高一教案的制定需要教師具備一定的教學理論和實踐經驗。教學手段:教案中探討各種教學手段的應用,幫助教師提高教學的多樣性和創新性。
高一數學立體幾何教案(模板18篇)篇一
拿到試卷后可以先快速瀏覽一下所有題目,根據積累的考試經驗,大致估計一下每部分應該分配的時間。對于能夠很快做出來的.題目,一定要拿到應得的分數。
二、確定每部分的答題時間。
1、考試時占用了很多時間卻一點也沒有做出來的題目。對于這類題目,你以后考試時就應該盡量減少時間,或者放棄,等以后學習進階了再嘗試著做。
2、考試時花了過多的時間才做出來的題目。對于這類題目,你以后平時做題時要盡量加快速度,或者通過“反復訓練”等提高反應速度,這樣,你下次考試時能用較少的時間做出來。
三、碰到難題時。
1、你可以先用“直覺”最快的找到解題思路;。
2、如果“直覺”不管用,你可以聯想以前做過的類似的題目,從而找到解題思路;。
3、如果這樣也不行,你可以猜測一下這道題目可能涉及到的知識點和解題技巧。
4、對于花了一定時間仍然不能做出來的題目,要勇于放棄。
四、卷面整潔、字跡清楚、注意小節。
做到卷面整潔、字跡清楚,把標點、符號、解題步驟等小的地方盡量做好,不要丟掉應得的每一分。
高一數學立體幾何教案(模板18篇)篇二
“解三角形”既是高中數學的.基本內容,又有較強的應用性,在這次課程改革中,被保留下來,并獨立成為一章。這部分內容從知識體系上看,應屬于三角函數這一章,從研究方法上看,也可以歸屬于向量應用的一方面。從某種意義講,這部分內容是用代數方法解決幾何問題的典型內容之一。而本課“正弦定理”,作為單元的起始課,是在學生已有的三角函數及向量知識的基礎上,通過對三角形邊角關系作量化探究,發現并掌握正弦定理(重要的解三角形工具),通過這一部分內容的學習,讓學生從“實際問題”抽象成“數學問題”的建模過程中,體驗“觀察——猜想——證明——應用”這一思維方法,養成大膽猜想、善于思考的品質和勇于求真的精神。同時在解決問題的過程中,感受數學的力量,進一步培養學生對數學的學習興趣和“用數學”的意識。
二、學情分析。
我所任教的學校是我縣一所農村普通中學,大多數學生基礎薄弱,對“一些重要的數學思想和數學方法”的應用意識和技能還不高。但是,大多數學生對數學的興趣較高,比較喜歡數學,尤其是象本節課這樣與實際生活聯系比較緊密的內容,相信學生能夠積極配合,有比較不錯的表現。
1、知識和技能:在創設的問題情境中,引導學生發現正弦定理的內容,推證正弦定理及簡單運用正弦定理解決一些簡單的解三角形問題。
過程與方法:學生參與解題方案的探索,嘗試應用觀察——猜想——證明——應用”等思想方法,尋求最佳解決方案,從而引發學生對現實世界的一些數學模型進行思考。
情感、態度、價值觀:培養學生合情合理探索數學規律的數學思想方法,通過平面幾何、三角形函數、正弦定理、向量的數量積等知識間的聯系來體現事物之間的普遍聯系與辯證統一。同時,通過實際問題的探討、解決,讓學生體驗學習成就感,增強數學學習興趣和主動性,鍛煉探究精神。樹立“數學與我有關,數學是有用的,我要用數學,我能用數學”的理念。
2、教學重點、難點。
教學重點:正弦定理的發現與證明;正弦定理的簡單應用。
教學難點:正弦定理證明及應用。
四、教學方法與手段。
為了更好的達成上面的教學目標,促進學習方式的轉變,本節課我準備采用“問題教學法”,即由教師以問題為主線組織教學,利用多媒體和實物投影儀等教學手段來激發興趣、突出重點,突破難點,提高課堂效率,并引導學生采取自主探究與相互合作相結合的學習方式參與到問題解決的過程中去,從中體驗成功與失敗,從而逐步建立完善的認知結構。
為了很好地完成我所確定的教學目標,順利地解決重點,突破難點,同時本著貼近生活、貼近學生、貼近時代的原則,我設計了這樣的教學過程:
(一)創設情景,揭示課題。
問題2:在現在的高科技時代,要想知道某座山的高度,沒必要親自去量,只需水平飛行的飛機從山頂一過便可測出,你知道這是為什么嗎?還有,交通警察是怎樣測出正在公路上行駛的汽車的速度呢?要想解決這些問題,其實并不難,只要你學好本章內容即可掌握其原理。(板書課題《解三角形》)。
[設計說明]引用教材本章引言,制造知識與問題的沖突,激發學生學習本章知識的興趣。
(二)特殊入手,發現規律。
引導啟發學生發現特殊情形下的正弦定理。
(三)類比歸納,嚴格證明。
高一數學立體幾何教案(模板18篇)篇三
活動目標:
1.認識正方體,并能說出名稱及其特征。
2.仔細觀察、樂意探索。
活動準備:
1.每位幼兒事先收集一個正方體的盒子。
2.黑板,記錄表一張;吸管、剪刀、筆、a4紙;磁力棒若干,3個大筐、3張桌子。
3.長方體盒子一個。
活動過程:
一、鞏固正方形特點。
1.師:出示一張正方形的紙。提問:你們看這張是什么形狀的紙。
2.幼兒進行觀察,說說是什么形狀的紙。如:正方形的紙。
3.教師根據幼兒的回答,提問:你怎么知道它是正方形的紙呢?
4.幼兒說說。能用什么方法來證明它是正方形。如:看出來的,折一折、量一量等。
5.小結:四條邊一樣長的圖形是正方形。
二、探索正方形特點。
1.教師出示正方體的盒子,提問:它們一樣嗎?哪里一樣?哪里不一樣?
2.一樣的,都是正方形。
師:你怎么知道它是正方形呢?誰有方法證明盒子的這個面是正方形?如:把正方形的紙貼在盒子上,與其中的一個面進行比較驗證。
師:那另外的面呢,誰有辦法能驗證?
