0.25
3、按照平方根的概念,請同學們思考并討論下列問題:
正數的平方根有什么特點?0的平方根是多少?負數有平方根嗎?
一個是正數有兩個平方根,即正數進行開平方運算有兩個結果,一個是負數沒有平方根,即負數不能進行開平方運算,符號:正數a的算術平方根可用表示;正數a的負的平方根可用-表示.
例5說出下列各式的意義,并求出它們的值。
歸納:平方根和算術平方根兩者既有區別又有聯系.區別在于正數的平方根有兩個,而它的算術平方根只有一個;聯系在于正數的負平方根是它的算術平方根的相反數,根據它的算術平方根可以立即寫出它的負平方根。
4、堂上練習:課本p46小練習1、2、3
三、歸納小結(學生歸納,老師點評)
1、什么叫做一個數的平方根?
2、正數、0、負數的平方根有什么規律?
3、怎樣求出一個數的平方根?數a的平方怎樣表示?
四、布置作業
p47-48習題6、1第3、4題。
五、板書設計:
6.1平方根
1、平方根的概念:如果一個數的平方等于a,那么這個數就叫做a的平方根.即:如果=a,那么x叫做a的平方根.
2、a的平方根記為:
3、平方根的性質:正數的平方根有兩個,它們互為相反數;0的平方根是0;負數沒有平方根。
1已知第一個正方形紙盒的棱長是6厘米,第二個正方形紙盒的體積比第一個正方形紙盒的體積大127立方厘米,試求第二個正方形紙盒的棱長.
1.下面說法正確的是( )
a.4是2的平方根
b.2是4的算術平方根
c.0的算術平方根不存在
d.-1的平方的算術平方根是-1
答案:b
知識點:平方根;算術平方根
解析:
解答:a、4不是2的平方根,故本選項錯誤;
b、2是4的算術平方根,故本選項正確;
c、0的算術平方根是0,故本選項錯誤;
d、-1的平方為1,1的算術平方根為1,故本選項錯誤.
故選b.
分析:根據一個數的平方根等于這個數(正和負)開平方的值,算術平方根為正的這個數的開平方的值,由此判斷各選項可得出答案.
滬教版七年級數學下冊教案篇七
1.知識與技能
結合具體實例,進一步認識三角形的概念,掌握三角形三條邊的關系.
2.過程與方法
通過觀察、操作、想象、推理、交流等活動,發展空間觀念,推理能力和有條理地表達能力.
3.情感、態度與價值觀
聯系學生的生活環境、創設情景,幫助學生樹立幾何知識源于實際、用于實際的觀念,激發學生的學習興趣.
1.重點
讓學生掌握三角形的概念及三角形的三邊關系,并能運用三邊關系解決生活中的實際問題.
2.難點
探究三角形的三邊關系應用三邊關系解決生活中的實際問題.
本節課件設計了以下幾個環節:回顧與思考、情境引入、三角形的概念、探索三角形三邊關系、練習應用、課堂小結、探究拓展思考、布置作業.
第一環節 回顧與思考
1、如何表示線段、射線和直線?
2、如何表示一個角?
第二環節 情境引入
活動內容:讓學生收集生活中有關三角形的圖片,課上讓學生舉例,并觀察圖片.
活動目的:讓學生能從生活中抽象出幾何圖形,感受到我們生活在幾何圖形的世界之中.培養學生善于觀察生活、樂于探索研究的學習品質,從而更大地激發學生學習數學的興趣
第三環節 三角形概念的講解
(1)你能從中找出四個不同的三角形嗎?
(2)與你的同伴交流各自找到的三角形.
(3)這些三角形有什么共同的特點?
通過上題的分析引出三角形的.概念、三角形的表示方法及三角形的邊角的表示方法.并出兩道習題加以練習,從練習中歸納出三角形的三要素和注意事項.
第四環節 探索三角形三邊關系第一部分 探索三角形的任意兩邊之和大于第三邊
活動內容:在四根長度分別是8cm、10cm、15cm、20cm的小木棒中選三根木棒擺三角形.學生統計能否擺成三角形的情況.
第二部分 探索三角形的任意兩邊之差小于第三邊
活動內容:通過讓學生測量任意三角形三邊長度來比較兩邊之差與第三邊的關系,教師通過幾何畫板驗證,從而得出結論.
第五環節 練習提高
活動內容:
1.有兩根長度分別為5厘米和8厘米的木棒,用長度為2厘米的木棒與它們能擺成三角形嗎?為什么?長度為13厘米的木棒呢?
2.如果三角形的兩邊長分別是2和4,且第三邊是奇數,那么第三邊長為 .若第三邊為偶數,那么三角形的周長 .
