作為一名老師,常常要根據(jù)教學(xué)需要編寫教案,教案是教學(xué)活動(dòng)的依據(jù),有著重要的地位。優(yōu)秀的教案都具備一些什么特點(diǎn)呢?又該怎么寫呢?那么下面我就給大家講一講教案怎么寫才比較好,我們一起來看一看吧。
力的合成與分解的教案篇一
1.分解因式
總體說明
因式分解是進(jìn)行代數(shù)恒等變形的重要手段之一,它在以后的代數(shù)學(xué)習(xí)中有著重要的應(yīng)用,如:多項(xiàng)式除法的簡(jiǎn)便運(yùn)算,分式的運(yùn)算,解方程(組)以及二次函數(shù)的恒等變形等,因此學(xué)好因式分解對(duì)于代數(shù)知識(shí)的后繼學(xué)習(xí)具有相當(dāng)重要的意義.
本節(jié)是因式分解的第1小節(jié),占一個(gè)課時(shí),它主要讓學(xué)生經(jīng)歷從分解因數(shù)到分解因式的過程,讓學(xué)生體會(huì)數(shù)學(xué)思想——類比思想,讓學(xué)生了解分解因式與整式的乘法運(yùn)算之間的互逆關(guān)系,感受分解因式在解決相關(guān)問題中的作用.
一、學(xué)生知識(shí)狀況分析
學(xué)生的技能基礎(chǔ):學(xué)生已經(jīng)熟悉乘法的分配律及其逆運(yùn)算,并且學(xué)習(xí)了整式的乘法運(yùn)算,因此,對(duì)于因式分解的引入,學(xué)生不會(huì)感到陌生,它為今天學(xué)習(xí)分解因式打下了良好基礎(chǔ).
學(xué)生活動(dòng)經(jīng)驗(yàn)基礎(chǔ):由整式乘法尋求因式分解的方法是一種逆向思維過程,而逆向思維對(duì)于八年級(jí)學(xué)生還比較生疏,接受起來還有一定的困難,再者本節(jié)還沒有涉及因式分解的具體方法,所以對(duì)于學(xué)生來說,尋求因式分解的方法是一個(gè)難點(diǎn).
二、教學(xué)任務(wù)分析
基于學(xué)生在小學(xué)已經(jīng)接觸過因數(shù)分解的經(jīng)驗(yàn),但對(duì)于因式分解的概念還完全陌生,因此,本課時(shí)在讓學(xué)生重點(diǎn)理解因式分解概念的基礎(chǔ)上,應(yīng)有意識(shí)地培養(yǎng)學(xué)生知識(shí)遷移的數(shù)學(xué)能力,如:類比思想,逆向運(yùn)算能力等。因此,本課時(shí)的教學(xué)目標(biāo)是:
知識(shí)與技能:
(1)使學(xué)生了解因式分解的意義,理解因式分解的概念.
(2)認(rèn)識(shí)因式分解與整式乘法的相互關(guān)系——互逆關(guān)系,并能運(yùn)用這種關(guān)系尋求因式分解的方法.
數(shù)學(xué)能力:
(1)由學(xué)生自主探索解題途徑,在此過程中,通過觀察、類比等手段,尋求因式分解與因數(shù)分解之間的關(guān)系,培養(yǎng)學(xué)生的觀察能力,進(jìn)一步發(fā)展學(xué)生的類比思想.
(2)由整式乘法的逆運(yùn)算過渡到因式分解,發(fā)展學(xué)生的逆向思維能力.
(3)通過對(duì)分解因式與整式的乘法的觀察與比較,培養(yǎng)學(xué)生的分析問題能力與綜合應(yīng)用能力.
情感與態(tài)度:
讓學(xué)生初步感受對(duì)立統(tǒng)一的辨證觀點(diǎn)以及實(shí)事求是的科學(xué)態(tài)度.
三、教學(xué)過程分析
本節(jié)課設(shè)計(jì)了六個(gè)教學(xué)環(huán)節(jié):看誰算得快——看誰想得快——看誰算得準(zhǔn)——學(xué)生討論——反饋練習(xí)——學(xué)生反思.