3.不一樣,盒子好像有幾個正方形。一個是立體圖形,一個是平面圖形。
4.剛才有小朋友說盒子上有幾個正方形?到底有幾個正方形呢,我們一起來數數?
5.集體交流。
a.你是用什么方法來數的?
b.教師事先準備若干正方體圖形貼在黑板上,根據幼兒的回答方法進行小結,并用圖示表示。如:按顏色、做記號、方位等。
6.教師小結:原來每個盒子都是由6個正方形組成。
7.那么盒子上的6個正方形大小一樣嗎?
9.教師講解要求:每位幼兒拿1個正方體選擇位置坐下,3張桌子上分別放一個筐,里面有5只筆、5根吸管、5張a4紙、5把剪刀、磁力棒若干。幼兒可以運用這些工具進行驗證,盒子上的正方形大小是否相同。比比哪個小朋友能干,能用各種方法進行驗證。
10.集體交流,說說驗證方法。
a.你們有結果了嗎》盒子上的6個正方形大小一樣嗎?
b.教師引導幼兒說說各自的結果。如:用重疊的方法、吸管、磁力棒平鋪等方法進行驗證。
11.出示記錄表,總結盒子的特征。
12.總結:原來由6個一樣大小的正方形組成的立體圖形是正方體。你們手里拿的盒子都是正方體。
三、活動延伸。
1.我這里還有一個盒子,它是正方體的嗎?
2.拿現在我們回教師用今天學過的新本領來驗證吧!
教學環節教學內容師生互動設計意圖。
新課講解。
基礎知識。
能力拓展。
探索研究一、構成幾何體的基本元素。
點、線、面。
二、從集合的角度解釋點、線、面、體之間的相互關系。
點是元素,直線是點的集合,平面是點的集合,直線是平面的子集。
三、從運動學的角度解釋點、線、面、體之間的相互關系。
1、點運動成直線和曲線。
2、直線有兩種運動方式:平行移動和繞點轉動。
3、平行移動形成平面和曲面。
4、繞點轉動形成平面和曲面。
5、注意直線的兩種運動方式形成的曲面的區別。
6、面運動成體。
四、點、線、面、之間的相互位置關系。
1、點和線的位置關系。
點a。
2、點和面的位置關系。
3、直線和直線的位置關系。
4、直線和平面的位置關系。
5、平面和平面的位置關系。通過對幾何體的觀察、討論由學生自己總結。
引領學生回憶元素、集合的相互關系,討論、歸納點、線、面之間的相互關系。
通過課件演示及學生的討論,得出從運動學的角度發現點、線、面之間的相互關系。
引導學生由生活中的實際例子總結出點、線、面之間的相互位置關系,讓學生有個感性認識。培養學生的觀察能力。
培養學生將所學知識建立相互聯系的能力。
讓學生在觀察中發現點、線、面之間的相互運動規律,為以后學習幾何體奠定基礎。
培養學生將學習聯系實際的習慣,鍛煉學生由感性認識上升為理性知識的能力。
課堂小結1、學習了構成幾何體的基本元素。
2、掌握了點、線、面之間的`相互關系。
3、了解了點、線、面之間的相互的位置關系。由學生總結歸納。培養學生總結、歸納、反思的學習習慣。
課后作業試著畫出點、線、面之間的幾種位置關系。學生課后研究完成。檢驗學生上課的聽課效果及觀察能力。
附:1.1.1構成空間幾何體的基本元素學案。
(一)、基礎知識。
7、你能說出構成幾何體的幾個基本元素之間的關系嗎?
(二)、能力拓展。
(三)、探索與研究。
1、構成幾何體的基本元素是_________,__________,____________.
活動目標:
1.感知立體圖形在空間的存在形式,正確點數立方體。
2.體驗數形關系,有一定的空間概念。
3.讓幼兒在活動中感受到成功的喜悅。
4.了解多與少的相對性。
5.喜歡數學活動,樂意參與各種操作游戲,培養思維的逆反性。
活動準備:
多媒體、30個立方體、若干積木、筆、調查表以及操作紙。
活動過程:
1.復習幾何形體。
教師出示正方體、長方體讓幼兒進行辨認,并能說出它們的特征。(告訴幼兒這些圖形有一個統一的名字叫“立方體”。)。
2.學習數立方體。
(1)看圖數立方體。
要求幼兒看清圖形,正確點數正方體。(小朋友之間進行校對;通過多媒體來進行校對。)。
(2)幼兒操作活動。
把幼兒分成三組,用立體圖形進行拼搭,要求幼兒說出“我用了幾個立體圖形拼搭了什么?”
