每個人都曾試圖在平淡的學習、工作和生活中寫一篇文章。寫作是培養人的觀察、聯想、想象、思維和記憶的重要手段。寫范文的時候需要注意什么呢?有哪些格式需要注意呢?以下是我為大家搜集的優質范文,僅供參考,一起來看看吧
高考數學核心考點精準秒殺解析篇一
(1)棱柱:
定義:有兩個面互相平行,其余各面都是四邊形,且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的幾何體。
分類:以底面多邊形的邊數作為分類的標準分為三棱柱、四棱柱、五棱柱等。
表示:用各頂點字母,如五棱柱或用對角線的端點字母,如五棱柱
幾何特征:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且相等;平行于底面的截面是與底面全等的多邊形。
(2)棱錐
定義:有一個面是多邊形,其余各面都是有一個公共頂點的三角形,由這些面所圍成的幾何體
分類:以底面多邊形的邊數作為分類的標準分為三棱錐、四棱錐、五棱錐等
表示:用各頂點字母,如五棱錐
幾何特征:側面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點到截面距離與高的比的平方。
(3)棱臺:
定義:用一個平行于棱錐底面的平面去截棱錐,截面和底面之間的部分
分類:以底面多邊形的邊數作為分類的標準分為三棱態、四棱臺、五棱臺等
表示:用各頂點字母,如五棱臺
幾何特征:①上下底面是相似的平行多邊形②側面是梯形③側棱交于原棱錐的頂點
(4)圓柱:
定義:以矩形的一邊所在的直線為軸旋轉,其余三邊旋轉所成的曲面所圍成的幾何體
幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側面展開圖是一個矩形。
(5)圓錐:
定義:以直角三角形的一條直角邊為旋轉軸,旋轉一周所成的曲面所圍成的幾何體
幾何特征:①底面是一個圓;②母線交于圓錐的頂點;③側面展開圖是一個扇形。
(6)圓臺:
定義:用一個平行于圓錐底面的平面去截圓錐,截面和底面之間的部分
幾何特征:①上下底面是兩個圓;②側面母線交于原圓錐的頂點;③側面展開圖是一個弓形。
(7)球體:
定義:以半圓的直徑所在直線為旋轉軸,半圓面旋轉一周形成的幾何體
幾何特征:①球的截面是圓;②球面上任意一點到球心的距離等于半徑。
高考數學核心考點精準秒殺解析篇二
1.對于函數f(x),如果對于定義域內任意一個x,都有f(-x)=-f(x),那么f(x)為奇函數;
2.對于函數f(x),如果對于定義域內任意一個x,都有f(-x)=f(x),那么f(x)為偶函數;
3.一般地,對于函數y=f(x),定義域內每一個自變量x,都有f(a+x)=2b-f(a-x),則y=f(x)的圖象關于點(a,b)成中心對稱;
4.一般地,對于函數y=f(x),定義域內每一個自變量x都有f(a+x)=f(a-x),則它的圖象關于x=a成軸對稱。
5.函數是奇函數或是偶函數稱為函數的奇偶性,函數的奇偶性是函數的整體性質;
6.由函數奇偶性定義可知,函數具有奇偶性的一個必要條件是,對于定義域內的任意一個x,則-x也一定是定義域內的一個自變量(即定義域關于原點對稱).
<
高考數學核心考點精準秒殺解析篇三
一個推導
利用錯位相減法推導等比數列的前n項和:
sn=a1+a1q+a1q2+…+a1qn-1,
同乘q得:qsn=a1q+a1q2+a1q3+…+a1qn,
兩式相減得(1-q)sn=a1-a1qn,∴sn=(q≠1).
兩個防范
(1)由an+1=qan,q≠0并不能立即斷言{an}為等比數列,還要驗證a1≠0.
(2)在運用等比數列的前n項和公式時,必須注意對q=1與q≠1分類討論,防止因忽略q=1這一特殊情形導致解題失誤.
三種方法
等比數列的判斷方法有:
(1)定義法:若an+1/an=q(q為非零常數)或an/an-1=q(q為非零常數且n≥2且n∈n_,則{an}是等比數列.
