總結的選材不能求全貪多、主次不分,要根據實際情況和總結的目的,把那些既能顯示本單位、本地區特點,又有一定普遍性的材料作為重點選用,寫得詳細、具體。相信許多人會覺得總結很難寫?那么下面我就給大家講一講總結怎么寫才比較好,我們一起來看一看吧。
考研數學總結篇一
第一,對概率論與數理統計的考點要整體把握。考研中,概率論的重點考查對象在于隨機變量及其分布和隨機變量的數字特征。所以對于第一條中所講的古典概型與幾何概型這部分,只要掌握一些簡單的概率計算就可,把大量精力放在隨機變量的分布上。數理統計的考查重點在于與抽樣分布相關的統計量的分布及其數字特征。
第二,在學習概率論與數理統計的時候不要一頭扎入古典概型的概率計算中不可自拔。概率論的第一部分就是關于古典概型與幾何概型的計算問題,有很多問題是很復雜的,一旦陷入這一類問題的題海中,要么你的腦瓜會越來越聰明,要么打擊你的信心,對概率論失去興趣。一般同學都會處于后一種狀態。那么怎么辦呢?請轉閱第二條。
第三,在心理上重視。考研數學試題中有關概率論與數理統計的題目對大多數考生來說有一定難度,這就使得很多考完試的同學感慨萬千,概率題太難了!同時也為學弟學妹們傳達了概率題目難的信息。所以同學們在復習之前就已經有了先入為主的看法:概率比較難!但同學們沒有注意到,在自己復習之初做得準備都是關于高等數學(微積分)的,在概率上的時間本身就不足。而且如果你的潛意識中覺得一件事情難的話,那么那件事情對你來說就真的很難。人的潛力是非常巨大的,這也與“有多少想法,就有多大成就”的說法相合。如果你相信自己,那么概率復習起來是簡單的,考試中有關概率的題目也是容易的,數學滿分不是沒有可能的。那么,從現在開始,在心理上告訴自己:概率并不難!
考研高數重難點:中值定理證明的方法
中值定理包括費馬引理、羅爾定理、拉格朗日定理、格西中值定理、泰勒中值定理,這四個定理之間的聯和區別要弄清楚,羅爾定理是拉格朗日中值定理的特殊情況。除泰勒定理外的三個定理都要求已知函數在某個閉區間上連續,對應開區間內可導。柯西中值定理涉及到兩個函數,在分母上的那個函數的一階導在定義域上要求不為零,柯西中值定理還有一個重要應用——洛必達法則,在求極限時會經常用到。而且同學們需要掌握的不單單是這五個中值定理,而且關于他們本身的證明也是需要重點掌握的,尤其是費馬引理、羅爾定理、拉格朗日定理、格西定理的證明過程,這個過程在教科書上都有證明的過程,同學們需要自己把這個都完全能夠掌握,不僅僅是因為在的真題考查過這個的證明,而是這幾個的證明思想是之后類似題目證明反復使用的。而閉區間上的連續定理主要是指的最值定理、介值定理、零點存在定理。
一般來講閉區間上連續的定理是直接用的,也就是用來直接證明一些類似與存在一點在某個區間內使得某個函數是等于零的。而中值定理的應用一般是需要通過構造函數的,一般來講都是三步走,第一步去構造函數,合理的去構造函數是能夠做出這個證明題目最最關鍵的一步,而構造函數的方法一般是通過對要求的那個等式積分得到,同時也要注意兩遍同時乘以一個函數,比如同時乘以ex,因為這個函數積分是不變的,所以會有這個。構造完成后就是第二步去檢驗條件,看是用那個定理,一般來講,如果是求一階的導數等于0優先想到的就是羅爾定理,如果是讓你求高階的一個式子等于零或者等于某個式子,那么優先想到的就是泰勒公式了,因為上面的五個中值定理中,只有泰勒公式是會涉及到高階的,其他的幾個都是一階,如果知道的是一階,最多也是求解二階的。第三步就是求導驗證自己求出來的是否是要求證明的結果。
考研數學微積分要點:連續性概念及應用
首先,所謂連續即“極限值=函數值”,這一個等式包含了三個方面:
1、函數必須在該點處有定義;
2、函數必須在這個點附近存在極限;
