教案模板可以幫助教師合理安排教學(xué)時(shí)間,提前準(zhǔn)備好所需材料和資源,確保課堂的流暢進(jìn)行。小編為大家準(zhǔn)備了一些實(shí)用的教案模板范文,希望能夠?qū)Υ蠹业膫湔n工作有所幫助。
八年級(jí)數(shù)學(xué)分式的運(yùn)算教案(模板15篇)篇一
分式約分:將分子、分母中的公因式約去,叫做分式的約分。分式約分的根據(jù)是分式的基本性質(zhì),即分式的分子、分母都除以同一個(gè)不等于零的整式,分式的值不變。
約分的方法和步驟包括:
(1)當(dāng)分子、分母是單項(xiàng)式時(shí),公因式是相同因式的最低次冪與系數(shù)的最大公約數(shù)的積;
(2)當(dāng)分子、分母是多項(xiàng)式時(shí),應(yīng)先將多項(xiàng)式分解因式,約去公因式。
2、通分:根據(jù)分式的基本性質(zhì),異分母的分式可以化為同分母的分式,這一過程稱為分式的通。
分式通分:將幾個(gè)異分母的分式化成同分母的分式,這種變形叫分式的通分。
(3)通分后的各分式的分母相同,通分后的各分式分別與原來的分式相等;
(4)通分和約分是兩種截然不同的變形、約分是針對(duì)一個(gè)分式而言,通分是針對(duì)多個(gè)分式而言;約分是將一個(gè)分式化簡(jiǎn),而通分是將一個(gè)分式化繁。
注意:
(1)分式的約分和通分都是依據(jù)分式的基本性質(zhì);
(2)分式的變號(hào)法則:分式的分子、分母和分式本身的符號(hào),改變其中的任何兩個(gè),分式的值不變。
(3)約分時(shí),分子與分母不是乘積形式,不能約分、
3、求最簡(jiǎn)公分母的方法是:
(1)將各個(gè)分母分解因式;
(2)找各分母系數(shù)的最小公倍數(shù);
(3)找出各分母中不同的因式,相同因式中取次數(shù)最高的,滿足(2)(3)的因式之積即為各分式的最簡(jiǎn)公分母(求最簡(jiǎn)公分母在分式的加減運(yùn)算和解分式方程時(shí)起非常重要的作用)。
1、分式的加減法法則:
(1)同分母的分式相加減,分母不變,把分子相加;
(2)異分母的分式相加減,先通分,化為同分母的分式,然后再按同分母分式的加減法則進(jìn)行計(jì)算。
2、分式的乘除法法則:兩個(gè)分式相乘,把分子相乘的積作為積的分子,把分母相乘的積作為積的分母;兩個(gè)分式相除,把除式的分子和分母顛倒位置后再與被除式相乘。
4、分式的混合運(yùn)算順序,先算乘方,再算乘除,最后算加減,有括號(hào)先算括號(hào)里面的。
5、對(duì)于分式化簡(jiǎn)求值的題型要注意解題格式,要先化簡(jiǎn),再代人字母的值求值。
八年級(jí)數(shù)學(xué)分式的運(yùn)算教案(模板15篇)篇二
通過類比分?jǐn)?shù)的基本性質(zhì)及分?jǐn)?shù)的約分、通分,推測(cè)出分式的基本性質(zhì)、約分和通分,通過例題、練習(xí)來鞏固這些知識(shí)點(diǎn)。
教學(xué)目標(biāo)。
知識(shí)與技能。
3.說出分式通分、約分的步驟和依據(jù),總結(jié)分式通分、約分的方法;。
4.說出最簡(jiǎn)分式的意義,能將分式化為最簡(jiǎn)分式。
過程與方法。
經(jīng)歷與他人合作探究分式的基本性質(zhì)及應(yīng)用的過程,通過類比分?jǐn)?shù)的基本性質(zhì),推測(cè)出分式的基本性質(zhì)。
情感態(tài)度價(jià)值觀。
體會(huì)知識(shí)點(diǎn)之間的聯(lián)系,在已有數(shù)學(xué)經(jīng)驗(yàn)的基礎(chǔ)上,提高學(xué)數(shù)學(xué)的樂趣。
教學(xué)重點(diǎn)、難點(diǎn)。
重點(diǎn):1.分式的基本性質(zhì);2.利用分式的基本性質(zhì)約分、通分;3.將一個(gè)分式化簡(jiǎn)為最簡(jiǎn)分式、將分式通分。
難點(diǎn):分子、分母是多項(xiàng)式的分式的約分和通分。
教學(xué)方法。
啟發(fā)引導(dǎo),講練結(jié)合。
教學(xué)媒體課件。
課時(shí)安排。
1課時(shí)。
教學(xué)設(shè)計(jì)過程。
(一)復(fù)習(xí)引入。
1.分式的定義;。
通過回顧我們可以得出:
八年級(jí)數(shù)學(xué)分式的運(yùn)算教案(模板15篇)篇三
1.理解同分母分式與異分母分式加減法的運(yùn)算法則,體會(huì)類比思想.