3.有兩根長度分別為5cm和8cm的木棒,用長度為2cm的木棒與它們能擺成三角形嗎?為什么?長度為13cm的木棒呢?動手擺一擺.學生回答完上面問題后想一想能取一根木棒與原來的兩根木棒擺成三角形嗎?
第六環節 課堂小結
活動內容:學生自我談收獲體會,說說學完本節課的困惑.教師做最終總結并指出注意事項.
學生對本節內容歸納為以下兩點:
1.了解了三角形的概念及表示方法;
2.三角形的任意兩邊之和大于第三邊,三角形的任意兩邊之差小于第三邊.
注意事項為:判斷a,b,c三條線段能否組成一個三角形,應注意:a+b>c,a+c>b,b+c>a三個條件缺一不可.當a是a,b,c三條線段中最長的一條時,只要b+c>a就是任意兩條線段的和大于第三邊.
第七環節 探究拓展思考
1.若三角形的周長為17,且三邊長都有是整數,那么滿足條件的三角形有多少個?你可以先固定一邊的長,用列表法探求.
2.在例1中,你能取一根木棒,與原來的兩根木棒擺成三角形嗎?
3.以三根長度相同的火柴為邊,可以組成一個三角形,現在給你六根火柴,如果以每根火柴為邊來組成三角形,最多可組成多少個三角形?試試看.
第八環節 作業布置
滬教版七年級數學下冊教案篇八
教學目標 1.了解算術平方根的概念,會用根號表示正數的算術平方根,并了解算術平方根的非負性;
2.了解開方與乘方互為逆運算,會用平方運算求某些非負數的算術平方根;
3.通過對實際生活中問題的解決,讓學生體驗數學與生活實際是緊密聯系著的,通過探究活動培養動手能力和激發學生學習數學的興趣。
教學難點 根據算術平方根的概念正確求出非負數的算術平方根。
知識重點 算術平方根的概念。
情境導入 同學們,20xx年10月15日,這是我們每個中國人值得驕傲的日子.因為這一天,“神舟”五號飛船載人航天飛行取得圓滿成功,實現了中華民族千年的飛天夢想(多媒體同時出示“神舟”五號飛船升空時的畫面).那么,你們知道宇宙飛船離開地球進人軌道正常運行的速度是在什么范圍嗎?這時它的速度要大于第一宇宙速度 (米/秒)而小于第二宇宙速度: (米/秒). 、 的大小滿足 .怎樣求 、 呢?這就要用到平方根的概念,也就是本章的主要學習內容.
這節課我們先學習有關算術平方根的概念.
請看下面的問題.“神舟”五號成功發射和安全著陸,標志著我國在攀登世界科技高峰的征程上又邁出具有重大歷史意義的一步,是我們偉大祖國的榮耀.此內容有感染力,使學生對
本章知識的應用價值有一個感性認識,同時激發學生的好奇心和學習的興趣.這里的計算實際上是已知
冪和乘方的指數求底數的問題,是乘方的.逆運算,學生以前沒有見過,由此引出了本章所要研究的主要內容,以及研究這些內容的大體思路.
提出問題
感知新知 多媒體展示教科書第160頁的問題(問題略),然后提出問題:
你是怎樣算出畫框的邊長等于5dm的呢?(學生思考并交流解法)
這個問題相當于在等式擴=25中求出正數x的值.
練習:教科書第160頁的填表. 練習:教科書第160頁的填表.這個問題抽象成數學問題
就是已知正方形的面積求正方形的邊長,這與學生以前學過的
已知正方形的邊長求它的面積的過程互逆,教學時可以讓學生初步體會這種互逆的過程,為后面的學習做準備。
歸納新知 上面的問題,可以歸納為“已知一個正數的平方,求這個正數”的問題.實際上是乘方運算中,已知一個數的指數和它的冪求這個數.
一般地,如果一個正數x的平方等于a,即 =a,那么這個正數x叫做a的算術平方根.a的算術平方根記為 ,讀作“根號a”,a叫做被開方數.規定:0的算術平方根是0.
也就是,在等式 =a (x≥0)中,規定x = .
思考:這里的數a應該是怎樣的數呢?
試一試:你能根據等式: =144說出144的算術平方根是多少嗎?并用等式表示出來.
想一想:下列式子表示什么意思?你能求出它們的值嗎?
建議:求值時,要按照算術平方根的意義,寫出應該滿足的關系式,然后按照算術平方根的記法寫出對應的值.例如 表示25的算術平方根,因為…… 也可以寫成 ,讀作“二次根號a”。
算術平方根的概念比較抽象,原因之一是學生對石這個新
的符號的理解要有一個過程.通過此問題,使學生對符號“而”表示的具體含義有更具體、更深刻的認識.