第一環(huán)節(jié)看誰算得快
活動(dòng)內(nèi)容:用簡(jiǎn)便方法計(jì)算:
(1)=
(2)-2.67×132+25×2.67+7×2.67=
(3)992–1=.
活動(dòng)目的:如果說學(xué)生對(duì)因式分解還相當(dāng)陌生的話,相信學(xué)生對(duì)用簡(jiǎn)便方法進(jìn)行計(jì)算應(yīng)該相當(dāng)熟悉.引入這一步的目的旨在讓學(xué)生通過回顧用簡(jiǎn)便方法計(jì)算——因數(shù)分解這一特殊算法,使學(xué)生通過類比很自然地過渡到正確理解因式分解的概念上,從而為因式分解的掌握掃清障礙,本環(huán)節(jié)設(shè)計(jì)的計(jì)算992–1的值是為了降低下一環(huán)節(jié)的難度,為下一環(huán)節(jié)的理解搭一個(gè)臺(tái)階.
注意事項(xiàng):學(xué)生對(duì)于(1)(2)兩小題逆向利用乘法的分配律進(jìn)行運(yùn)算的方法是很熟悉,對(duì)于第(3)小題的逆向利用平方差公式的運(yùn)算則有一定的困難,因此,有必要引導(dǎo)學(xué)生復(fù)習(xí)七年級(jí)所學(xué)過的整式的乘法運(yùn)算中的平方差公式,幫助他們順利地逆向運(yùn)用平方差公式.
第二環(huán)節(jié)看誰想得快
活動(dòng)內(nèi)容:993–99能被哪些數(shù)整除?你是怎么得出來的?
學(xué)生思考:從以上問題的解決中,你知道解決這些問題的關(guān)鍵是什么?
活動(dòng)目的:引導(dǎo)學(xué)生把這個(gè)式子分解成幾個(gè)數(shù)的積的形式,繼續(xù)強(qiáng)化學(xué)生對(duì)因數(shù)分解的理解,為學(xué)生類比因式分解提供必要的精神準(zhǔn)備.
注意事項(xiàng):由于有了第一環(huán)節(jié)的鋪墊,學(xué)生對(duì)于本環(huán)節(jié)問題的理解則顯得比較輕松,學(xué)生能回答出993–99能被100、99、98整除,有的同學(xué)還回答出能被33、50、200等整除,此時(shí),教師應(yīng)有意識(shí)地引導(dǎo),使學(xué)生逐漸明白解決這些問題的關(guān)鍵是——把一個(gè)多項(xiàng)式化為積的形式.
第三環(huán)節(jié)看誰算得準(zhǔn)
活動(dòng)內(nèi)容:
計(jì)算下列式子:
(1)3x(x-1)=;
(2)m(a+b+c)=;
(3)(m+4)(m-4)=;
(4)(y-3)2=;
(5)a(a+1)(a-1)=.
根據(jù)上面的算式填空:
(1)ma+mb+mc=;
(2)3x2-3x=;
(3)m2-16=;
(4)a3-a=;
(5)y2-6y+9=.
活動(dòng)目的:在第一組的整式乘法的計(jì)算上,學(xué)生通過對(duì)第一組式子的觀察得出第二組式子的結(jié)果,然后通過對(duì)這兩組式子的結(jié)果的比較,使學(xué)生對(duì)因式分解有一個(gè)初步的意識(shí),由整式乘法的逆運(yùn)算逐步過渡到因式分解,發(fā)展學(xué)生的逆向思維能力.
注意事項(xiàng):由于整式的乘法運(yùn)算是學(xué)生在七年級(jí)已經(jīng)學(xué)習(xí)過的內(nèi)容,因此,學(xué)生能很快得出第一組式子的結(jié)果,并能很快發(fā)現(xiàn)第一組式子與第二組式子之間的聯(lián)系,從而得出第二組式子的結(jié)果.