3、是前面1、2兩點的內容必須相等,同時滿足這三個條件,才叫做函數在某點處連續。
看到,判斷函數連續,要先求極限,所以,如何求函數在該點處的極限值或是用極限存在的充要條件(左右極限存在且相等),是一個隱含的知識點。
其次,我們自然會問,會不會有不連續的點呢?答案當然是肯定的,不連續的點就是我們所說的---間斷點。那么所謂“不連續”就是不能同時滿足連續的三個條件的點,即:
1、函數在該點處沒有定義;
2、若函數在該點有定義,但函數在該點附近的極限不存在;3、雖然函數在該點處有定義,極限也存在,但是二者不相等。
對于間斷點,根據左右極限存在與否,我們把它分為兩類。若左右極限都存在的間斷點,稱為第一類間斷點;若左右極限相等,這個間斷點稱為第一類間斷點中的可去間斷點;若左右極限不相等,這個間斷點稱為第一類間斷點中的跳躍間斷點。若左右極限中至少有一個不存在(包含極限等于無窮的情形)的間斷點,稱為第二類間斷點;若其中一個極限是趨于無窮的,這個間斷點就稱為無窮間斷點;若極限是在兩個常數之間來回振蕩的,就稱為振蕩間斷點。
最后,對于連續性最重要的應用或者是說考研中的一個小難點,就是閉區間上連續函數的三個性質:最大最小值定理、零點定理、介值定理。
對于上面的知識點,我們看看在考研中是怎么考察的。對于連續的概念,難度上屬于簡單知識點。
首先,在十五年前,對于連續性的考查,更多的是給一個分段函數,然后判斷分段點處函數的連續性,這是一個基本題型,只需判斷連續的三個條件即可,其實主要是考查求函數某點處左右極限的值。
然后,進入20世紀,考查又傾向于在選擇題當中,給一個函數,讓大家來判斷這個函數有多少間斷點,間斷點的類型是什么,這個又比之前考查的更高一層。
最后,就是在邏輯推理題中,考查零點定理,介值定理,通常,考查介值定理的時候也會用到最值定理。
我們歸納題型知道,判斷方程根的情況的時候,一般用零點定理;題干中包含好幾個函數值相加的時候,一般用介值定理。具體在證明題中怎么用,我們會在專門的證明題專題中講解。
上面是對連續概念本身做出的分析。還有連續與極限存在,可導,可微的關系也是選擇題中考查的熱點,這個我們在后續一元函數導函數中詳細說明。最后希望本文對同學們的學習能起到幫助。
考研數學總結篇二
》對于考研數學的復習,我從個人的經驗來說不要背負太大的包袱。最好就是把學習知識作為一種興趣。興趣是最好的老師。1、學習而不是復習
對于大部分同學而言,由于高等數學學習的時間比較早,而且原來學習所針對的難度并不是很大,又加上遺忘,現在數學知識恐怕已經所剩無幾了。所以,考研的這一遍要強調學習,要拿出重新學習的勁頭親自動手去做,去思考。
2、復習順序的選擇
對于考研數學,建議先高等數學再線性代數再概率論與數理統計。高等數學是線性代數和概率論與數理統計的基礎,一定要先學習。我并不主張三門課齊頭并進,畢竟三門課有所區別,要學一門就先學精了再繼續推進,做成“夾生飯”會讓你有種騎虎難下的感覺,到時你反而會耗費更多的時間去收拾爛攤子。當然,大家也可根據自己的特殊情況調整復習順序。
3、加強練習掌握規律
數學考試的所有任務就是解題,而基本概念、公式、結論等也只有在反復練習中才能真正理解和鞏固。試題千變萬化,但其知識結構卻基本相同,題型也相對固定,一般存在相應的解題規律。通過大量的訓練可以切實提高數學的解題能力,做到面對任何試題都能有條不紊地分析和計算。
4、不要依賴答案
學習的過程中一定要力求全部理解和掌握知識點,做題的過程中先不要看答案,如果題目確實做不出來,可以先看答案,看明白之后再拋棄答案自己把題目獨立地做一遍。不要以為看明白了就會了,只有自己真正做一遍,印象才能深刻。
5、積極整理筆記