應用新知 例.(課本第160頁的例1)求下列各數的算術平方根:
(1)100;(2)1;(3) ;(4)0.0001
建議:首先應讓學生體驗一個數的算術平方根應滿足怎樣的等式,應該用怎樣的記號來表示它,在此基礎上再求出結果,例如求100的算術平方根,就是求一個數x,使 =100,因為
例題的解答展示了求數的算術平方根的思考過程.在開始階段,宜讓學生適當模仿,熟練后可以直接寫出結果.
探究拓展 提出問題:(課本第160頁)怎樣用兩個面積為1的小正方形拼成一個面積為2的大正方形?
方法1:課本中的方法,略;
方法2:
可還有其他方法,鼓勵學生探究。
問題:這個大正方形的邊長應該是多少呢?
大正方形的邊長是 ,表示2的算術平方根,它到底是個多大的數?你能求出它的值嗎?
建議學生觀察圖形感受 的大小.小正方形的對角線的長是多少呢?(用刻度尺測量它與大正方形的邊長的大小)它的近似值我們將在下節課探究.
教科書在邊空提出問題“小正方形的對角線的長是多少”,
這是為在10.3節介紹在數軸上畫出表示 的點做準備.
小結與作業
課堂小結 提問:1、這節課學習了什么呢?
2、算術平方根的具體意義是怎么樣的?
3、怎樣求一個正數的算術平方根?
布置作業 3、 必做題:課本第167頁習題10.1第1、2、3題;168頁第11題。
4、 備選題:
(1)判斷下列說法是否正確:
i. 是25的算術平方根;
ii. 一6是 的算術平方根;
iii. 0的算術平方根是0;
iv. 0.01是0.1的算術平方根;
⑤一個正方形的邊長就是這個正方形的面積的算術平方根.
(2)下列各式哪些有意義,哪些沒有意義?
①- ② ③ ④
(3)一個正方形的面積為10平方厘米,求以這個正方形的邊為直徑的圓的面積。
在本節的第一個“探究”欄目之前,重點是介紹算術平方根的概念,因此所涉及的數(包括例題中的數)都是完全平方數(能表示成一個有理數的平方),所求的是這些完全平方數的算術平方根.
本課教育評注(課堂設計理念,實際教學效果及改進設想)
本節課是本章的第一節課,主要是要建立算術平方根的概念為了使學生體會引入算
術平方根的必要性,感受新數(無理數)的產生是實際生活和科學技術發展的需要,也為了激發學生的學習熱情,所以章前圖的學習不要省略.特別地應提醒學生這里求速度的問題實際上是已知冪和乘方求底數的問題,是一個新的數學問題.
通過一個簡單的實際問題,引人算術平方根的概念對學生來說是容易接受并有興趣
的.教學中要注意算術平方根的非負性,對它的符號的理解與接受要有一個過程,但這也是最重要的,能從根號很自然地聯想到算術平方根的意義(應滿足的一個等式)這是學好平方根概念的基本保證,所以在例題之前安排了試一試和想一想,教師還可根據學生實際情況進行有關的訓練.
通過對兩個小正方形拼成一個大正方形的探究活動,一方面是培養學生的動手能力和思維能力,調動學生的學習積極性,另一方面是使學生理解引人算術平方根符號的必要性,明確有些正數的算術平方根不能容易地求得,為下節課的學習做準備.
滬教版七年級數學下冊教案篇九
:
1.掌握坐標變化與圖形平移的關系;能利用點的平移規律將平面圖形進行平移;會根據圖形上點的坐標的變化,來判定圖形的移動過程。
2.發展學生的形象思維能力,和數形結合的意識。
3.用坐標表示平移體現了平面直角坐標系在數學中的應用。
4.培養學生探究的興趣和歸納概括的能力,體會使復雜問題簡單化。
重點:掌握坐標變化與圖形平移的關系。
難點:利用坐標變化與圖形平移的關系解決實際問題。
一、引言
上節課我們學習了用坐標表示地理位置,本節課我們繼續研究坐標方法的另一個應用。
二、新
展示問題:教材第75頁圖.
(1)如圖將點a(-2,-3)向右平移5個單位長度,得到點a1,在圖上標出它的坐標,把點a向上平移4個單位
長度呢?
(2)把點a向左或向下平移4個單位長度,觀察他們的變化,你能從中發現什么規律嗎?
(3)再找幾個點,對他們進行平移,觀察他們的坐標是否按你發現的規律變化?
規律:在平面直角坐標系中,將點(x,y)向右(或左)平移a個單位長度,可以得到對應點(x+a,y)(或(
,));將點(x,y)向上(或下)平移b個單位長度,可以得到對應點(x,y+b)(或(,)).
教師說明:對一個圖形進行平移,這個圖形上所有點的`坐標都要發生相應的變化;反過來,從圖形上的點的坐
標的某種變化,我們也可以看出對這個圖形進行了怎樣的平移.