第四環(huán)節(jié)學(xué)生討論
活動(dòng)內(nèi)容:
比較以下兩種運(yùn)算的聯(lián)系與區(qū)別:
(1)a(a+1)(a-1)=a3-a
(2)a3-a=a(a+1)(a-1)
在第三環(huán)節(jié)的運(yùn)算中還有其它類似的例子嗎?除此之外,你還能找到類似的例子嗎?
結(jié)論:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式,這種變形叫做把這個(gè)多項(xiàng)式因式分解.
辨一辨:下列變形是因式分解嗎?為什么?
(1)a+b=b+a(2)4x2y–8xy2+1=4xy(x–y)+1
(3)a(a–b)=a2–ab(4)a2–2ab+b2=(a–b)2
活動(dòng)目的:通過學(xué)生的討論,使學(xué)生更清楚以下事實(shí):
(1)分解因式與整式的乘法是一種互逆關(guān)系;
(2)分解因式的結(jié)果要以積的形式表示;
(3)每個(gè)因式必須是整式,且每個(gè)因式的次數(shù)都必須低于原來的多項(xiàng)式的次數(shù);
(4)必須分解到每個(gè)多項(xiàng)式不能再分解為止.
注意事項(xiàng):學(xué)生通過討論,能找出分解因式與整式的乘法的聯(lián)系與區(qū)別,基本清楚了“分解因式與整式的乘法是一種互逆關(guān)系”以及“分解因式的結(jié)果要以積的形式表示”這兩種事實(shí),后兩種事實(shí)是在老師的引導(dǎo)與啟發(fā)下才能完成.
第五環(huán)節(jié)反饋練習(xí)
活動(dòng)內(nèi)容:
1、看誰連得準(zhǔn)
x2-y2.(x+1)2
9-25x2y(x-y)
x2+2x+1(3-5x)(3+5x)
xy-y2(x+y)(x-y)
2、下列哪些變形是因式分解,為什么?
(1)(a+3)(a-3)=a2-9
(2)a2-4=(a+2)(a-2)
(3)a2-b2+1=(a+b)(a-b)+1
(4)2πr+2πr=2π(r+r)
活動(dòng)目的:通過學(xué)生的反饋練習(xí),使教師能全面了解學(xué)生對(duì)因式分解意義的理解是否到位,以便教師能及時(shí)地進(jìn)行查缺補(bǔ)漏.
注意事項(xiàng):從學(xué)生的反饋情況來看,學(xué)生對(duì)因式分解意義的理解基本到位.
第六環(huán)節(jié)學(xué)生反思
活動(dòng)內(nèi)容:從今天的課程中,你學(xué)到了哪些知識(shí)?掌握了哪些方法?明白了哪些道理?
活動(dòng)目的:通過學(xué)生的回顧與反思,強(qiáng)化學(xué)生對(duì)因式分解意義的理解,進(jìn)一步清楚地了解分解因式與整式的乘法的互逆關(guān)系,加深對(duì)類比的數(shù)學(xué)思想的理解,對(duì)矛盾對(duì)立統(tǒng)一的觀點(diǎn)有一個(gè)初步認(rèn)識(shí).
注意事項(xiàng):從學(xué)生的.反思來看,學(xué)生掌握了新的知識(shí),提高了逆向思維的能力,對(duì)于類比的數(shù)學(xué)思想有了一定的理解,對(duì)于矛盾對(duì)立統(tǒng)一的哲學(xué)觀點(diǎn)也有了一個(gè)初步認(rèn)識(shí).
鞏固練習(xí):課本第45頁習(xí)題2.1第1,2,3題
思考題:課本第45頁習(xí)題2.1第4題(給學(xué)有余力的同學(xué)做)
四、教學(xué)反思
傳統(tǒng)教學(xué)中,總是先介紹因式分解的定義,然后通過大量的模仿練習(xí)來強(qiáng)化鞏固學(xué)生對(duì)因式分解概念的記憶與理解,其本質(zhì)上是對(duì)因式分解的概念進(jìn)行強(qiáng)化記憶.