(3)運用多媒體讓幼兒正確點數立方體,學會將隱藏部分給找出來。
通過此活動來提高小朋友學習的興趣。
3.延伸活動:數高樓。
運用調查表的形式讓幼兒對小區內的高層樓房進行層次的統計,從中了解到我們的樓房也是通過一個個的立體圖形而組成的。
2、過程與方法目標:通過讓學生探究點、線、面之間的相互關系,掌握文字語言、符號語言、圖示語言之間的相互轉化。
3、情感、態度與價值目標:通過用集合論的觀點和運動的觀點討論點、線、面、體之間的相互關系培養學生會從多角度,多方面觀察和分析問題,體會將理論知識和現實生活建立聯系的快樂,從而提高學生學習數學的興趣。
來源:網絡整理免責聲明:本文僅限學習分享,如產生版權問題,請聯系我們及時刪除。
content_2();。
高一數學立體幾何教案(模板18篇)篇四
《普通高中課程標準實驗教科書·數學(1)》(人教a版)第44頁。-----《實習作業》。本節課程體現數學文化的特色,學生通過了解函數的發展歷史進一步感受數學的魅力。學生在自己動手收集、整理資料信息的過程中,對函數的概念有更深刻的理解;感受新的學習方式帶給他們的學習數學的樂趣。
該內容在《普通高中課程標準實驗教科書·數學(1)》(人教a版)第44頁。學生第一次完成《實習作業》,積極性高,有熱情和新鮮感,但缺乏經驗,所以需要教師精心設計,做好準備工作,充分體現教師的“導演”角色。特別在分組時注意學生的合理搭配(成績的好壞、家庭有無電腦、男女生比例、口頭表達能力等),選題時,各組之間盡量不要重復,盡量多地選不同的題目,可以讓所有的學生在學習共享的過程中受到更多的數學文化的熏陶。
《標準》強調數學文化的重要作用,體現數學的文化的價值。數學教育不僅應該幫助學生學習和掌握數學知識和技能,還應該有助于學生了解數學的價值。讓學生逐步了解數學的思想方法、理性精神,體會數學家的創新精神,以及數學文明的深刻內涵。
2.體驗合作學習的方式,通過合作學習品嘗分享獲得知識的快樂;
3.在合作形式的小組學習活動中培養學生的領導意識、社會實踐技能和民主價值觀。
重點:了解函數在數學中的核心地位,以及在生活里的廣泛應用;
難點:培養學生合作交流的能力以及收集和處理信息的能力。
【課堂準備】。
1.分組:4~6人為一個實習小組,確定一人為組長。教師需要做好協調工作,確保每位學生都參加。
2.選題:根據個人興趣初步確定實習作業的題目。教師應該到各組中去了解選題情況,盡量多地選擇不同的題目。
3.分配任務:根據個人情況和優勢,經小組共同商議,由組長確定每人的具體任務。
4.搜集資料:針對所選題目,通過各種方式(相關書籍----《函數在你身邊》、《世界函數通史》、《世界著名科學家傳記》等;搜集素材,包括文字、圖片、數據以及音像資料等,并記錄相關資料,寫出實習報告。
6.把各組的實習報告,貼在班級的學習欄內,讓學生學習交流。
【教學過程】。
1.出示課題:交流、分享實習報告。
2.交流、分享:(由數學科代表主持。小組推薦中心發言人;以下記錄均為發言概述)。
(1)學生1:函數小史。
數學史表明,重要的數學概念的產生和發展,對數學發展起著不可估量的作用。有些重要的數學概念對數學分支的產生起著奠定性的作用。我們剛學過的函數就是這樣的重要概念。在笛卡爾引入變量以后,變量和函數等概念日益滲透到科學技術的各個領域。最早提出函數(function)概念的,是17世紀德國數學家萊布尼茨。最初萊布尼茨用“函數”一詞表示冪。1755年,瑞士數學家歐拉把給出了不同的函數定義。中文數學書上使用的“函數”一詞是轉譯詞。是我國清代數學家李善蘭在翻譯《代數學》(1895年)一書時,把“function”譯成“函數”的。我們可以預計到,關于函數的爭論、研究、發展、拓廣將不會完結,也正是這些影響著數學及其相鄰學科的發展。
(2)教師帶頭鼓掌并簡單評價。
(3)學生2:函數概念的縱向發展:
變革,形成了函數的現代定義形式。
(4)教師帶頭鼓掌并簡單評價。
(5)學生3:我國數學家李國平與函數。
學生3描述了數學家中國科學院數學物理學部委員.李國平(1910—1996),的身世和他的成長歷程。李國平1933年畢業于中山大學數學天文系。后歷任中國科學院數學計算技術研究所所長,中國科學院武漢數學物理研究所所長,中國數學會理事,中國科學院學部委員等職務。學生還通俗地講述了李國平先生在微分方程復變函數論領域的卓越貢獻。
(6)教師帶頭鼓掌并簡單評價。
(7)學生4:函數概念對數學發展的影響。
(8)教師帶頭鼓掌并簡單評價。
(9)學生5:函數概念的歷史演變過程。
上述函數概念的歷史演變過程,就是一系列弱抽象的過程.學生展示了下表:早期函數概念。
代數函數。
函數是這樣一個量,它是通過其它一些量的代數運算得到的。
近代函數概念。
映射函數。
18世紀函數概念。
解析函數。
函數是指由一個變量與一些常量通過任何方式形成的解析表達式。
19世紀函數概念。
變量函數。
對于給定區間上的每一個x值,y總有唯一確定的值與之對應,則稱y是x的函數.。
(10)教師帶頭鼓掌并簡單評價。
3.課堂小結:
4.實習作業的評定:
高一數學立體幾何教案(模板18篇)篇五
(6)在知識學習的基礎上,培養學生簡單推理的技能.。
重點是判斷復合命題真假的方法;難點是對“或”的含義的理解.。
1.新課導入。
初一平面幾何中曾學過命題,請同學們舉一個命題的例子.(板書:命題.)。
(從初中接觸過的“命題”入手,提出問題,進而學習邏輯的有關知識.)。
學生舉例:平行四邊形的對角線互相平.……(1)。
兩直線平行,同位角相等.…………(2)。
教師提問:“……相等的角是對頂角”是不是命題?……(3)。
(同學議論結果,答案是肯定的.)。
教師提問:什么是命題?
(學生進行回憶、思考.)。
概念總結:對一件事情作出了判斷的語句叫做命題.。
(教師肯定了同學的回答,并作板書.)。
(教師利用投影片,和學生討論以下問題.)。
例1判斷以下各語句是不是命題,若是,判斷其真假:
2.講授新課。
(片刻后請同學舉手回答,一共講了四個問題.師生一道歸納如下.)。
(1)什么叫做命題?