2.能運(yùn)用同分母分式和異分母分式加減運(yùn)算法則進(jìn)行運(yùn)算,體會(huì)化歸思想.
異分母分式的加減運(yùn)算.
一師一優(yōu)課一課一名師(設(shè)計(jì)者:)。
一、創(chuàng)設(shè)情景,明確目標(biāo)。
同學(xué)們還記得分?jǐn)?shù)是如何進(jìn)行加減法運(yùn)算的嗎?(找同學(xué)敘述)。
現(xiàn)在我們看下面兩個(gè)問題:
請(qǐng)按兩個(gè)問題的要求列出代數(shù)式,請(qǐng)觀察兩個(gè)代數(shù)式有何特征,如何對(duì)這類代數(shù)式進(jìn)行運(yùn)算,這就是我們今天所要探究的內(nèi)容.
二、自主學(xué)習(xí),指向目標(biāo)。
1.自學(xué)教材第139至140頁.
2.學(xué)習(xí)至此:請(qǐng)完成《學(xué)生用書》相應(yīng)部分.
三、合作探究,達(dá)成目標(biāo)。
活動(dòng)一:
1.讓學(xué)生觀察課本p140頁思考,并讓學(xué)生敘述分?jǐn)?shù)加減法法則.
2.類似分?jǐn)?shù)加減法運(yùn)算法則,推廣可得分式的加減法法則,你能敘述嗎?
展示點(diǎn)評(píng):同分母的分式相加減,分母________,把分子相________.
異分母的分式相加減,先________,變?yōu)開_______分式,再加減.
八年級(jí)數(shù)學(xué)分式的運(yùn)算教案(模板15篇)篇四
1.理解分式的基本性質(zhì).
2.會(huì)用分式的基本性質(zhì)將分式變形.
二、重點(diǎn)、難點(diǎn)。
1.重點(diǎn):理解分式的基本性質(zhì).
2.難點(diǎn):靈活應(yīng)用分式的基本性質(zhì)將分式變形.
3.認(rèn)知難點(diǎn)與突破方法。
教學(xué)難點(diǎn)是靈活應(yīng)用分式的基本性質(zhì)將分式變形.突破的方法是通過復(fù)習(xí)分?jǐn)?shù)的通分、約分總結(jié)出分?jǐn)?shù)的基本性質(zhì),再用類比的方法得出分式的基本性質(zhì).應(yīng)用分式的基本性質(zhì)導(dǎo)出通分、約分的概念,使學(xué)生在理解的基礎(chǔ)上靈活地將分式變形。
三、例、習(xí)題的意圖分析。
1.p7的例2是使學(xué)生觀察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后應(yīng)用分式的基本性質(zhì),相應(yīng)地把分子(或分母)乘以或除以了這個(gè)整式,填到括號(hào)里作為答案,使分式的值不變。
2.p9的例3、例4地目的是進(jìn)一步運(yùn)用分式的基本性質(zhì)進(jìn)行約分、通分.值得注意的是:約分是要找準(zhǔn)分子和分母的公因式,最后的結(jié)果要是最簡(jiǎn)分式;通分是要正確地確定各個(gè)分母的最簡(jiǎn)公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡(jiǎn)公分母。
教師要講清方法,還要及時(shí)地糾正學(xué)生做題時(shí)出現(xiàn)的錯(cuò)誤,使學(xué)生在做提示加深對(duì)相應(yīng)概念及方法的理解。
3.p11習(xí)題16.1的第5題是:不改變分式的值,使下列分式的分子和分母都不含“-”號(hào).這一類題教材里沒有例題,但它也是由分式的基本性質(zhì)得出分子、分母和分式本身的符號(hào),改變其中任何兩個(gè),分式的值不變。
“不改變分式的值,使分式的分子和分母都不含‘-’號(hào)”是分式的基本性質(zhì)的應(yīng)用之一,所以補(bǔ)充例5。
四、課堂引入。
1.請(qǐng)同學(xué)們考慮:與相等嗎?與相等嗎?為什么?
2.說出與之間變形的過程,與之間變形的過程,并說出變形依據(jù)?
3.提問分?jǐn)?shù)的基本性質(zhì),讓學(xué)生類比猜想出分式的基本性質(zhì).