例如圖(1),三角形abc三個頂點坐標分別是a(4,3),b(3,1),c(1,2).
(1)將三角形abc三個頂點的橫坐標后減去6,縱坐標不變,分別得到點a1、b1、c1,依次連接a1、b1、c1各點
,所得三角形a1b1c1與三角形abc的大小、形狀和位置上有什么關系?
(2)將三角形abc三個頂點的縱坐標都減去5,橫坐標不變,分別得到點a2、b2、c2,依次連接a2、b2、c2各點
,所得三角形a2b2c2與三角形abc的大小、形狀和位置上有什么關系?
引導學生動手操作,按要求畫出圖形后,解答此例題.
解:如圖(2),所得三角形a1b1c1與三角形abc的大小、形狀完全相同,三角形a1b1c1可以看作將三角形abc向
左平移6個單位長度得到.類似地,三角形a2b2c2與三角形abc的大小、形狀完全相同,它可以看作將三角形abc
向下平移5個單位長度得到.
課本p77思考題:由學生動手畫圖并解答.
歸納:
三、練習:教材第78頁練習;習題7.2中第1、2、4題.
四、作業布置第78頁第3題.
滬教版七年級數學下冊教案篇十
1.使學生受到初步的辯證唯物主義觀點的教育。
2.使學生學會并掌握“按比例分配”應用題的解答方法,掌握“比例分配”問題的特征,能熟練地計算。
把比轉化成分數。
2.甲數與乙數的比是4∶5。
①甲數是乙數的幾分之幾?
②乙數是甲數的幾分之幾?
③甲數是甲、乙總數的幾分之幾?
④乙數是甲、乙總數的幾分之幾?
3.出示投影圖:
師:看到此圖你能想到什么?
學生說,老師寫在膠片上:
①女生與男生的比是3∶2。
②男生與女生的比是2∶3。
4.某生產隊運來60噸化肥,平均分給5個小隊。每個小隊分到多少噸?
60÷5=12(噸)
這種解答的方法,在算術上叫什么方法?
剛才我們解題的方法叫平均分配的方法,在工農業生產和日常生活中應用很廣泛,而且這種方法你們早已比較熟悉,也經常用它解決一些實際問題。但有些事情,用這種方法就行不通了。
如:你們單元住著18家,每月交的水電費能平均分配嗎?
又如:國家搞綠化建設,能把綠化任務平均分配給各單位嗎?
比如生產隊的土地,也要根據國家計劃,合理安排種植,不能想種什么就種什么,所有這些,都需要把一個數量按照一定的“比”進行分配,這樣的分配方法叫“按比例分配”。(板書課題)
1.出示例題。
例1第四生產隊計劃把400公頃地按照3∶2的比例播種糧食作物和經濟作物。糧食作物和經濟作物各種多少公頃?
學生讀題,分析題中的條件與問題,教師把條件與問題簡寫出來:
然后再讓學生帶著三個問題去思考。
(1)兩種作物一共幾份?怎樣求?
(3)400公頃是總數,要求的兩種作物各種多少公頃?怎樣計算?
分析:
①用一個長方形表示全部土地。(畫圖)
②根據糧、經之比是3∶2,你知道什么意思?(糧3份,經2份。)
師邊說邊把長方形平均分成5份,其中3份標糧,其中2份標經。
觀察:①從圖上看,把全部土地平均分成幾份?你怎么算出來的?
(板書)總份數:3+2=5
3∶2,實質都表示倍數關系。現在這道題能夠解決了。
糧食作物多少公頃?怎么算?
經濟作物多少公頃?怎么算?
驗算:
①求總數240+160=400
②求比240∶160=3∶2
答:糧食作物240公頃,經濟作物160公頃。
(附圖)
這道題就是“按比例分配”的問題。解決這個問題的關鍵是:首先
多少。
師歸納:問題通過分析得到解決,又經過驗算證明方法正確,從這道題可以悟出解答“按比例分配”應用題的規律為:
已知兩個數的和與兩個數的比,把兩個數的比轉化成各占幾分之幾,然后按“求一個數的幾分之幾是多少用乘法”的方法解答。
2.試一試。
抓住主要矛盾練習,運用規律解決問題。
把45棵樹苗分給兩個中隊,使兩個中隊分得的樹苗的比是4∶5,每個中隊各得幾棵樹苗?
總份數是幾?怎么算?一中隊占幾分之幾?二中隊占幾分之幾?
①總份數4+5=9
驗算:①總棵樹20+25=45(棵)
②比20∶25=4∶5
答:一中隊得20棵,二中隊得25棵。
1.某工廠有職工1800人,男女職工人數比是5∶4,求男女職工各多少人?