可以判斷真假的語句叫做命題.。
(2)介紹邏輯聯結詞“或”、“且”、“非”.。
命題可分為簡單命題和復合命題.。
(4)命題的表示:用p,q,r,s,……來表示.。
(教師根據學生回答的情況作補充和強調,特別是對復合命題的概念作出分析和展開.)。
對于給出“若p則q”形式的復合命題,應能找到條件p和結論q.。
3.鞏固新課。
(1)5;
(2)0.5非整數;
(3)內錯角相等,兩直線平行;
(4)菱形的對角線互相垂直且平分;
(5)平行線不相交;
(6)若ab=0,則a=0.。
(讓學生有充分的時間進行辨析.教材中對“若…則…”不作要求,教師可以根據學生的情況作些補充.)。
高一數學立體幾何教案(模板18篇)篇六
2、實際問題中的有關術語、名稱:
(1)仰角與俯角:均是指視線與水平線所成的角;
(2)方位角:是指從正北方向順時針轉到目標方向線的夾角;
(3)方向角:常見的`如:正東方向、東南方向、北偏東、南偏西等;
3、用正弦余弦定理解實際問題的常見題型有:
測量距離、測量高度、測量角度、計算面積、航海問題、物理問題等;
2、實際問題中的有關術語、名稱:
(1)仰角與俯角:均是指視線與水平線所成的角;
(2)方位角:是指從正北方向順時針轉到目標方向線的夾角;
(3)方向角:常見的如:正東方向、東南方向、北偏東、南偏西等;
3、用正弦余弦定理解實際問題的常見題型有:
測量距離、測量高度、測量角度、計算面積、航海問題、物理問題等;
一、知識歸納
2、實際問題中的有關術語、名稱:
(1)仰角與俯角:均是指視線與水平線所成的角;
(2)方位角:是指從正北方向順時針轉到目標方向線的夾角;
(3)方向角:常見的如:正東方向、東南方向、北偏東、南偏西等;
3、用正弦余弦定理解實際問題的常見題型有:
測量距離、測量高度、測量角度、計算面積、航海問題、物理問題等;
二、例題討論
一)利用方向角構造三角形
四)測量角度問題
例4、在一個特定時段內,以點e為中心的7海里以內海域被設為警戒水域.點e正北55海里處有一個雷達觀測站a.某時刻測得一艘勻速直線行駛的船只位于點a北偏東。
高一數學立體幾何教案(模板18篇)篇七
本節的重點是二次根式的化簡.本章自始至終圍繞著二次根式的化簡與計算進行,而二次根式的化簡不但涉及到前面學習過的算術平方根、二次根式等概念與二次根式的運算性質,還要牽涉到絕對值以及各種非負數、因式分解等知識,在應用中常常需要對字母進行分類討論.
本節的難點是正確理解與應用公式.這個公式的表達形式對學生來說,比較生疏,而實際運用時,則要牽涉到對字母取值范圍的討論,學生往往容易出現錯誤.
教法建議
1.性質的引入方法很多,以下2種比較常用:
(1)設計問題引導啟發:由設計的問題
1)、、各等于什么?
2)、、各等于什么?
啟發、引導學生猜想出
(2)從算術平方根的意義引入.
2.性質的鞏固有兩個方面需要注意:
(1)注意與性質進行對比,可出幾道類型不同的題進行比較;
(2)學生初次接觸這種形式的表示方式,在教學時要注意細分層次加以鞏固,如單個數字,單個字母,單項式,可進行因式分解的多項式,等等.
(第1課時)
1.掌握二次根式的性質
2.能夠利用二次根式的性質化簡二次根式
3.通過本節的學習滲透分類討論的數學思想和方法
對比、歸納、總結
1.重點:理解并掌握二次根式的性質
2.難點:理解式子中的可以取任意實數,并能根據字母的取值范圍正確地化簡有關的二次根式.
1課時
五、教b具學具準備
投影儀、膠片、多媒體
復習對比,歸納整理,應用提高,以學生活動為主
一、導入新課
我們知道,式子()表示非負數的算術平方根.
問:式子的意義是什么?被開方數中的表示的是什么數?
答:式子表示非負數的算術平方根,即,且,從而可以取任意實數.
二、新課
計算下列各題,并回答以下問題:
(1);(2);(3);
1.各小題中被開方數的冪的底數都是什么數?
2.各小題的結果和相應的被開方數的冪的底數有什么關系?
3.用字母表示被開方數的冪的底數,將有怎樣的結論?并用語言敘述你的結論.
高一數學立體幾何教案(模板18篇)篇八
教學目標:
(1)知識與技能:了解集合的含義,理解并掌握元素與集合的“屬于”關系、集合中元素的三個特性,識記數學中一些常用的的數集及其記法,能選擇自然語言、列舉法和描述法表示集合。
(2)過程與方法:從圓、線段的垂直平分線的定義引出“集合”一詞,通過探討一系列的例子形成集合的概念,舉例剖析集合中元素的三個特性,探討元素與集合的關系,比較用自然語言、列舉法和描述法表示集合。
(3)情感態度與價值觀:感受集合語言的意義和作用,培養合作交流、勤于思考、積極探討的精神,發展用嚴密謹慎的集合語言描述問題的習慣。
教學重難點:
(1)重點:了解集合的含義與表示、集合中元素的特性。
(2)難點:區別集合與元素的概念及其相應的符號,理解集合與元素的關系,表示具體的集合時,如何從列舉法與描述法中做出選擇。
教學過程:
[設計意圖]引出“集合”一詞。
【問題2】同學們知道什么是集合嗎?請大家思考討論課本第2頁的思考題。
[設計意圖]探討并形成集合的含義。
【問題3】請同學們舉出認為是集合的例子。
[設計意圖]點評學生舉出的例子,剖析并強調集合中元素的三大特性:確定性、互異性、無序性。
[設計意圖]區別表示集合與元素的的符號,介紹集合中一些常用的的數集及其記法。理解集合與元素的關系。
[設計意圖]引出并介紹列舉法。
【問題6】例1的講解。同學們能用列舉法表示不等式x—73的解集嗎?
【問題7】例2的講解。請同學們思考課本第6頁的思考題。
[設計意圖]幫助學生在表示具體的集合時,如何從列舉法與描述法中做出選擇。
【問題8】請同學們總結這節課我們主要學習了那些內容?有什么學習體會?
[設計意圖]學習小結。對本節課所學知識進行回顧。
布置作業。
高一數學立體幾何教案(模板18篇)篇九
(2)理解任意角的三角函數不同的定義方法;。
(4)掌握并能初步運用公式一;。
(5)樹立映射觀點,正確理解三角函數是以實數為自變量的函數.
初中學過:銳角三角函數就是以銳角為自變量,以比值為函數值的函數.引導學生把這個定義推廣到任意角,通過單位圓和角的終邊,探討任意角的三角函數值的求法,最終得到任意角三角函數的定義.根據角終邊所在位置不同,分別探討各三角函數的定義域以及這三種函數的值在各象限的符號.最后主要是借助有向線段進一步認識三角函數.講解例題,總結方法,鞏固練習.