在新課程的教學(xué)中,對(duì)因式分解的記憶退到了次要的位置,它把因式分解作為培養(yǎng)學(xué)生逆向思維、全面思考、靈活解決矛盾的載體.在教師的指導(dǎo)下,學(xué)生通過因數(shù)分解類比出因式分解,對(duì)學(xué)生進(jìn)行類比的數(shù)學(xué)思想培養(yǎng),由整式的乘法與因式分解的對(duì)比,對(duì)學(xué)生的逆向思維能力進(jìn)行培養(yǎng),也使得學(xué)生對(duì)于因式分解概念的引入不至于茫然.
盡管新舊兩種教法的對(duì)比上,新課程的教學(xué)不一定馬上顯露出強(qiáng)勁的優(yōu)勢(shì),甚至可能因?yàn)閺?qiáng)化練習(xí)較少,在短時(shí)間內(nèi),學(xué)生的成績(jī)比不上傳統(tǒng)教法的學(xué)生成績(jī),但從長(zhǎng)遠(yuǎn)目標(biāo)看來,這種對(duì)數(shù)學(xué)本質(zhì)的訓(xùn)練會(huì)有效地提高學(xué)生的數(shù)學(xué)素養(yǎng),培養(yǎng)出學(xué)生對(duì)數(shù)學(xué)本質(zhì)的理解,而不僅僅是停留在對(duì)數(shù)學(xué)的機(jī)械模仿記憶的層面上.
總之,教學(xué)的著眼點(diǎn),不是熟練技能,而是發(fā)展思維,使學(xué)生在學(xué)習(xí)的情感態(tài)度與價(jià)值觀上發(fā)生深刻的變化.
力的合成與分解的教案篇二
在數(shù)學(xué)教學(xué)過程中,知識(shí)的傳授不應(yīng)只是教師單純地講解與學(xué)生簡(jiǎn)單的模仿,而應(yīng)通過教學(xué)活動(dòng),讓學(xué)生經(jīng)歷知識(shí)的形成與應(yīng)用過程,從而使學(xué)生更好的理解知識(shí)的意義,掌握必要的技能,發(fā)展應(yīng)用數(shù)學(xué)的意識(shí),增強(qiáng)學(xué)好數(shù)學(xué)的愿望與信心。根據(jù)新課程標(biāo)準(zhǔn)要求和學(xué)生的起點(diǎn)能力,本節(jié)課的具體目標(biāo)有兩個(gè),一個(gè)是會(huì)用完全平方公式分解因式,一個(gè)是會(huì)綜合運(yùn)用提取公因式法、公式法分解因式。
在新課引入的過程中,我以 “ 問題情境 —— 建立數(shù)學(xué)模型 —— 解釋、應(yīng)用與拓展 ” 的模式組織課堂教學(xué)。對(duì)新問題的引入,我是采取了由淺入深的方法,使學(xué)生對(duì)新知識(shí)不產(chǎn)生任何的畏懼感。接下來,通過例題的講解、練習(xí)的鞏固讓學(xué)生逐步掌握了運(yùn)用完全平方進(jìn)行因式分解。整堂課教下來我覺得自己做的比較好的'幾點(diǎn)是 :
1 、突顯特點(diǎn)。這節(jié)課的重點(diǎn)是運(yùn)用完全平方公式分解因式,而完全平方式的判定是關(guān)鍵。所以我比較重視完全平方式特點(diǎn)分析,應(yīng)用。尤其強(qiáng)調(diào)完全平方式標(biāo)準(zhǔn)模式的書寫,這也是學(xué)生思維過程的暴露,有利于中等及中等以下學(xué)生對(duì)新知識(shí)的掌握 , 提高學(xué)生解題的準(zhǔn)確率 , 對(duì)提高那些偏理科的數(shù)學(xué)尖子生的表達(dá)能力也有好處。對(duì)以后靈活掌握用配方法解一元二次方程,求代數(shù)式最值等知識(shí)有正向遷移作用。有利于學(xué)生思維能力的發(fā)展。
2 、自主訓(xùn)練。我以先引導(dǎo)學(xué)生分析多項(xiàng)式特點(diǎn),再讓學(xué)生嘗試分解因式的方式完成例題教學(xué)。對(duì)課本上的練習(xí)題放手讓學(xué)生自己完成,體現(xiàn)了以教師為主導(dǎo),以學(xué)生為主體,及時(shí)反饋,及時(shí)鞏固教學(xué)方式。
3 、及時(shí)歸納。根據(jù)初二學(xué)生認(rèn)知特點(diǎn),教學(xué)中我給予學(xué)生及時(shí)的多歸納,總結(jié),使學(xué)生掌握一定的條理性和規(guī)律性,有利于學(xué)生的創(chuàng)新和發(fā)展。如完全平方式特點(diǎn)形象概括(口訣記憶法,結(jié)構(gòu)的對(duì)稱美),因式分解步驟概括(一提二套三查),以及換元思想,配方法的提出。