五、例題講解。
p7例2.填空:
[分析]應(yīng)用分式的基本性質(zhì)把已知的分子、分母同乘以或除以同一個(gè)整式,使分式的值不變.
p11例3.約分:
[分析]約分是應(yīng)用分式的基本性質(zhì)把分式的分子、分母同除以同一個(gè)整式,使分式的值不變.所以要找準(zhǔn)分子和分母的公因式,約分的結(jié)果要是最簡(jiǎn)分式.
p11例4.通分:
[分析]通分要想確定各分式的公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡(jiǎn)公分母.
(補(bǔ)充)例5.不改變分式的值,使下列分式的分子和分母都不含“-”號(hào).
[分析]每個(gè)分式的分子、分母和分式本身都有自己的符號(hào),其中兩個(gè)符號(hào)同時(shí)改變,分式的值不變.
解:=,=,=,=,=。
六、隨堂練習(xí)。
1.填空:
(1)=(2)=。
(3)=(4)=。
2.約分:
3.通分:
(1)和(2)和。
(3)和(4)和。
4.不改變分式的值,使下列分式的分子和分母都不含“-”號(hào).
七、課后練習(xí)。
1.判斷下列約分是否正確:
(1)=(2)=。
(3)=0。
2.通分:
(1)和(2)和。
3.不改變分式的值,使分子第一項(xiàng)系數(shù)為正,分式本身不帶“-”號(hào).
八、答案:
六、1.(1)2x(2)4b(3)bn+n(4)x+y。
2.(1)(2)(3)(4)-2(x-y)2。
3.通分:
(1)=,=。
(2)=,=。
(3)==。
(4)==。
八年級(jí)數(shù)學(xué)分式的運(yùn)算教案(模板15篇)篇五
這一課是在學(xué)生已經(jīng)初步了解小括號(hào)意義,會(huì)用小括號(hào)進(jìn)行計(jì)算的基礎(chǔ)上進(jìn)行教學(xué)的。上完了整節(jié)課之后,我對(duì)自己這節(jié)課做了如下反思:
一、教學(xué)的成功之處。
1、在本節(jié)課中又增加了中括號(hào)這一內(nèi)容,致使計(jì)算起來又多了幾分煩瑣性。所以在教學(xué)設(shè)計(jì)時(shí)由淺入深,讓學(xué)生在層層深入中,走進(jìn)新知、學(xué)習(xí)新知。
2、本堂課很好的利用了,讓學(xué)生能夠清楚明白的知道老師的要求,而且在一定程度上也引起來學(xué)生學(xué)習(xí)的興趣。
二、教學(xué)中的不足之處。
1、對(duì)教學(xué)過程中可能會(huì)出現(xiàn)的情況沒有完全設(shè)想清楚。在上課之前我把很多情況都設(shè)想了一遍,但是忽略了同學(xué)之間有不同層次。比如在指名上臺(tái)板演的環(huán)節(jié),有一個(gè)同學(xué)出現(xiàn)了我之前并沒有預(yù)想到的問題,雖然我也隨機(jī)應(yīng)變,把該更改的更改的過來了,但是,這件事也提醒了我,在以后的教學(xué)過程中,一定要注意有層次的教學(xué),不能忽略掉每個(gè)可能會(huì)出現(xiàn)的問題。
2、對(duì)學(xué)生動(dòng)手做出現(xiàn)的狀況估計(jì)不足。很多同學(xué)在老師講課的時(shí)候都很清楚明白,但是一旦要求他自己動(dòng)手做的時(shí)候,都會(huì)出現(xiàn)這樣那樣的問題。沒有考慮到學(xué)生動(dòng)手做的時(shí)候有沒有真正掌握。
三、整改的措施。
1、注重學(xué)生動(dòng)手操作能力的培養(yǎng)在本節(jié)課中,學(xué)生在知識(shí)方面好像已經(jīng)掌握得非常牢固,但是實(shí)際在他們動(dòng)手操作的時(shí)候卻不盡如人意,這就提醒了我,在以后的教學(xué)中,不僅要灌輸學(xué)生知識(shí),更重要的是注重學(xué)生操作能力的培養(yǎng)。
2、在備課過程中應(yīng)充分考慮到多種情況在今天上課的過程中,由于在課前沒有對(duì)可能出現(xiàn)的狀況估計(jì)全面,導(dǎo)致學(xué)生出現(xiàn)意想不到的狀況的時(shí)候有一瞬間的不知所措。因此在日后的教學(xué)過程中,我要多多預(yù)設(shè)一些上課可能出現(xiàn)的狀況,這樣才能更好的教學(xué),也才能更及時(shí)的解決學(xué)生在學(xué)習(xí)過程中出現(xiàn)的問題。
將本文的word文檔下載到電腦,方便收藏和打印。
八年級(jí)數(shù)學(xué)分式的運(yùn)算教案(模板15篇)篇六
多媒體投影一組圖片,讓同學(xué)們從中抽象出平面圖形,從而引出課題。
二、自主學(xué)習(xí),指向目標(biāo)。
學(xué)習(xí)至此:請(qǐng)完成《學(xué)生用書》相應(yīng)部分。
三、合作探究,達(dá)成目標(biāo)。
多邊形的定義及有關(guān)概念。
活動(dòng)一:閱讀教材p19。
小組討論:結(jié)合具體圖形說出多邊形的邊、內(nèi)角、外角?