2.沙子灰是灰和沙子混合而成的,它們的比是7∶3。要用280噸沙子灰,則灰和沙子各需多少噸?
3.圖書館買來160本兒童故事書,按1∶2∶3分給低、中、高年級同學閱讀。低、中、高年級各分到多少本?
以上三題只列出主要算式即可。
4.學校把560棵的植樹任務,按照五年級三個班人數分配給各班。一班47人,二班45人,三班48人。三個班級各植樹多少棵?
分析條件、問題以后讓學生討論:
①三個班植樹的總棵樹是幾?
②題目要求按什么比?人數比是幾比幾?
③三個數的和及三個數的比知道后,根據“按比例分配”的規律,怎樣計算這道題?
試著讓學生在本上做,老師巡視,然后把方法集中到黑板上。(找用不同方法計算的.學生板演。)
5.有一塊試驗田,周長200米,長與寬的比是3∶2。這塊試驗田的面積是多少平方米?
(這道題給了長與寬的比是3∶2,指的是一個長與一個寬的比,而周長包括2個長和2個寬,因此先求出一個長寬的和,即200÷2,然后把100按3∶2去分配。)
6.看圖編一道按比例分配題解答。
7.水是由氫和氧按1∶8的重量比化合而成的。5.4千克的水中含氫、氧各多少千克?(看誰用的方法多。)
方法1
8+1=9
方法2
5.4÷9=0.6(千克)
0.6×1=0.6(千克)
0.6×8=4.8(千克)
方法3
方法4
5.4÷(8+1)=0.6(千克)
0.6×8=4.8(千克)
方法5
解:設氫為x千克。
5.4-x=8x
5.4=9x
x=0.6
5.4-x
=5.4-0.6
=4.8
方法6
解:設氧為x千克。
x=(5.4-x)×8
x=43.2-8x
9x=43.2
x=4.8
5.4-x
=5.4-4.8
=0.6
以上方法4,5,6要寫全過程。
滬教版七年級數學下冊教案篇十一
1,掌握數軸的概念,理解數軸上的點和有理數的對應關系;
2,會正確地畫出數軸,會用數軸上的點表示給定的有理數,會根據數軸上的點讀出所表示的有理數;
3,感受在特定的條件下數與形是可以相互轉化的,體驗生活中的數學。
數軸的概念和用數軸上的點表示有理數
教學過程(師生活動) 設計理念
設置情境
教師通過實例、課件演示得到溫度計讀數.
問題1:溫度計是我們日常生活中用來測量溫度的重要工具,你會讀溫度計嗎?請你嘗試讀出圖中三個溫度計所表示的溫度?
(多媒體出示3幅圖,三個溫度分別為零上、零度和零下)
問題2:在一條東西向的馬路上,有一個汽車站,汽車站東3 m和7.5m處分別有一棵柳樹和一棵楊樹,汽車站西3 m和4.8m處分別有一棵槐樹和一根電線桿,試畫圖表示這一情境.
(小組討論,交流合作,動手操作) 創設問題情境,激發學生的學習熱情,發現生活中的數學。
教師:由上述兩問題我們得到什么啟發?你能用一條直線上的點表示有理數嗎?
讓學生在討論的基礎上動手操作,在操作的基礎上歸納出:可以表示有理數的直線必須滿足什么條件?
從而得出數軸的三要素:原點、正方向、單位長度 體驗數形結合思想;只描述數軸特征即可,不用特別強調數軸三要求。
從游戲中學數學 做游戲:教師準備一根繩子,請8個同學走上來,把位置調整為等距離,規定第4個同學為原點,由西向東為正方向,每個同學都有一個整數編號,請大家記住,現在請第一排的同學依次發出口令,口令為數字時,該數對應的同學要回答“到”;口令為該同學的名字時,該同學要報出他對應的“數字”,如果規定第3個同學為原點,游戲還能進行嗎? 學生游戲體驗,對數軸概念的理解
尋找規律
歸納結論
問題3:
1, 你能舉出一些在現實生活中用直線表示數的實際例子嗎?
2, 如果給你一些數,你能相應地在數軸上找出它們的準確位置嗎?如果給你數軸上的點,你能讀出它所表示的數嗎?
3, 哪些數在原點的左邊,哪些數在原點的右邊,由此你會發現什么規律?
4, 每個數到原點的距離是多少?由此你會發現了什么規律?