注意一定要在學習過程中寫出自己的感受,可以在書上以題注的形式或者就是做筆記,盡量深挖例題內涵,這一點很重要,并且要貫徹前三輪的.復習,如果最后一輪復習我們有了自己整理的筆記,就會很輕松。有同學說學習線性代數最好的辦法就是親自推導,這話很有道理,事實上如果我們學習什么知識都采取這種態度的話,那肯定都會學得非常好。
總之,還是那句話我希望大家帶著興趣去學習數學,如果實在提不起興趣,那就先找到自己熟練的知識點復習,等到積累一定的自信和興趣之后再逐一攻破,興趣是最好的老師,只要培養出了興趣自然而然就找到了學習數學的樂趣。希望大家都能帶著興趣去學習數學,成績也能有所提高。
kaoyan/考研數學總結篇三
作用:
1、體驗真實考試狀態,提前熟悉真實考試場景,尋找參加正式考試的感覺;
2、根據之后自己給分,發現知識水平差距,時間安排的合理性,明白學習重點和方向,有目的制定學習計劃,將有限地時間用在提高自己的短板和弱勢上。
第二模擬之后獨立思考答案原因
模擬之后,只看答案,不看解析,獨自思考錯誤的原因和正確答案的理由。這樣做的目的是為鍛煉自己發現錯誤的能力。
第三研究習題解析糾正思考方向
實在想不明白錯誤與正確原因的,就看解析說明,看明白則好,如果還是看不明白,一定記住正確答案,并努力學會從正確答案的方向去思考。王老師說,可能你不明白的原因很多,而很多人都容易出錯的一大原因是自己的固執心態,沒有任務原因的堅持自己的答案,所以順著正確答案的方向去思考,能夠很大程度地減少這種固執心態。
第四詳細分析考點并做有效總結
看完解析之后,總結每道試題的考點。在考點綜述后面,列舉了本節知識考點在歷年統考中出現過的試題,并有詳細的考點提示、試題分析和方法詳解。在做完一套真題之后再做這部分練習,對掌握重點考點和鞏固知識很有效。
第五發現出題規律舉一反三
請考生們注意,每道試題都有它的出題規律,數學真題也不例外,它一定是有幾個知識點,相互關聯,互相推導,或互相替換,最后得到另一個知識點的,只要你認真研究,就不難能發現這些真題的了出題規律,所謂世上無難事,只怕有心人。
考研數學總結篇四
考研數學強化階段,進一步加深對知識的鞏固理解以及一定的綜合運用能力,也可以檢驗同學們在基礎階段的學習效果。而到目前這個階段,無論是有復習基礎還是剛開始著手準備的同學,建議大家:圍繞考研命題形式,結合歷年真題,展開一輪重難點題型攻堅戰。通過這樣的備考,有復習基礎的同學,可以把前面的基礎知識更有邏輯的凝練起來,對于準備不久的同學,通過重點題型,直擊考點,更有目的性、針對性的去補習基礎知識。
如何利用好數學重難點精講課程,結合對應章節的歷年真題,快速有效的打好這一重難點題型攻堅戰,建議如下:
對考數學所有科目的知識點有一個清晰的把握,能分清重點難點,做到舉重若輕;對于任何一道考研真題,能夠辨別其考點題型,能有一個宏觀標準的解題思路,做到胸有成竹;對自己的考研復習情況,能夠找到相對薄弱的知識環節,重點突破,做到知己知彼。
清晰的學習規劃對備戰考研數學是很有效的,熟練掌握重難點題型的解題思路,從而形成標準的思路,進行系統性總結,才能克敵制勝,拿下20__考研數學。
考研數學解題速度和準確度如何提升
一、大量做題并不是關鍵
在考研復習期間,每個人都會做大量的數學題,但題目的數量并不是決定勝負的關鍵,關鍵在于做題的質量。所謂“質量”,是指你從一道題中學到了多少知識和解題方法,發現了多少自身存在的問題,體會到了多少命題的思路和考點。提醒考生,考研數學復習必須做題,但是不能把做題和基礎知識的復習對立起來。有人認為數學基本題太簡單,不愿意做,都去做更多更難的題目。但是,如果對理論知識領會不深,基本概念都沒搞清楚,恐怕基本題也做不好,又怎么談得上做更多更難的題目呢?缺乏基本功,盲目追求題目的深度、難度和做題數量,結果只能是深的不會做,淺的也難免錯誤百出。