反思小結(jié):多邊形的定義及相關(guān)概念。
針對(duì)訓(xùn)練:見《學(xué)生用書》相應(yīng)部分。
多邊形的對(duì)角線。
活動(dòng)二:(1)十邊形的對(duì)角線有35條。
(2)如果經(jīng)過多邊形的一個(gè)頂點(diǎn)有36條對(duì)角線,這個(gè)多邊形是39邊形。
反思小結(jié):當(dāng)n為已知時(shí),可以直接代入求得對(duì)角線的條數(shù),當(dāng)對(duì)角線條數(shù)已知時(shí),可以化為方程來求多邊形的邊數(shù)。
小組討論:如何靈活運(yùn)用多邊形對(duì)角線條數(shù)的規(guī)律解題?
針對(duì)訓(xùn)練:見《學(xué)生用書》相應(yīng)部分。
正多邊形的有關(guān)概念。
活動(dòng)二:閱讀教材p20。
小組討論:判斷一個(gè)多邊形是否是正多邊形的條件?
反思小結(jié):由正多邊形的概念知:滿足各邊、各角分別相等的多邊形是正多邊形。
針對(duì)訓(xùn)練:見《學(xué)生用書》相應(yīng)部分。
四、總結(jié)梳理,內(nèi)化目標(biāo)。
本節(jié)學(xué)習(xí)的數(shù)學(xué)知識(shí)是:
1、多邊形、多邊形的外角,多邊形的對(duì)角線。
2、凸凹多邊形的概念。
五、達(dá)標(biāo)檢測(cè),反思目標(biāo)。
1、下列敘述正確的是(d)。
a、每條邊都相等的多邊形是正多邊形。
c、每個(gè)角都相等的多邊形叫正多邊形。
d、每條邊、每個(gè)角都相等的多邊形叫正多邊形。
2、小學(xué)學(xué)過的下列圖形中不可能是正多邊形的是(d)。
a、三角形b。正方形c。四邊形d。梯形。
3、多邊形的內(nèi)角是指多邊形相鄰兩邊組成的角;多邊形的外角是指多邊形的邊與它的鄰邊的延長(zhǎng)線組成的角;多邊形的內(nèi)角和它相鄰的外角是鄰補(bǔ)角關(guān)系。
4、已知一個(gè)四邊形的四個(gè)內(nèi)角的比為1∶2∶3∶4,求這個(gè)四邊形的各個(gè)內(nèi)角的度數(shù)。
八年級(jí)數(shù)學(xué)分式的運(yùn)算教案(模板15篇)篇七
本節(jié)內(nèi)容的重點(diǎn)是線段垂直平分線定理及其逆定理.定理反映了線段垂直平分線的性質(zhì),是證明兩條線段相等的依據(jù);逆定理反映了線段垂直平分線的判定,是證明某點(diǎn)在某條直線上及一條直線是已知線段的垂直平分線的依據(jù).
本節(jié)內(nèi)容的難點(diǎn)是定理及逆定理的關(guān)系.垂直平分線定理和其逆定理,題設(shè)與結(jié)論正好相反.學(xué)生在應(yīng)用它們的時(shí)候,容易混淆,幫助學(xué)生認(rèn)識(shí)定理及其逆定理的區(qū)別,這是本節(jié)的難點(diǎn).
本節(jié)課教學(xué)模式主要采用“學(xué)生主體性學(xué)習(xí)”的教學(xué)模式.提出問題讓學(xué)生想,設(shè)計(jì)問題讓學(xué)生做,錯(cuò)誤原因讓學(xué)生說,方法與規(guī)律讓學(xué)生歸納.教師的作用在于組織、點(diǎn)撥、引導(dǎo),促進(jìn)學(xué)生主動(dòng)探索,積極思考,大膽想象,總結(jié)規(guī)律,充分發(fā)揮學(xué)生的主體作用,讓學(xué)生真正成為教學(xué)活動(dòng)的主人.具體說明如下:
學(xué)生前面,學(xué)習(xí)過線段垂直平分線的概念,這樣由復(fù)習(xí)概念入手,順其自然提出問題:在垂直平分線上任取一點(diǎn)p,它到線段兩端的距離有何關(guān)系?學(xué)生會(huì)很容易得出“相等”.然后學(xué)生完成證明,找一名學(xué)生的證明過程,進(jìn)行投影總結(jié).最后,由學(xué)生將上述問題,用文字的形式進(jìn)行歸納,即得線段垂直平分線定理.這樣讓學(xué)生親自動(dòng)手實(shí)踐,積極參與發(fā)現(xiàn),激發(fā)了學(xué)生的認(rèn)識(shí)沖突,使學(xué)生克服思維和探求的惰性,獲得鍛煉機(jī)會(huì),對(duì)定理的產(chǎn)生過程,真正做到心領(lǐng)神會(huì).