任意角的三角函數可以有不同的定義方法,而且各種定義都有自己的特點.過去習慣于用角的終邊上點的坐標的“比值”來定義,這種定義方法能夠表現出從銳角三角函數到任意角的三角函數的推廣,有利于引導學生從自己已有認知基礎出發學習三角函數,但它對準確把握三角函數的本質有一定的不利影響,“從角的集合到比值的集合”的對應關系與學生熟悉的一般函數概念中的“數集到數集”的對應關系有沖突,而且“比值”需要通過運算才能得到,這與函數值是一個確定的實數也有不同,這些都會影響學生對三角函數概念的理解.
本節利用單位圓上點的`坐標定義任意角的正弦函數、余弦函數.這個定義清楚地表明了正弦、余弦函數中從自變量到函數值之間的對應關系,也表明了這兩個函數之間的關系.
教學重難點。
重點:任意角的正弦、余弦、正切的定義(包括這三種三角函數的定義域和函數值在各象限的符號);終邊相同的角的同一三角函數值相等(公式一).
難點:任意角的正弦、余弦、正切的定義(包括這三種三角函數的定義域和函數值在各象限的符號);三角函數線的正確理解.
高一數學立體幾何教案(模板18篇)篇十
教學目標:理解集合的概念;掌握集合的三種表示方法,理解集合中元素的三性及元素與集合的關系;掌握有關符號及術語。
教學過程:
一、閱讀下列語句:
1)全體自然數0,1,2,3,4,5,
2)代數式.
3)拋物線上所有的點。
4)今年本校高一(1)(或(2))班的全體學生。
5)本校實驗室的所有天平。
6)本班級全體高個子同學。
7)著名的科學家。
上述每組語句所描述的對象是否是確定的?
二、1)集合:
2)集合的元素:
3)集合按元素的個數分,可分為1)__________2)_________。
三、集合中元素的'三個性質:
四、元素與集合的關系:1)____________2)____________。
五、特殊數集專用記號:
4)有理數集______5)實數集_____6)空集____。
六、集合的表示方法:
1)。
2)。
3)。
七、例題講解:
例1、中三個元素可構成某一個三角形的三邊長,那么此三角形一定不是()。
a,直角三角形b,銳角三角形c,鈍角三角形d,等腰三角形。
例2、用適當的方法表示下列集合,然后說出它們是有限集還是無限集?
1)地球上的四大洋構成的集合;。
2)函數的全體值的集合;。
3)函數的全體自變量的集合;。
4)方程組解的集合;。
5)方程解的集合;。
6)不等式的解的集合;。
7)所有大于0且小于10的奇數組成的集合;。
8)所有正偶數組成的集合;。
例3、用符號或填空:
1)______q,0_____n,_____z,0_____。
2)______,_____。
3)3_____,
4)設,,則。
例4、用列舉法表示下列集合;。
1.
2.
3.
4.
例5、用描述法表示下列集合。
1.所有被3整除的數。
2.圖中陰影部分點(含邊界)的坐標的集合。
課堂練習:。
例7、已知:,若中元素至多只有一個,求的取值范圍。
思考題:數集a滿足:若,則,證明1):若2,則集合中還有另外兩個元素;2)若則集合a不可能是單元素集合。
小結:
作業班級姓名學號。
1.下列集合中,表示同一個集合的是()。
a.m=,n=b.m=,n=。
c.m=,n=d.m=,n=。
2.m=,x=,y=,,.則()。
a.b.c.d.
3.方程組的解集是____________________.
4.在(1)難解的題目,(2)方程在實數集內的解,(3)直角坐標平面內第四象限的一些點,(4)很多多項式。能夠組成集合的序號是________________.
5.設集合a=,b=,
c=,d=,e=。
其中有限集的個數是____________.
6.設,則集合中所有元素的和為。
7.設x,y,z都是非零實數,則用列舉法將所有可能的值組成的集合表示為。
8.已知f(x)=x2-ax+b,(a,br),a=,b=,。
若a=,試用列舉法表示集合b=。
9.把下列集合用另一種方法表示出來:
(1)(2)。
(3)(4)。
10.設a,b為整數,把形如a+b的一切數構成的集合記為m,設,試判斷x+y,x-y,xy是否屬于m,說明理由。
11.已知集合a=。
(1)若a中只有一個元素,求a的值,并求出這個元素;。
(2)若a中至多只有一個元素,求a的取值集合。
12.若-3,求實數a的值。
【總結】20xx年已經到來,新的一年數學網會為您整理更多更好的文章,希望本文:集合含義及其表示能給您帶來幫助!
高一數學立體幾何教案(模板18篇)篇十一
1.知識與技能:掌握畫三視圖的基本技能,豐富學生的空間想象力。
2.過程與方法:通過學生自己的親身實踐,動手作圖,體會三視圖的作用。
3.情感態度與價值觀:提高學生空間想象力,體會三視圖的作用。
二、教學重點:畫出簡單幾何體、簡單組合體的三視圖;
難點:識別三視圖所表示的空間幾何體。
三、學法指導:觀察、動手實踐、討論、類比。
四、教學過程。