二、解題思路“對癥下藥”
解題的過程也是加深對數學定理、公式和基本概念的理解和認識的過程。如果在這個過程中出現很多錯誤或沒有解題思路,也就說明你對教材的理解和認識上有很多欠缺、片面甚至錯誤的地方,或是在運用知識的能力方面還很不夠。這時就要抓住他,刨根問底,找出原因:是對定理理解錯了,還是沒有看清題意;是應用公式的能力不強,還是自己粗枝大葉,沒有仔細分析等等。找到原因,有針對性地加以改正,就能吃一塹長一智,不必埋怨自己“倒霉”,只要有針對性地加以改正即可。做題最重要的是講求質量,所以我們一定要精選精解。考研數學復習必須注意考點和題型,二者相輔相成,互相促進提高。如果學生做了某道題目后,便能處理同類的題目,能夠舉一反三,則這道題目就代表了一種題型,其解題方法就有一定的代表性,應該精練。當然,能否舉一反三與學生的基礎有關,但學生做一道題后,能否得到很多收獲和提高,卻是題目的代表性和典型性問題。
考研數學學習與復習心得交流
考研數學總結篇五
1.必須扎實基本概念和基本理論
對微積分中的基本概念重新過一遍。特別是在考綱中要求“理解”的概念更要重視。例如,函數(一元或多元)、極限、連續、導數(偏導數)、微積分(全微分)、各種積分;極值與最值、曲線的凹凸性與拐點;曲線的三支漸進線。曲率、曲率圓與曲率半徑、梯度、散度、旋讀;常數項級數的收斂與發散、任意項級數的絕對收斂與條件收斂。冪級數的收斂區間與收斂域。冪級數的和函數;微積方程的階、解、通解和特解等。
對于微積分中的一些定理,要記住定理的條件和結論,知道怎樣用這些定理解決有關問題。例如:在閉區間上連續函數的性質(有界性、最大值最小值定理、介值定理、零點定理)、微分中值定理(羅爾定理、拉格朗日中值定理、泰勒定理、柯西中值定理)、積分中值定理、隱函數存在定理等。
2.必須牢記數學公式
一定要反復熟悉微積分中的一些公式,做到牢記公式。例如兩個重要極限,一些等價的無窮小量,倒數基本公式,常用的簡單函數的高階導數公式、基本積分公式、牛頓-萊布尼茨公式、積分限函數求導公式、格林公式、高斯公式、斯托克斯公式、初等函數的麥克勞琳展開式、一階線性微分方程的求解公式、函數的傅里葉系數公式等。
3.適當做些中檔題,切忌死摳難題
在考卷中,中檔題(難度系數0.3~0.8之間)約占75~80%。中檔題主要考查基本概念、基本知識和基本運算。每天適當做些往年考研真題和模擬題中的中檔題。對于深入理解概念,牢記公式,掌握基本方法是有好處的。可以使你保持良好的備戰狀態,以便應考。在考前的幾天中花時間做難題是不劃算的。請考生注意。
考研數學通關的策略
戰術一:多次基本訓練,抓住考研重點
通過對歷年試題的統計分析可以得出常考的內容,考試的重點,通過對近幾年考題的分析可得出考試熱點,抓住重點、熱點可使復習針對性增強,加快復習進度并節省大量時間,提高考研競爭優勢,為考場取得高分打下堅實的基礎。
考研就是考“熟練”,只有把內容、方法搞熟練,才能獲得最后的成功。學數學只有做大量的高質量的練習題才能把基本功練熟、練透,才能提高應試和解題的能力,總之數學需多做題,不能眼高手低。做題時要完整、認真演算,過一段時間要翻出來再看幾遍。
戰術二:考研數學記憶與理解很重要,學會舉一反三
考研數學一般考察考生的基礎知識的掌握和運用解題的能力。數學的復習需要一步一步的積累知識、循序漸進的學習方法。數學的考題總是有嚴密的科學性,精確的答案,因而在打牢基礎的前提下,萬變不離其宗的靈活運用概念,一切難題都會迎刃而解。