線段垂直平分線的定理及逆定理的證明都比較簡(jiǎn)單,學(xué)生學(xué)習(xí)一般沒有什么困難,這一節(jié)的難點(diǎn)仍然的定理及逆定理的關(guān)系,為了很好的突破這一難點(diǎn),教學(xué)時(shí)采用與角的平分線的性質(zhì)定理和逆定理對(duì)照,類比的方法進(jìn)行教學(xué),使學(xué)生進(jìn)一步認(rèn)識(shí)這兩個(gè)定理的區(qū)別和聯(lián)系.
八年級(jí)數(shù)學(xué)分式的運(yùn)算教案(模板15篇)篇八
1.了解算術(shù)平方根的概念,會(huì)用根號(hào)表示正數(shù)的算術(shù)平方根,并了解算術(shù)平方根的非負(fù)性。
2.了解開方與乘方互為逆運(yùn)算,會(huì)用平方運(yùn)算求某些非負(fù)數(shù)的算術(shù)平方根。
算術(shù)平方根的概念。
根據(jù)算術(shù)平方根的概念正確求出非負(fù)數(shù)的算術(shù)平方根。
這就要用到平方根的概念,也就是本章的主要學(xué)習(xí)內(nèi)容.這節(jié)課我們先學(xué)習(xí)有關(guān)算術(shù)平方根的概念.
1、提出問題:(書p68頁的問題)
你是怎樣算出畫框的邊長(zhǎng)等于5dm的呢?(學(xué)生思考并交流解法)
這個(gè)問題相當(dāng)于在等式擴(kuò)=25中求出正數(shù)x的值.
一般地,如果一個(gè)正數(shù)x的平方等于a,即=a,那么這個(gè)正數(shù)x叫做a的算術(shù)平方根.a的算術(shù)平方根記為,讀作根號(hào)a,a叫做被開方數(shù).規(guī)定:0的算術(shù)平方根是0.
也就是,在等式=a (x0)中,規(guī)定x = .
2、試一試:你能根據(jù)等式:=144說出144的算術(shù)平方根是多少嗎?并用等式表示出來.
3、想一想:下列式子表示什么意思?你能求出它們的值嗎?
建議:求值時(shí),要按照算術(shù)平方根的意義,寫出應(yīng)該滿足的關(guān)系式,然后按照算術(shù)平方根的記法寫出對(duì)應(yīng)的值.例如表示25的算術(shù)平方根。
4、例1求下列各數(shù)的算術(shù)平方根:
(1)100;(2)1;(3) ;(4)0.0001
p69練習(xí)1、2
怎樣用兩個(gè)面積為1的小正方形拼成一個(gè)面積為2的大正方形?
方法1:課本中的方法,略;
方法2:
可還有其他方法,鼓勵(lì)學(xué)生探究。
問題:這個(gè)大正方形的邊長(zhǎng)應(yīng)該是多少呢?
大正方形的邊長(zhǎng)是,表示2的算術(shù)平方根,它到底是個(gè)多大的數(shù)?你能求出它的值嗎?
建議學(xué)生觀察圖形感受的大小.小正方形的對(duì)角線的長(zhǎng)是多少呢?(用刻度尺測(cè)量它與大正方形的邊長(zhǎng)的大小)它的近似值我們將在下節(jié)課探究.
1、這節(jié)課學(xué)習(xí)了什么呢?
2、算術(shù)平方根的具體意義是怎么樣的?