(小組討論,交流歸納)
歸納出一般結論,教科書第12的歸納。 這些問題是本節課要求學會的`技能,教學中要以學生探究學習為主來完成,教師可結合教科書給學生適當指導。
教科書第12頁練習
課堂小結
請學生總結:
1, 數軸的三個要素;
2, 數軸的作以及數與點的轉化方法。
本課作業
1, 必做題:教科書第18頁習題1.2第2題
2,選做題:教師自行安排
本課教育評注(課堂設計理念,實際教學效果及改進設想)
1, 數軸是數形轉化、結合的重要媒介,情境設計的原型來源于生活實際,學生易于體驗和接受,讓學生通過觀察、思考和自己動手操作、經歷和體驗數軸的形成過程,加深對數軸概念的理解,同時培養學生的抽象和概括能力,也體出了從感性認識,到理性認識,到抽象概括的認識規律。
2, 教學過程突出了情竟到抽象到概括的主線,教學方法體了特殊到一般,數形結合的數學思想方法。
3, 注意從學生的知識經驗出發,充分發揮學生的主體意識,讓學生主動參與學習活,并引導學生在課堂上感悟知識的生成,發展與變化,培養學生自主探索的學習方法。
滬教版七年級數學下冊教案篇十二
1,整理前兩個學段學過的整數、分數(包括小數)的知識,掌握正數和負數的概念;
2,能區分兩種不同意義的量,會用符號表示正數和負數;
3,體驗數學發展的一個重要原因是生活實際的需要,激發學生學習數學的興趣。
正確區分兩種不同意義的量。
兩種相反意義的量
設計理念
設置情境
引入課題
上課開始時,教師應通過具體的例子,簡要說明在前兩個學段我們已經學過的數,并由此請學生思考:生
活中僅有這些“以前學過的數”夠用了嗎?下面的例子
僅供參考.
師:今天我們已經是七年級的學生了,我是你們的數學老師.下面我先向你們做一下自我介紹,我的名字是--,身高1.73米,體重58.5千克,今年40歲.我們的班級是七(13)班,有60個同學,其中男同學有22個,占全班總人數的37%…
問題1:老師剛才的介紹中出現了幾個數?分別是什么?你能將這些數按以前學過的數的分類方法進行分類嗎?
學生活動:思考,交流
師:以前學過的數,實際上主要有兩大類,分別是整數和分數(包括小數).
問題2:在生活中,僅有整數和分數夠用了嗎?
請同學們看書(觀察本節前面的幾幅圖中用到了什么數,讓學生感受引入負數的必要性)并思考討論,然后進行交流。
(也可以出示氣象預報中的氣溫圖,地圖中表示地形高低地形圖,工資卡中存取錢的記錄頁面等)
學生交流后,教師歸納:以前學過的數已經不夠用了,有時候需要一種前面帶有“-”的新數。先回顧小學里學過的數的類型,歸納出我們已經學了整數和分數,然后,舉一些實際生活中共有相反意義的量,說明為了表示相反意義的量,我們需要引入負數,這樣做強調了數學的嚴
密性,但對于學生來說,更多
地感到了數學的枯燥乏味為了既復習小學里學過的數,又能激發學生的學習興
趣,所以創設如下的問題情境,以盡量貼近學生的實際.
這個問題能激發學生探究的欲望,學生自己看書學習是培養學生自主學習的重要途徑,都應予以重視。
以上的情境和實例使學生體會生活中處處有數學,通過實例,使學生獲取大量的感性材料,為正確建立相反意義的量奠定基礎。
分析問題
探究新知問題3:前面帶有“一”號的新數我們應怎樣命名它呢?為什么要引人負數呢?通常在日常生活中我們用正數和負數分別表示怎樣的量呢?
這些問題都必須要求學生理解.
教師可以用多媒體出示這些問題,讓學生帶著這些問題看書自學,然后師生交流.
這階段主要是讓學生學會正數和負數的表示.
強調:用正,負數表示實際問題中具有相反意義的量,而相反意義的量包含兩個要素:一是它們的意義相反,如向東與向西,收人與支出;二是它們都是數量,而且是同類的量.這些問題是這節課的主要知識,教師要清楚地向學生說明,并且要注意語言的準確與規范,要舍得花時間讓學充分發表想法。
舉一反三思維拓展經過上面的討論交流,學生對為什么要引人負數,對怎樣用正數和負數表示兩種相反意義的量有了初步的理解,教師可以要求學生舉出實際生活中類似的`例子,以加深對正數和負數概念的理解,并開拓思維.
問題4:請同學們舉出用正數和負數表示的例子.
問題5:你是怎樣理解“正整數”“負整數,,’’正分數”和“負分數”的呢?請舉例說明.