基本概念是課程知識體系的支撐點,掌握了基本概念就等于抓住了綱。高數里的概念一般都很抽象,必須理解其數學意義。"萬變不離其宗",從概念入手,一旦了解了概念,把握住概念中的核心詞匯,理解概念中蘊藏的精髓所在,就如同把握了解題的命脈。在做題的時候就有堅實的基礎,容易對癥下藥。同時記憶是學習過程中一個非常重要的環節,是掌握知識的手段。從某種意義上說,沒有記憶就沒有學習,人在認識過程中就無積累,就沒有繼承。當然也不能死記硬背,正如歌德所說:“你所不理解的東西,是你無法占有的。”而很多考生認為數學會做題就可以了,不需要記憶,但是通過和考研數學得高分的同學交流可以知道,在準備數學的最終階段,還是需要記憶。只有先把基本的概念、解釋記住了,才能進行下一步的理解、運用。
數學科目是循序漸進的,基礎沒打好,積下的問題在未來的學習中就會像滾雪球一樣越滾越大,讓人不堪重負。而一道高數題涉及的內容回到課本上可能是跨越好幾個章節。所以學習數學時必須要學會舉一反三。通過做題發現哪幾個知識點比較容易連著一起出題。哪幾個知識點又比較孤立,假如出現在同一道題里,又是怎樣,并且嘗試自己給自己出題,或者同學之間相互出題。
戰術三:找準方法,持之以恒
還有的考生認為現在離考試還遠,沒有緊迫感。今天沒事干就看看書做兩個題,明天有些事情就把書放在一邊不理會了。這樣的結果是看了后面忘了前面,知識沒有連續性,形不成體系。考研的路程是漫長的,數學的學習是枯燥的,在復習過程中需要考生具有堅強的毅力。雖然2013的數學考試大綱未頒布,但萬變不離其宗,考研數學的基本內容一般變化不大,考生可以參照去年的大綱和試題進行復習。詳細了解本專業應考的數學卷種的基本要求,考試的題型、類別和難易度,以便更好的展開復習。凡是在大綱中表述為“會”、“理解”、“掌握”等的考試內容往往都是主要考點,務必要作為復習的重點。
數學復習不像英語、政治對輔導書的依賴性很大,主要靠課本來打下堅實的基礎。翻一下數學大綱,上面列出的知識點全部來源于課本。所以考生一定要老老實實參照大綱的要求把原來的課本找出來,按照大綱對數學基本概念、基本方法、基本定理準確把握。數學學習中最重要的莫過于堅實的基礎,包括對定理公式的深入理解,對基本運算的熟練和高正確率,對最基本的一些解題方法的掌握和運用。
戰術四:正確選擇資料
選擇資料:資料的使用關鍵要適合你的水平,這個要靠你自己在使用的過程中不斷的總結和評價你的資料,必要的時候要即使的更換資料。因為我們都知道這個道理,拔苗助長。一本難度很高的資料,無疑于能夠起到這種效果。如果出現這種情況,我認為那就得不償失了。考研大約可以分為三個級別:高手、中手、庸手。高手水平很高,在他們的眼里,一切資料都那么簡單。決個例子,那些能夠考到400多分的,你可以設想一下,還有什么考研資料不是好的,不是簡單,不是對他們來說有用。
市面上的資料五花八門,眼花繚亂,要想正確的選擇,就要先進行了解。一般來說,考研復習資料根據內容、用途和針對性的不同,可以分為以下幾大類:模擬試題、歷年真題、考試大綱、專業教材以及各種考研輔導書和內部資料。試題及大綱一般網上都有下載,專業課的教材有的學校指定復習參考書目,應按學校指定參考書目去復習。不過近年不少院校都取消了參考書目的公布,所以大家更加要積極的去尋找往年的參考資料,以及你想考的專業本科階段的教材去看。
制定任務:手頭有一定復習資料后,就應該踏實看書復習了。關于如何復習,每個人都有自己的方法,當然也有一些大家經過摸索共同認可的方法。但考研復習畢竟是一個龐大的系統工程,復習課程多,時間跨度長,因此,考研復習必須有一個整體的規劃,也就是說必須要制定一個適合自己的計劃。這個計劃是否合理,是否適合自己,往往在很大程度決定著你最后的結果。
最后,提醒同學們注意一定要在學習過程中寫出自己的感受,可以在書上以題注的形式或者就是做筆記,盡量深挖例題內涵,這一點很重要在考研這條路,助大家早日修得正果!