3、怎樣求一個(gè)正數(shù)的算術(shù)平方根
p75習(xí)題13.1活動(dòng)第1、2、3題
八年級(jí)數(shù)學(xué)分式的運(yùn)算教案(模板15篇)篇九
正比例函數(shù)的概念。
2、內(nèi)容解析。
一次函數(shù)是最基本的初等函數(shù),是初中函數(shù)學(xué)習(xí)的重要內(nèi)容,正比例函數(shù)是特殊的一次函數(shù),也是初中學(xué)生接觸到的第一種函數(shù),要通過對(duì)正比例函數(shù)內(nèi)容的學(xué)習(xí),為后續(xù)類比學(xué)習(xí)一般一次函數(shù)打好基礎(chǔ),了解研究函數(shù)的基本套路和方法,積累研究一般一次函數(shù)乃至其他各種函數(shù)的基本經(jīng)驗(yàn)。
對(duì)正比例函數(shù)概念的學(xué)習(xí),既要借助具體的函數(shù)進(jìn)一步加深對(duì)函數(shù)概念的理解,即實(shí)際問題的兩個(gè)變量中,當(dāng)一個(gè)變量變化時(shí),另一個(gè)變量隨著它的變化而變化,而且對(duì)于這個(gè)變量的每一個(gè)確定的值,另一個(gè)變量都有唯一確定的值與之對(duì)應(yīng),這是理解正比例函數(shù)的核心;也要加強(qiáng)對(duì)正比例函數(shù)基本特征的認(rèn)識(shí),即根據(jù)實(shí)際問題構(gòu)建的函數(shù)模型中,函數(shù)和自變量每一對(duì)對(duì)應(yīng)值的比值是一定的,等于比例系數(shù),反映在函數(shù)解析式上,這些函數(shù)都是常數(shù)與自變量的積的形式,這是正比例函數(shù)的基本特征。
本節(jié)課主要是通過對(duì)生活中大量實(shí)際問題的分析,寫出變量間的函數(shù)關(guān)系式,觀察比較概括出這些函數(shù)關(guān)系式具有的共同特征,根據(jù)共同特征抽象出正比例函數(shù)的基本模型,歸納得出正比例函數(shù)的概念,再用正比例函數(shù)的概念對(duì)具體函數(shù)進(jìn)行辨析,對(duì)實(shí)際事例進(jìn)行分析,根據(jù)已知條件寫出正比例函數(shù)的解析式。
基于以上分析,確定本節(jié)課的教學(xué)重點(diǎn):正比例函數(shù)的概念。
1、目標(biāo)。
(1)經(jīng)歷正比例函數(shù)概念的形成過程,理解正比例函數(shù)的概念;
(2)能根據(jù)已知條件確定正比例函數(shù)的解析式,體會(huì)函數(shù)建模思想。
2、目標(biāo)解析。
達(dá)成目標(biāo)(1)的標(biāo)志是:通過對(duì)實(shí)際問題的分析,知道自變量和對(duì)應(yīng)函數(shù)成正比例的特征,能概括抽象出正比例函數(shù)的概念。
達(dá)成目標(biāo)(2)的標(biāo)志是:能根據(jù)實(shí)際問題中的已知條件確定變量間的正比例函數(shù)關(guān)系式,將實(shí)際問題抽象為函數(shù)模型,體會(huì)函數(shù)建模思想。
正比例函數(shù)是是初中學(xué)生接觸到的第一種初等函數(shù),由于函數(shù)概念比較抽象,學(xué)生對(duì)函數(shù)基本概念理解未必深刻,在對(duì)實(shí)際問題進(jìn)行分析過程中,需進(jìn)一步強(qiáng)化對(duì)函數(shù)概念的理解:即實(shí)際問題的兩個(gè)變量中,當(dāng)一個(gè)變量變化時(shí),另一個(gè)變量隨著它的變化而變化,而且對(duì)于這個(gè)變量的`每一個(gè)確定的值,另一個(gè)變量都有唯一確定的值與之對(duì)應(yīng);對(duì)正比例函數(shù)概念的理解關(guān)鍵是對(duì)正比例函數(shù)基本特征的認(rèn)識(shí),要通過大量實(shí)例分析,寫出變量間的函數(shù)關(guān)系式,觀察比較發(fā)現(xiàn)這些函數(shù)具有的共同特征,即函數(shù)與自變量的每一對(duì)對(duì)應(yīng)值的比值一定,都等于自變量前的常數(shù),這些函數(shù)都是常數(shù)與自變量的積的形式,再根據(jù)共同特征抽象出正比例函數(shù)的基本模型,歸納得出正比例函數(shù)的概念。對(duì)正比例函數(shù)基本特征的認(rèn)識(shí)和正比例函數(shù)概念的抽象歸納過程學(xué)生有一定難度。
因此本節(jié)課的教學(xué)難點(diǎn)是:對(duì)正比例函數(shù)基本特征的認(rèn)識(shí)和正比例函數(shù)概念的抽象歸納過程。
八年級(jí)數(shù)學(xué)分式的運(yùn)算教案(模板15篇)篇十
2、范例講解。
(學(xué)生嘗試練習(xí)后,教師講評(píng))。
例1:解方程例2:解方程例3:解方程講評(píng)時(shí)強(qiáng)調(diào):
1、怎樣確定最簡(jiǎn)公分母?(先將各分母因式分解)。
2、解分式方程的步驟、
鞏固練習(xí):p1471t,2t、
課堂小結(jié):解分式方程的一般步驟。