4 、重視動(dòng)態(tài)生成。教學(xué)中我發(fā)現(xiàn)學(xué)生們思維很活躍,接受能力比較強(qiáng),我對(duì)例題教學(xué)作了及時(shí)調(diào)整,由師生合作完成改為先引導(dǎo)學(xué)生觀察、分析多項(xiàng)式特點(diǎn),再讓學(xué)生自主完成解題過程。
5 、根據(jù)學(xué)生的心理特點(diǎn)和實(shí)踐認(rèn)知水平,努力為他們創(chuàng)造成功的條件。在教學(xué)過程中采用類比、探索式教學(xué),輔以講練結(jié)合,師生互動(dòng),總而言之,努力營(yíng)造出平等、輕松、活潑的教學(xué)氛圍。從新課標(biāo)評(píng)價(jià)理念出發(fā),抓住學(xué)生語言、思想等方面的亮點(diǎn)給予幫助、鼓勵(lì)、提高學(xué)生學(xué)數(shù)學(xué),用數(shù)學(xué)的信心。
不足之處:
1 、探索用于因式分解的完全平方公式及特點(diǎn)分析時(shí),沒有把握好時(shí)間,這是導(dǎo)致后面時(shí)間不夠的原因之一。
2 、課堂預(yù)設(shè)沒有完成,根據(jù)學(xué)生特點(diǎn),我設(shè)計(jì)了這樣一個(gè)教學(xué)環(huán)節(jié):根據(jù)完全平方式特點(diǎn),請(qǐng)學(xué)生構(gòu)造一個(gè)完全平方式,并分解因式。當(dāng)學(xué)生基本完成后,組織學(xué)生同桌交流,交流方式為:請(qǐng)把你的構(gòu)思告訴同伴,先一個(gè)聽,一個(gè)評(píng)。然后調(diào)換角色。由于時(shí)間沒把握好,導(dǎo)致本環(huán)節(jié)沒有完成。
3 、語言不夠簡(jiǎn)練,說得太多,沒有注意糾正學(xué)生書寫錯(cuò)誤。學(xué)生作業(yè)過程中有兩處出錯(cuò),我沒發(fā)現(xiàn)。
4 、公式中的字母 a,b 可以表示數(shù) , 單項(xiàng)式 , 多項(xiàng)式的廣泛意義只是讓學(xué)生體驗(yàn),沒有讓學(xué)生開口表達(dá)。
以上是我上這節(jié)課的一些教學(xué)反思,在以后的教學(xué)中我會(huì)更多的結(jié)合學(xué)生的學(xué)習(xí)情況,多發(fā)現(xiàn)學(xué)生在學(xué)習(xí)方面的優(yōu)勢(shì)和不足,因材施教,更好的提高課堂效率。
力的合成與分解的教案篇三
通常采用分組分解法,最后運(yùn)用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。
注意:因式分解一定要分解到每一個(gè)因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個(gè)范圍內(nèi)因式分解,應(yīng)該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必須是幾個(gè)整式的積的形式。
力的合成與分解的教案篇四
素質(zhì)教育背景下的`數(shù)學(xué)課堂教學(xué)要以學(xué)生為主體,從學(xué)生的實(shí)際情況出發(fā),關(guān)注、關(guān)心學(xué)生的成長(zhǎng),創(chuàng)設(shè)良好的課堂學(xué)習(xí)氛圍,激發(fā)學(xué)生的學(xué)習(xí)興趣,教會(huì)學(xué)生學(xué)會(huì)學(xué)習(xí),學(xué)會(huì)思考,使學(xué)生成為學(xué)習(xí)的主人。學(xué)生是變化的,課堂教學(xué)也是變化無窮的,而我們老師在課堂上的角色如何充當(dāng),如何處理突發(fā)問題,下面以《因式分解》一節(jié)課的反思談?wù)劇耙詫W(xué)生為主”自己的一些感悟:
這是《因式分解》的第一節(jié)課,內(nèi)容為因式分解的概念和用提取公因式進(jìn)行分解因式,這一節(jié)課的教學(xué)目的是讓學(xué)生掌握因式分解的概念和學(xué)會(huì)用提公因式法進(jìn)行因式分解,在學(xué)生對(duì)因式分解概念有了初步的了解后,我例舉了5a+5b,5a—20b,5am+5bm,4am2+8bm,5am3—25bm2等進(jìn)行因式分解,一直例舉了5a(x+y)+5b(x+y),a(x—y)+b(x—y),到這里學(xué)生還勉強(qiáng)接受,再例舉下去,對(duì)于a(x—y)+b(y—x)與a(x—y)2—b(y—x)2等就模糊了,這連續(xù)的例舉讓學(xué)生們有點(diǎn)招架不住了。自己認(rèn)為這樣做感覺不錯(cuò),但課后我認(rèn)真總結(jié)與反思這一節(jié)課,覺得有以下不足:
落實(shí)得不夠。特別是在老師出題這一環(huán)節(jié)上,我想在學(xué)生自己自學(xué)理解了公因式后,應(yīng)讓學(xué)生自己探究,將全班分為若干個(gè)小組,在各個(gè)小組中要求學(xué)生自己編出能用提公因式法分解的題目,再根據(jù)學(xué)生所編的題目讓別的同學(xué)說出公因式,分解因式,然后各小組選出最有代表的一題參加小組競(jìng)賽活動(dòng),看看哪個(gè)小組出的題能難倒對(duì)方。我想這樣做既改變了教的方式,又能促進(jìn)學(xué)生學(xué)習(xí),變被動(dòng)學(xué)習(xí)為主動(dòng)學(xué)習(xí),不但增加學(xué)生學(xué)習(xí)的興趣,而且培養(yǎng)學(xué)生的競(jìng)爭(zhēng)能力,這樣學(xué)生學(xué)習(xí)才不會(huì)感到枯燥,學(xué)習(xí)才有味。
對(duì)我們農(nóng)村學(xué)校的學(xué)生,他們學(xué)習(xí)的積極性不高,基礎(chǔ)不是很好,在剛剛接觸因式分解這個(gè)概念后,學(xué)生還理解不夠,基礎(chǔ)也不夠扎實(shí),對(duì)于公因式是單項(xiàng)式的容易接受,但提出了多項(xiàng)式是公因式的分解,對(duì)于部分的學(xué)生來說是有點(diǎn)接受不了,所以這節(jié)課的效果不是很好。我想應(yīng)在課前根據(jù)班級(jí)、學(xué)生的實(shí)際情況進(jìn)行備課,從學(xué)生的學(xué)習(xí)接受知識(shí)和樂于學(xué)習(xí)的角度去備好每一節(jié)課。
我們總認(rèn)為每一節(jié)課都要按一定的.步驟和程序進(jìn)行,這樣才覺得完美,其實(shí)不然,關(guān)鍵是如何讓學(xué)生更好的學(xué)會(huì)每一個(gè)知識(shí)點(diǎn),老師講清每一個(gè)知識(shí)點(diǎn),而一節(jié)課的時(shí)間是有限的,我們?cè)俑鶕?jù)學(xué)生、課堂的實(shí)際情況去處理好問題與時(shí)間,這節(jié)課完成不了的內(nèi)容下節(jié)課再講,可以讓學(xué)生帶著問題走出教室,讓學(xué)生多思考、多動(dòng)手、多動(dòng)口,把學(xué)習(xí)的主動(dòng)權(quán)還給學(xué)生,這也充分體現(xiàn)出以學(xué)生為主的思想。
我們老師應(yīng)走出演講者、唱主角的角色,成為全體學(xué)生學(xué)習(xí)的組織者、激勵(lì)者、引導(dǎo)者、協(xié)調(diào)者和合作者。學(xué)生能自己做的事教師不要代勞,我們教師應(yīng)在學(xué)生的學(xué)習(xí)的過程中,在恰當(dāng)?shù)臅r(shí)候給予恰當(dāng)?shù)膸椭c引導(dǎo),讓學(xué)生在不斷的探索過程中獲得知識(shí),體驗(yàn)獲取知識(shí)的樂趣。
力的合成與分解的教案篇五
二、把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式,這種變形叫做把這個(gè)多項(xiàng)式分解因式.1、把幾個(gè)整式的積化成一個(gè)多項(xiàng)式的形式,是乘法運(yùn)算.2、把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式,是因式分解.3、ma+mb+mcm(a+b+c)4、因式分解與整式乘法是相反方向的變形.