能否舉出例子是學生對知識掌握程度的體現,也能進一步幫助學生理解引負數的必要性
課堂練習教科書第5頁練習
小結與作業
課堂小結圍繞下面兩點,以師生共同交流的方式進行:
1,0由于實際問題中存在著相反意義的量,所以要引人負數,這樣數的范圍就擴大了;
2,正數就是以前學過的0以外的數(或在其前面加“+”),負數就是在以前學過的0以外的數前面加“-”。
本課作業教科書第7頁習題1.1第1,2,4,5(第3題作為下節課的思考題。
作業可設必做題和選做題,體現要求的層次性,以滿足不同學生的需要
本課教育評注(課堂設計理念,實際教學效果及改進設想)
密切聯系生活實際,創設學習情境.本課是有理數的第一節課時.引人負數是數的范圍的一次重要擴充,學生頭腦中關于數的結構要做重大調整(其實是一次知識的順應過程),而負數相對于以前的數,對學生來說顯得更抽象,因此,這個概念并不是一下就能建立的為了接受這個新的數,就必須對原有的數的結構進行整理,引人幣的舉例就是這個目的
負數的產生主要是因為原有的數不夠用了(不能正確簡潔地表示數量),書本的例子
或圖片中出現的負數就是讓學生去感受和體驗這一點.使學生接受生活生產實際中確實
存在著兩種相反意義的量是本課的教學難點,所以在教學中可以多舉幾個這方面的例
子,并且所舉的例子又應該符合學生的年齡和思維特點。當學生接受了這個事實后,引入負數(為了區分這兩種相反意義的量)就是順理成章的事了.
這個教學設計突出了數學與實際生活的緊密聯系,使學生體會到數學的應用價值,
體現了學生自主學習、合作交流的教學理念,書本中的圖片和例子都是生活生產中常見
的事實,學生容易接受,所以應該讓學生自己看書、學習,并且鼓勵學生討論交流,教師作適當引導就可以了。
滬教版七年級數學下冊教案篇十三
1,通過對數“零”的意義的探討,進一步理解正數和負數的概念;
2,利用正負數正確表示相反意義的量(規定了指定方向變化的量)
3,進一步體驗正負數在生產生活實際中的廣泛應用,提高解決實際問題的能力,激發學習數學的興趣。
深化對正負數概念的理解
正確理解和表示向指定方向變化的量
設計理念
知識回顧與深化
回顧:上一節課我們知道了在實際生產和生活中存在著兩種不同意義的量,為了區分這兩種量,我們用正數表示其中一種意義的量,那么另一種意義的量就用負數來表示.這就是說:數的范圍擴大了(數有正數和負數之分).那么,有沒有一種既不是正數又不是負數的數呢?
問題1:有沒有一種既不是正數又不是負數的數呢?學生思考并討論.(數0既不是正數又不是負數,是正數和負數的分界,是基準.這個道理學生并不容易理解,可視學生的討論情況作些啟發和引導,下面的例子供參考)
例如:在溫度的表示中,零上溫度和零下溫度是兩種不同意義的量,通常規定零上溫度用正數來表示,零下溫度用負數來表示。那么某一天某地的溫度是零上7℃,最低溫度是零下5℃時,就應該表示為+7℃和-5℃,這里+7℃和-5℃就分別稱為正數和負數.那么當溫度是零度時,我們應該怎樣表示呢?(表示為0℃),它是正數還是負數呢?由于零度既不是零上溫度也不是零下溫度,所以,0既不是正數也不是負數?
問題2:引入負數后,數按照“兩種相反意義的量”來分,可以分成幾類? “數0耽不是正數,也不是負數”也應看作是負數定義的一部分.在引入負數后,0除了表示一個也沒有以外,還是正數和負數的分界.了解。的這一層意義,也有助于對正負數的理解;且對數的順利擴張和有理毅概念的建立都有幫助。所舉的例子,要考慮學生的可接受性.“數0既不是正數,也不是負數”應從相反意義的1這個角度來說明.這個問題只要初步認識即可,不必深究.
問題3:教科書第6頁例題
說明:這是一個用正負數描述向指定方向變化情況的例子,通常向指定方向變化用正數表示;向指定方向的相反方向變化用負數表示。這種描述在實際生活中有廣泛的應用,應予以重視。教學中,應讓學生體驗“增長”和“減少”是兩種相反意義的量,要求寫出“體重的增長值”和“進出口額的增長率”,就暗示著用正數來表示增長的量。
歸納:在同一個問題中,分別用正數和負數表示的量具有相反的意義(教科書第6頁).
類似的例子很多,如:水位上升-3m,實際表示什么意思呢?收人增加-10%,實際表示什么意思呢?等等。可視教學中的實際情況進行補充.
這種用正負數描述向指定方向變化情況的例子,在實際生活中有廣泛的應用,按題意找準哪種意義的量應該用正數表示是解題的關健.這種描述具有相反數的影子,例如第(1)題中小明的體重可說成是減少-2kg,但現在不必向學生提出.
鞏固練習教科書第6頁練習
閱讀思考
教科書第8頁閱讀與思考是正負數應用的很好例子,要花時間讓學生討論交流
小結與作業
課堂小結以問題的形式,要求學生思考交流:
1,引人負數后,你是怎樣認識數0的,數0的意義有哪些變化?