布置作業(yè):見作業(yè)本。
八年級(jí)數(shù)學(xué)分式的運(yùn)算教案(模板15篇)篇十一
《基礎(chǔ)教育課程改革綱要(試行)》指出:“大力推進(jìn)多媒體信息技術(shù)在教學(xué)過程中的普遍應(yīng)用,促進(jìn)信息技術(shù)與學(xué)科課程的整合,逐步實(shí)現(xiàn)教學(xué)內(nèi)容的呈現(xiàn)方式、學(xué)生的學(xué)習(xí)方式、教師的教學(xué)方式和師生互動(dòng)方式的變革,充分發(fā)揮信息技術(shù)的優(yōu)勢(shì),為學(xué)生的學(xué)習(xí)和發(fā)展提供豐富多彩的教育環(huán)境和有力的學(xué)習(xí)工具。”教師運(yùn)用現(xiàn)代多媒體信息技術(shù)對(duì)教學(xué)活動(dòng)進(jìn)行創(chuàng)造性設(shè)計(jì),發(fā)揮計(jì)算機(jī)輔助教學(xué)的特有功能,把信息技術(shù)和數(shù)學(xué)教學(xué)的學(xué)科特點(diǎn)結(jié)合起來,可以使教學(xué)的表現(xiàn)形式更加形象化、多樣化、視覺化,有利于充分揭示數(shù)學(xué)概念的形成與發(fā)展,數(shù)學(xué)思維的過程和實(shí)質(zhì),展示數(shù)學(xué)思維的形成過程,使數(shù)學(xué)課堂教學(xué)收到事半功倍的效果。
本節(jié)課內(nèi)容是學(xué)生在小學(xué)階段初步了解特殊四邊形以及學(xué)過《三角形》這章的基礎(chǔ)上進(jìn)行的,在知識(shí)結(jié)構(gòu)上打破了教材的編寫順序,從整體的角度探究特殊四邊形性質(zhì)。運(yùn)用多媒體教學(xué)體現(xiàn)出直觀、課容量大、容易接受的特點(diǎn),為進(jìn)一步的理論證明及應(yīng)用起著提供數(shù)據(jù)和宏觀指導(dǎo)作用,使學(xué)生學(xué)習(xí)本章具體內(nèi)容時(shí)知道身在何處,使知識(shí)體系更加系統(tǒng)。本節(jié)課內(nèi)容是四邊形這章的理論基礎(chǔ),在該章占有非常重要的地位。
本班經(jīng)歷了一年多課改實(shí)踐,學(xué)生對(duì)運(yùn)用現(xiàn)代多媒體信息技術(shù)的教學(xué)方式有濃厚的興趣,能運(yùn)用《幾何畫板》這一工具進(jìn)行簡(jiǎn)單的操作,形成自主探索和合作交流的學(xué)風(fēng),從而樂于在教師的指導(dǎo)下主動(dòng)與同學(xué)探索、發(fā)現(xiàn)、歸納、經(jīng)歷數(shù)學(xué)知識(shí)于實(shí)踐的過程。
本節(jié)課充分利用現(xiàn)有的先進(jìn)教學(xué)設(shè)備(兩名學(xué)生一臺(tái)電腦),利用筆者自制,借助《幾何畫板》把學(xué)生帶入數(shù)學(xué)模擬實(shí)驗(yàn)室,以研究電動(dòng)門的機(jī)械原理為切入點(diǎn),從學(xué)生已有的生活經(jīng)驗(yàn)出發(fā),讓學(xué)生親身經(jīng)歷數(shù)學(xué)知識(shí)的形成并進(jìn)行解釋與應(yīng)用過程。組員相互配合分別測(cè)量、搜集、分析、整理特殊四邊形的邊長(zhǎng)、角度、對(duì)角線長(zhǎng)度等數(shù)據(jù),并總結(jié)其性質(zhì),通過人機(jī)對(duì)話方式把靜態(tài)、抽象的幾何圖形變?yōu)閯?dòng)態(tài)、直觀地演示出來。在此過程中教師當(dāng)好課堂教學(xué)的組織者、決策者、創(chuàng)造者和參與者,教給學(xué)生自覺主動(dòng)地探究新知識(shí)的方法,激發(fā)學(xué)生的思維,培養(yǎng)學(xué)生的科學(xué)精神和創(chuàng)新思維習(xí)慣,使學(xué)生獲得對(duì)數(shù)學(xué)理解的同時(shí),在思維能力、情感態(tài)度與價(jià)值觀等多方面得到發(fā)展。
1、初步理解特殊四邊形性質(zhì);
2、培養(yǎng)學(xué)生自主收集、描述和分析數(shù)據(jù)的能力;
1、了解特殊四邊形性質(zhì)的形成過程;
2、初步了解探究新知識(shí)的一些方法;
1、了解特殊四邊形在日常生活中的應(yīng)用;
2、學(xué)生在觀察、歸納、類比及實(shí)驗(yàn)教學(xué)活動(dòng)中,體會(huì)成功后的喜悅;
3、初步具有感性認(rèn)識(shí)上升到理性認(rèn)識(shí)的辯證唯物主義思想。
教學(xué)環(huán)境:
多媒體計(jì)算機(jī)網(wǎng)絡(luò)教室。
教學(xué)課型:
試驗(yàn)探究式。
教學(xué)重點(diǎn):
特殊四邊形性質(zhì)。
教學(xué)難點(diǎn):
特殊四邊形性質(zhì)的發(fā)現(xiàn)。
一、設(shè)置情景,提出問題。
提出問題:
1、電動(dòng)門的網(wǎng)格和結(jié)點(diǎn)能組成哪些四邊形?