(一)創設情景,揭開課題。
展示廬山的風景圖——“橫看成嶺側看成峰,遠近高低各不同”,這說明從不同的角度看同一物體視覺的效果可能不同,要比較真實反映出物體,我們可從多角度觀看物體。
(二)講授新課。
1、中心投影與平行投影:
中心投影:光由一點向外散射形成的投影;
平行投影:在一束平行光線照射下形成的投影。
正投影:在平行投影中,投影線正對著投影面。
2、三視圖:
正視圖:光線從幾何體的前面向后面正投影,得到的投影圖;
側視圖:光線從幾何體的左面向右面正投影,得到的投影圖;
俯視圖:光線從幾何體的上面向下面正投影,得到的投影圖。
三視圖:幾何體的正視圖、側視圖和俯視圖統稱為幾何體的三視圖。
三視圖的畫法規則:長對正,高平齊,寬相等。
長對正:正視圖與俯視圖的長相等,且相互對正;
高平齊:正視圖與側視圖的高度相等,且相互對齊;
寬相等:俯視圖與側視圖的寬度相等。
3、畫長方體的三視圖:
正視圖、側視圖和俯視圖分別是從幾何體的正前方、正左方和正上方觀察到有幾何體的正投影圖,它們都是平面圖形。
長方體的三視圖都是長方形,正視圖和側視圖、側視圖和俯視圖、俯視圖和正視圖都各有一條邊長相等。
4、畫圓柱、圓錐的三視圖:
5、探究:畫出底面是正方形,側面是全等的三角形的棱錐的三視圖。
(三)鞏固練習。
課本p15練習1、2;p20習題1.2[a組]2。
(四)歸納整理。
請學生回顧發表如何作好空間幾何體的三視圖。
(五)布置作業。
課本p20習題1.2[a組]1。
高一數學立體幾何教案(模板18篇)篇十二
把實物圓柱放在講臺上讓學生畫。
2.學生畫完后展示自己的結果并與同學交流,比較誰畫的效果更好,思考怎樣才能畫好物體的直觀圖呢?這是我們這節主要學習的內容。
(二)研探新知。
1.例1,用斜二測畫法畫水平放置的正六邊形的直觀圖,由學生閱讀理解,并思考斜二測畫法的關鍵步驟,學生發表自己的見解,教師及時給予點評。
畫水平放置的多邊形的直觀圖的關鍵是確定多邊形頂點的位置,因為多邊形頂點的位置一旦確定,依次連結這些頂點就可畫出多邊形來,因此平面多邊形水平放置時,直觀圖的畫法可以歸結為確定點的位置的畫法。強調斜二測畫法的步驟。
練習反饋。
根據斜二測畫法,畫出水平放置的正五邊形的直觀圖,讓學生獨立完成后,教師檢查。
2.例2,用斜二測畫法畫水平放置的圓的直觀圖。
教師引導學生與例1進行比較,與畫水平放置的多邊形的直觀圖一樣,畫水平放置的圓的直觀圖,也是要先畫出一些有代表性的點,由于不能像多邊那樣直接以頂點為代表點,因此需要自己構造出一些點。
教師組織學生思考、討論和交流,如何構造出需要的一些點,與學生共同完成例2并詳細板書畫法。
3.探求空間幾何體的直觀圖的畫法。
(1)例3,用斜二測畫法畫長、寬、高分別是4cm、3cm、2cm的長方體abcd-a’b’c’d’的直觀圖。
教師引導學生完成,要注意對每一步驟提出嚴格要求,讓學生按部就班地畫好每一步,不能敷衍了事。
(2)投影出示幾何體的三視圖。
請說出三視圖表示的幾何體?并用斜二測畫法畫出它的直觀圖。教師組織學生思考,討論和交流完成,教師巡視幫不懂的同學解疑,引導學生正確把握圖形尺寸大小之間的關系。
4.平行投影與中心投影。
投影出示課本p23圖,讓學生觀察比較概括在平行投影下畫空間圖形與在中心投影下畫空間圖形的各自特點。
5.鞏固練習,課本p25練習1,2,3。
三、歸納整理。
學生回顧斜二測畫法的關鍵與步驟。
四、作業。
1.書畫作業,課本p25習題1—3a組和b組。
高一數學立體幾何教案(模板18篇)篇十三
(5)樹立映射觀點,正確理解三角函數是以實數為自變量的函數。
初中學過:銳角三角函數就是以銳角為自變量,以比值為函數值的函數。引導學生把這個定義推廣到任意角,通過單位圓和角的終邊,探討任意角的三角函數值的求法,最終得到任意角三角函數的定義。根據角終邊所在位置不同,分別探討各三角函數的定義域以及這三種函數的值在各象限的符號。最后主要是借助有向線段進一步認識三角函數。講解例題,總結方法,鞏固練習。
任意角的三角函數可以有不同的定義方法,而且各種定義都有自己的特點。過去習慣于用角的終邊上點的坐標的“比值”來定義,這種定義方法能夠表現出從銳角三角函數到任意角的三角函數的推廣,有利于引導學生從自己已有認知基礎出發學習三角函數,但它對準確把握三角函數的本質有一定的不利影響,“從角的集合到比值的集合”的對應關系與學生熟悉的一般函數概念中的“數集到數集”的對應關系有沖突,而且“比值”需要通過運算才能得到,這與函數值是一個確定的實數也有不同,這些都會影響學生對三角函數概念的理解。
本節利用單位圓上點的坐標定義任意角的正弦函數、余弦函數。這個定義清楚地表明了正弦、余弦函數中從自變量到函數值之間的對應關系,也表明了這兩個函數之間的關系。
教學重難點。
重點:任意角的正弦、余弦、正切的定義(包括這三種三角函數的定義域和函數值在各象限的符號);終邊相同的角的同一三角函數值相等(公式一).