2,怎樣用正負數表示具有相反意義的量?(用正數表示其中一種意義的量,另一種量用負數表示;特別地,在用正負數表示向指定方向變化的量時,通常把向指定方向變化的量規定為正數,而把向指定方向的相反方向變化的量規定為負數.)
本課作業1,必做題:教科書第7頁習題1.1第3,6,7,8題
3,選做題:教師自行安排
本課教育評注(課堂設計理念,實際教學效果及改進設想)
1,本課主要目的是加深對正負數概念的理解和用正負數表示實際生產生活中的向指
定方向變化的量。
2,“數0既不是正數,也不是負數,’(要從0不屬于兩種相反意義的量中的任何一種上來理解)也應看作是負數定義的一部分.在引人負數后,除了表示一個也沒有以外,還是正數和負數的分界。了解0的這一層意義,也有助于對正負數的理解,且對數的順利擴張和有理數概念的建立都有幫助.由于上節課的重點是建立兩種相反意義量的概念,考慮到學生的可接受性,所以作為知識的回顧和深化而放到本課.
3,教科書的例子是用正負數表示(向指定方向變化的)量的實際應用,用這種方式描述的例子很多,要盡量使學生理解.
4,本設計體現了學生自主學習、交流討論的教學理念,教學中要讓學生體驗數學知識在實際中的合理應用,在體驗中感悟和深化知識.通過實際例子的學習激發學生學習數學的興趣.
滬教版七年級數學下冊教案篇十四
七年級數學教案
1.2 一元一次不等式組的解法
2.2二元一次方程組的解法
2.3二元一次方程組的應用(1)
1.會列出二元一次方程組解簡單應用題,并能檢驗結果的合理性。
2.知道二元一次方程組是反映現實世界量之間相等關系的一種有效的數學模型。
3.引導學生關注身邊的數學,滲透將來未知轉達化為已知的辯證思想。
1.列二元一次方程組解簡單問題。
2.徹底理解題意
找等量關系列二元一次方程組。
小剛與小玲一起在水果店買水果,小剛買了3千克蘋果,2千克梨,共花了18.8元。小玲買了2千克蘋果,3千克梨,共花了18.2元。回家路上,他們遇上了好朋友小軍,小軍問蘋果、梨各多少錢1千克?他們不講,只講各自買的幾千克水果和總共的錢,要小軍猜。聰明的同學們,小軍能猜出來嗎?
1.怎樣設未知數?
2.找本題等量關系?從哪句話中找到的?
3.列方程組。
4.解方程組。
5.檢驗寫答案。
思考:怎樣用一元一次方程求解?
比較用一元一次方程求解,用二元一次方程組求解誰更容易?
1.根據問題建立二元一次方程組。
(1)甲、乙兩數和是40差是6,求這兩數。
(2)80班共有64名學生,其中男生比女生多8人,求這個班男生人數,女生人數。
(3)已知關于求x、的方程,
是二元一次方程。求a、b的值。
2.p38練習第1題。
小組討論:列二元一次方程組解應用題有哪些基本步驟?
p42。習題2.3a組第1題。
后記:
2.3二元一次方程組的應用(2)
1.會列二元一次方程組解簡單的應用題并能檢驗結果的合理性。
2.提高分析問題、解決問題的能力。
3.體會數學的應用價值。
根據實際問題列二元一次方程組。
1.找實際問題中的相等關系。
2.徹底理解題意。
本節課我們繼續學習用二元一次方程組解決簡單實際問題。
例1. 小琴去縣城,要經過外祖母家,頭一天下午從她家走到個祖母家里,第二天上午,從外外祖母家出發勻速前進,走了2小時、5小時后,離她自己家分別為13千米、25千米。你能算出她的速度嗎?還能算出她家與外祖母家相距多遠嗎?
探究: 1. 你能畫線段表示本題的數量關系嗎?
2.填空:(用含s、v的代數式表示)
設小琴速度是v千米/時,她家與外祖母家相距s千米,第二天她走2小時趟的路程是______千米。此時她離家距離是______千米;她走5小時走的路程是______千米,此時她離家的距離是________千米。
3.列方程組。
4.解方程組。
5.檢驗寫出答案。
討論:本題是否還有其它解法?
1.建立方程模型。
(1)兩在相距280千米,一般順流航行需14小時,逆流航行需20小時,求船在靜水中速度,水流的速度。
(2)420個零件由甲、乙兩人制造。甲先做2天后,乙加入合作再做2天完成,乙先做2天,甲加入合作,還需3天完成。問:甲、乙每天各做多少個零件?
2.p38練習第2題。
3.小組合作編應用題:兩個寫一方程組,另兩人根據方程組編應用題。
本節課你有何收獲?