(2)中項公式法:在數列{an}中,an≠0且a=an·an+2(n∈n_,則數列{an}是等比數列.
(3)通項公式法:若數列通項公式可寫成an=c·qn(c,q均是不為0的常數,n∈n_,則{an}是等比數列.
注:前兩種方法也可用來證明一個數列為等比數列.
高考數學核心考點精準秒殺解析篇四
①正棱錐各側棱相等,各側面都是全等的等腰三角形,各等腰三角形底邊上的高相等(它叫做正棱錐的斜高).
②正棱錐的高、斜高和斜高在底面內的射影組成一個直角三角形,正棱錐的高、側棱、側棱在底面內的射影也組成一個直角三角形.
⑶特殊棱錐的頂點在底面的射影位置:
①棱錐的側棱長均相等,則頂點在底面上的射影為底面多邊形的外心.
②棱錐的側棱與底面所成的角均相等,則頂點在底面上的射影為底面多邊形的外心.
③棱錐的各側面與底面所成角均相等,則頂點在底面上的射影為底面多邊形內心.
④棱錐的頂點到底面各邊距離相等,則頂點在底面上的射影為底面多邊形內心.
⑤三棱錐有兩組對棱垂直,則頂點在底面的射影為三角形垂心.
⑥三棱錐的三條側棱兩兩垂直,則頂點在底面上的射影為三角形的垂心.
⑦每個四面體都有外接球,球心0是各條棱的中垂面的交點,此點到各頂點的距離等于球半徑;
⑧每個四面體都有內切球,球心
是四面體各個二面角的平分面的交點,到各面的距離等于半徑.
[注]:i.各個側面都是等腰三角形,且底面是正方形的棱錐是正四棱錐.(×)(各個側面的等腰三角形不知是否全等)
ii.若一個三角錐,兩條對角線互相垂直,則第三對角線必然垂直.
簡證:ab⊥cd,ac⊥bd
bc⊥ad.令得,已知則.
iii.空間四邊形oabc且四邊長相等,則順次連結各邊的中點的四邊形一定是矩形.
iv.若是四邊長與對角線分別相等,則順次連結各邊的中點的四邊是一定是正方形.
簡證:取ac中點,則平面90°易知efgh為平行四邊形
efgh為長方形.若對角線等,則為正方形.
高考數學核心考點精準秒殺解析篇五
(1)先看“充分條件和必要條件”
當命題“若p則q”為真時,可表示為p=>q,則我們稱p為q的充分條件,q是p的必要條件。這里由p=>q,得出p為q的充分條件是容易理解的。
但為什么說q是p的必要條件呢?
事實上,與“p=>q”等價的逆否命題是“非q=>非p”。它的意思是:若q不成立,則p一定不成立。這就是說,q對于p是必不可少的,因而是必要的。
(2)再看“充要條件”
若有p=>q,同時q=>p,則p既是q的充分條件,又是必要條件。簡稱為p是q的充要條件。記作p<=>q
回憶一下初中學過的“等價于”這一概念;如果從命題a成立可以推出命題b成立,反過來,從命題b成立也可以推出命題a成立,那么稱a等價于b,記作a<=>b。“充要條件”的含義,實際上與“等價于”的含義完全相同。也就是說,如果命題a等價于命題b,那么我們說命題a成立的充要條件是命題b成立;同時有命題b成立的充要條件是命題a成立。
(3)定義與充要條件
數學中,只有a是b的充要條件時,才用a去定義b,因此每個定義中都包含一個充要條件。如“兩組對邊分別平行的四邊形叫做平行四邊形”這一定義就是說,一個四邊形為平行四邊形的充要條件是它的兩組對邊分別平行。
顯然,一個定理如果有逆定理,那么定理、逆定理合在一起,可以用一個含有充要條件的語句來表示。
“充要條件”有時還可以改用“當且僅當”來表示,其中“當”表示“充分”。“僅當”表示“必要”。
(4)一般地,定義中的條件都是充要條件,判定定理中的條件都是充分條件,性質定理中的“結論”都可作為必要條件。