難點:任意角的正弦、余弦、正切的定義(包括這三種三角函數的定義域和函數值在各象限的符號);三角函數線的正確理解。
高一數學立體幾何教案(模板18篇)篇十四
使學生在九年義務教育數學課程的基礎上,進一步提高作為未來公民所必要的數學素養,以滿足個人發展與社會進步的需要。具體目標如下。
1.獲得必要的數學基礎知識和基本技能,理解基本的數學概念、數學結論的本質,了解概念、結論等產生的背景、應用,體會其中所蘊涵的數學思想和方法,以及它們在后續學習中的作用。通過不同形式的自主學習、探究活動,體驗數學發現和創造的歷程。
2.提高空間想像、抽象概括、推理論證、運算求解、數據處理等基本能力。
3.提高數學地提出、分析和解決問題(包括簡單的實際問題)的能力,數學表達和交流的能力,發展獨立獲取數學知識的能力。
4.發展數學應用意識和創新意識,力求對現實世界中蘊涵的一些數學模式進行思考和作出判斷。
5.提高學習數學的興趣,樹立學好數學的信心,形成鍥而不舍的鉆研精神和科學態度。 6.具有一定的數學視野,逐步認識數學的科學價值、應用價值和文化價值,形成批判性的思維習慣,崇尚數學的理性精神,體會數學的美學意義,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀。
我們所使用的教材是人教版《普通高中課程標準實驗教科書數學(a版)》,它在堅持我國數學教育優良傳統的前提下,認真處理繼承,借簽,發展,創新之間的關系,體現基礎性,時代性,典型性和可接受性等到,具有如下特點:
1.親和力:以生動活潑的呈現方式,激發興趣和美感,引發學習激情。
2.問題性:以恰時恰點的問題引導數學活動,培養問題意識,孕育創新精神。
3.科學性與思想性:通過不同數學內容的聯系與啟發,強調類比,推廣,特殊化,化歸等思想方法的運用,學習數學地思考問題的方式,提高數學思維能力,培育理性精神。
4.時代性與應用性:以具有時代性和現實感的素材創設情境,加強數學活動,發展應用意識。
1. 選取與內容密切相關的,典型的,豐富的和學生熟悉的素材,用生動活潑的語言,創設能夠體現數學的概念和結論,數學的思想和方法,以及數學應用的學習情境,使學生產生對數學的親切感,引發學生看個究竟的沖動,以達到培養其興趣的目的。
2. 通過觀察,思考,探究等欄目,引發學生的思考和探索活動,切實改進學生的學習方式。
3. 在教學中強調類比,推廣,特殊化,化歸等數學思想方法,盡可能養成其邏輯思維的習慣。
兩個班一個普高一個職高,學習情況良好,但學生自覺性差,自我控制能力弱,因此在教學中需時時提醒學生,培養其自覺性。班級存在的最大問題是計算能力太差,學生不喜歡去算題,嫌麻煩,只注重思路,因此在以后的教學中,重點在于培養學生的計算能力,同時要進一步提高其思維能力。同時,由于初中課改的原因,高中教材與初中教材銜接力度不夠,需在新授時適機補充一些內容。因此時間上可能仍然吃緊。同時,其底子薄弱,因此在教學時只能注重基礎再基礎,爭取每一堂課落實一個知識點,掌握一個知識點。
1、激發學生的學習興趣。由數學活動、故事、吸引人的課、合理的要求、師生談話等途徑樹立學生的學習信心,提高學習興趣,在主觀作用下上升和進步。
2、注意從實例出發,從感性提高到理性;注意運用對比的方法,反復比較相近的概念;注意結合直觀圖形,說明抽象的知識;注意從已有的`知識出發,啟發學生思考。
3、加強培養學生的邏輯思維能力就解決實際問題的能力,以及培養提高學生的自學能力,養成善于分析問題的習慣,進行辨證唯物主義教育。
4、抓住公式的推導和內在聯系;加強復習檢查工作;抓住典型例題的分析,講清解題的關鍵和基本方法,注重提高學生分析問題的能力。
5、自始至終貫徹教學四環節,針對不同的教材內容選擇不同教法。
6、重視數學應用意識及應用能力的培養。
俗話說的好,好的教學計劃是教學成功的一半,作為一名優異的教師,做好一定的教學計劃很有必要。
總結:制定教學計劃的主要目的是為了全面了解學生的數學學習歷程,激勵學生的學習和改進教師的教學。希望上面的,能受到大家的歡迎!
高一數學立體幾何教案(模板18篇)篇十五
對數函數(第二課時)是20__人教版高一數學(上冊)第二章第八節第二課時的內容,本小節涉及對數函數相關知識,分三個課時,這里是第二課時復習鞏固對數函數圖像及性質,并用此解決三類對數比大小問題,是對已學內容(指數函數、指數比大小、對數函數)的延續和發展,同時也體現了數學的實用性,為后續學習起到奠定知識基礎、滲透方法的作用,因此本節內容起到了一種承上啟下的作用。
二、教學目標。
根據教學大綱的要求以及本節課的地位與作用,結合高一學生的認知特點確定教學目標如下:
學習目標:
1、復習鞏固對數函數的圖像及性質。
2、運用對數函數的性質比較兩個數的大小。
能力目標:
1、培養學生運用圖形解決問題的意識即數形結合能力。
2、學生運用已學知識,已有經驗解決新問題的能力。
3、探索出方法,有條理闡述自己觀點的能力。
德育目標:
培養學生勤于思考、獨立思考、合作交流等良好的個性品質。
三、教材的重點及難點。
教學中將在以下2個環節中突出教學重點:
1、利用學生預習后的心得交流,資源共享,互補不足。
2、通過適當的練習,加強對解題方法的掌握及原理的理解。
教學中會在以下3個方面突破教學難點:
1、教師調整角色,讓學生成為學習的主人,教師在其中起引導作用即可。
2、小組合作探索新問題時,注重生生合作、師生互動,適時用語言鼓勵學生,增強學生參與討論的自信。
3、本節課采用多媒體輔助教學,節省時間,加快課程進度,增強了直觀形象性。
四、學生學情分析。
長處:高一學生經過幾年的數學學習,已具備一定的數學素養,對于已學知識或用過的數學思想、方法有一定的應用能力及應用意識,對于本節課而言,從知識上說,對數函數的圖像和性質剛剛學過,本節課是知識的應用,從數學能力上說,指數比大小問題的解題思想和方法在這可借鑒,另外數形結合能力、小結概括能力、特殊到一般歸納能力已具備一點。
學生可能遇到的困難:本節課從教學內容上來看,第三類對數比大小是課本以外補充的內容,沒有預習心得,讓學生在課堂中快速通過合作探究來完成解題思路的構建,有一定的挑戰性,從學生能力上來看,探索出方法,有條理闡述自己觀點的能力還需加強鍛煉,知識之間的聯系認識上還顯不足。
五、教法特點。