三、把多項(xiàng)式的各項(xiàng)都含有的相同因式,叫做這個(gè)多項(xiàng)式的各項(xiàng)的公因式.提公因式法分解因式就是把一個(gè)多項(xiàng)式化成單項(xiàng)式與多項(xiàng)式相乘的形式.找公因式的一般步驟:(1)若各項(xiàng)系數(shù)是整系數(shù),取系數(shù)的公約數(shù);(2)取相同的字母,字母的指數(shù)取較低的;(3)取相同的多項(xiàng)式,多項(xiàng)式的指數(shù)取較低的.(4)所有這些因式的乘積即為公因式.
四、分解因式的一般步驟為:(1)若有-先提取-,若多項(xiàng)式各項(xiàng)有公因式,則再提取公因式.(2)若多項(xiàng)式各項(xiàng)沒有公因式,則根據(jù)多項(xiàng)式特點(diǎn),選用平方差公式或完全平方公式.(3)每一個(gè)多項(xiàng)式都要分解到不能再分解為止.
五、形如a2+2ab+b2或a2-2ab+b2的式子稱為完全平方式.分解因式的方法:1、提公因式法.2、運(yùn)用公式法.
初中數(shù)學(xué)三種“冪的運(yùn)算法則”異同點(diǎn)
1、共同點(diǎn):
(1)法則中的底數(shù)不變,只對(duì)指數(shù)做運(yùn)算。
(2)法則中的底數(shù)(不為零)和指數(shù)具有普遍性,即可以是數(shù),也可以是式(單項(xiàng)式或多項(xiàng)式)。
(3)對(duì)于含有3個(gè)或3個(gè)以上的運(yùn)算,法則仍然成立。
2、不同點(diǎn):
(1)同底數(shù)冪相乘是指數(shù)相加。
(2)冪的乘方是指數(shù)相乘。
(3)積的乘方是每個(gè)因式分別乘方,再將結(jié)果相乘。
圓和圓的位置關(guān)系
1、圓和圓的位置關(guān)系
如果兩個(gè)圓沒有公共點(diǎn),那么就說這兩個(gè)圓相離,相離分為外離和內(nèi)含兩種。
如果兩個(gè)圓只有一個(gè)公共點(diǎn),那么就說這兩個(gè)圓相切,相切分為外切和內(nèi)切兩種。
如果兩個(gè)圓有兩個(gè)公共點(diǎn),那么就說這兩個(gè)圓相交。
2、圓心距:兩圓圓心的距離叫做兩圓的圓心距。
3、圓和圓位置關(guān)系的性質(zhì)與判定
設(shè)兩圓的半徑分別為r和r,圓心距為d,那么:
兩圓外離dr+r;
兩圓外切d=r+r;
兩圓相交r-r;
兩圓內(nèi)切d=r-r(rr);
兩圓內(nèi)含dr)。
4、兩圓相切、相交的重要性質(zhì)
如果兩圓相切,那么切點(diǎn)一定在連心線上,它們是軸對(duì)稱圖形,對(duì)稱軸是兩圓的連心線;相交的兩個(gè)圓的連心線垂直平分兩圓的公共弦。