新課程強調教師要調整自己的角色,改變傳統的教育方式,在教育方式上,以學生為中心,讓學生成為學習的主人,教師在其中起引導作用即可?;诖?,本節課遵循此原則重點采用問題探究和啟發引導式的教學方法。從預習交流心得出發,到探索新問題,再到題后的回顧總結,一切以學生為中心,處處體現學生的主體地位,讓學生多說、多分析、多思考、多總結,引導學生運用自己的語言闡述觀點,加強理解,在生生合作,師生互動中解決問題,為提高學生分析問題、解決問題能力打下基礎。本節課采用多媒體輔助教學,節省時間,加快課程進度,增強了直觀形象性。
六、教學過程分析。
1、課件展示本節課學習目標。
設計意圖:明確任務,激發興趣。
2、溫故知新(已填表形式復習對數函數的圖像和性質)。
設計意圖:復習已學知識和方法,為學生形成知識間的聯系和框架建立平臺,并為下一步的應用打下基礎。
3、預習后心得交流。
1)同底對數比大小。
2)既不同底數,也不同真數的對數比大小。
設計意圖:通過學生的預習,自己總結方法及此方法適用的題型,有條理的闡述自己的學習心得,老師只需起引導作用,引導學生從題目表面上升到題目的實質,從而找到解決問題的有效方法。
4、合作探究——同真異底型的對數比大小。
以例3為例,學生分組合作探究解題方法,預計兩種:一是利用換底公式將此類型轉化為同底異真型,利用之前總結的方法解決此問題。二是利用具體對數的大小關系探究出不同底對數函數在同一直角坐標系中的圖像,以此來解決此類型比大小問題。
設計意圖:這一部分是本節課的難點,探究中充分發揮學生的主動性,培養主動學習的意識,同時也鍛煉學生各方面能力的很好機會,為以后的探究學習積累經驗和方法,充分體現“授之以魚,不如授之以漁”的教學理念。另外數學問題的解決僅僅只是一半,更重要的是解題之后的回顧,即反思,如果沒有了反思,他們就錯過了解題的一次重要而有效益的方面。因此,本題解決后,讓學生反思明白,要想利用性質解決問題,關鍵要做到“腦中有圖”,以“形”促“數”。
5、小結。
6、思考題。
以20__高考題為例,讓學生學以致用,增強數學學習興趣。
7、作業。
包括兩個方面:
1、書寫作業。
2、下節課前的預習作業。
通過本節課的教學實例來看,這種通過課本內容預習,而后課堂交流學習成果的方法效果不錯,既能很好的完成教學任務,又能充分發揮學生學習的主動性。在自主探究時,學生分組討論過程中,我參與小組討論,對有能力的小組,在探究出一種方法后,可鼓勵完成更多的方法探究,對于能力較弱的小組,可給予適當的提示,使學生都能動起來,課堂都有所收獲,增強學生自信。另外,對于學生的總結回答,可能會比較慢,我一定會耐心聽,及時鼓勵,給予學生微笑和語言的鼓勵,效果很好。在小結環節中,對于高一學生自己小結的方法,是我一直的教學嘗試,由于只訓練了半學期,學生只能達到小結知識的程度,在以后的訓練中還會加入數學思想、數學方法的小結內容,使這些數學名詞讓學生不再覺得抽象,而是變成具體的,可操作的、具體的解題工具。
高一數學立體幾何教案(模板18篇)篇十六
2、掌握標準方程中的幾何意義。
3、能利用上述知識進行相關的論證、計算、作雙曲線的草圖以及解決簡單的實際問題。
1、焦點在x軸上,虛軸長為12,離心率為的雙曲線的標準方程為、
2、頂點間的距離為6,漸近線方程為的雙曲線的標準方程為、
3、雙曲線的漸進線方程為、
探究1、類比橢圓的幾何性質寫出雙曲線的幾何性質,畫出草圖并,說出它們的不同、
探究2、雙曲線與其漸近線具有怎樣的關系、
練習:已知雙曲線經過,且與另一雙曲線,有共同的漸近線,則此雙曲線的標準方程是、
例1根據以下條件,分別求出雙曲線的標準方程、
(1)過點,離心率、
(2)、是雙曲線的左、右焦點,是雙曲線上一點,且,,離心率為、
例3(理)求離心率為,且過點的雙曲線標準方程、
2、橢圓的離心率為,則雙曲線的離心率為、
3、雙曲線的漸進線方程是,則雙曲線的離心率等于=、
4、設雙曲線的半焦距為,直線過、兩點,且原點到直線的距離為,求雙曲線的離心率、
高一數學立體幾何教案(模板18篇)篇十七
3.能利用上述知識進行相關的論證、計算、作雙曲線的草圖以及解決簡單的實際問題。
一、預習檢查。
1、焦點在x軸上,虛軸長為12,離心率為的雙曲線的標準方程為.
2、頂點間的距離為6,漸近線方程為的雙曲線的標準方程為.
3、雙曲線的漸進線方程為.
4、設分別是雙曲線的半焦距和離心率,則雙曲線的一個頂點到它的一條漸近線的距離是.
二、問題探究。
探究1、類比橢圓的幾何性質寫出雙曲線的幾何性質,畫出草圖并,說出它們的不同.
探究2、雙曲線與其漸近線具有怎樣的關系.
練習:已知雙曲線經過,且與另一雙曲線,有共同的漸近線,則此雙曲線的標準方程是.
例1根據以下條件,分別求出雙曲線的標準方程.
(1)過點,離心率.
(2)、是雙曲線的左、右焦點,是雙曲線上一點,且,,離心率為.
例2已知雙曲線,直線過點,左焦點到直線的距離等于該雙曲線的虛軸長的,求雙曲線的離心率.
例3(理)求離心率為,且過點的雙曲線標準方程.
三、思維訓練。
1、已知雙曲線方程為,經過它的右焦點,作一條直線,使直線與雙曲線恰好有一個交點,則設直線的斜率是.
2、橢圓的離心率為,則雙曲線的離心率為.
3、雙曲線的漸進線方程是,則雙曲線的離心率等于=.
4、(理)設是雙曲線上一點,雙曲線的一條漸近線方程為、分別是雙曲線的左、右焦點,若,則.
四、知識鞏固。
1、已知雙曲線方程為,過一點(0,1),作一直線,使與雙曲線無交點,則直線的斜率的集合是.
2、設雙曲線的一條準線與兩條漸近線交于兩點,相應的焦點為,若以為直徑的圓恰好過點,則離心率為.
3、已知雙曲線的左,右焦點分別為,點在雙曲線的右支上,且,則雙曲線的離心率的值為.
4、設雙曲線的半焦距為,直線過、兩點,且原點到直線的距離為,求雙曲線的離心率.
5、(理)雙曲線的焦距為,直線過點和,且點(1,0)到直線的距離與點(-1,0)到直線的距離之和.求雙曲線的離心率的取值范圍.
高一數學立體幾何教案(模板18篇)篇十八
[教學方法]:講練結合法
[授課類型]:復習課
[課時安排]:1課時
[教學過程]:集合部分匯總
本單元主要介紹了以下三個問題:
1,集合的含義與特征
2,集合的表示與轉化
3,集合的基本運算
一,集合的含義與表示(含分類)
1,具有共同特征的對象的全體,稱一個集合
2,集合按元素的個數分為:有限集和無窮集兩類