2、在開(關(guān))門過程中這些四邊形是如何變化的?
3、你還發(fā)現(xiàn)了什么?
解決問題:
學(xué)生猜想:包括平行四邊形、矩形、菱形、等腰梯形、直角梯形……;
當(dāng)我們學(xué)習(xí)完本節(jié)知識(shí)后,其他問題就容易解決了。
(意圖:用《幾何畫板》的動(dòng)態(tài)演示生活事例,充分展示了數(shù)學(xué)的美妙,可以使學(xué)生容易進(jìn)入情境和保持積極學(xué)習(xí)狀態(tài),激起學(xué)生探究解決問題的求知欲望。)。
二、整體了解,形成系統(tǒng)。
本節(jié)課從整體角度研究特殊四邊形性質(zhì),為今后的個(gè)體研究打下良好的基礎(chǔ)。我們先研究四邊形中的特殊與一般的關(guān)系。
提出問題:
1、本章主要研究哪些特殊四邊形?
2、從哪幾方面研究這些特殊四邊形?
解決問題:
學(xué)生操作電腦(用幾何畫板),了解本章研究的主要圖形;教師個(gè)別指導(dǎo)。
1、包括:平行四邊形、矩形、菱形、梯形、等腰梯形、直角梯形。
3、等腰梯形和直角梯形后面應(yīng)該是矩形,但不符合梯形定義,所以沒有圖形。
(意圖:學(xué)生自主觀察、分組討論了解本章知識(shí)結(jié)構(gòu),從而形成系統(tǒng);通過假設(shè)、猜想、推理、論證、否定假設(shè)獲得新知識(shí))。
三、個(gè)體研究、總結(jié)性質(zhì)。
1、平行四邊形性質(zhì)。
提出問題:
在平行四邊形的形狀、位置、大小變化過程中,請(qǐng)觀察數(shù)據(jù)并找出邊長(zhǎng)、角度、對(duì)角線長(zhǎng)度相對(duì)不變的性質(zhì)。
解決問題:
教師引導(dǎo)學(xué)生拖動(dòng)b點(diǎn)(學(xué)生操作電腦),改變平行四邊形的形狀、位置、大小,并觀察數(shù)據(jù)的變化,從中找出相對(duì)不變的要素。
在圖形變化過程中,
(1)對(duì)邊相等;
(2)對(duì)角相等;
(3)通過ao=co、bo=do,可得對(duì)角線互相平分;
(4)通過鄰角互補(bǔ),可得對(duì)邊平行;
(5)內(nèi)外角和都等于360度;
(6)鄰角互補(bǔ);
……。
指導(dǎo)學(xué)生填表:
平行四邊形性質(zhì)矩形性質(zhì)正方形性質(zhì)。
菱形性質(zhì)。
梯形性質(zhì)等腰梯形性質(zhì)。
直角梯形性質(zhì)。
(既屬于平行四邊形性質(zhì)又屬于矩形性質(zhì)可以畫箭頭)。
按照平行四邊形性質(zhì)的探索思路,分別研究:
2、矩形性質(zhì);
3、菱形性質(zhì);
4、正方形性質(zhì);
5、梯形性質(zhì);
6、等腰梯形性質(zhì);
7、直角梯形的性質(zhì)。
(意圖:學(xué)生運(yùn)用電腦自主收集、描述、分析數(shù)據(jù),把抽象的性質(zhì)變?yōu)橹庇^化、形象化,培養(yǎng)獨(dú)立探究,自主自信,使學(xué)生體驗(yàn)到科學(xué)探索的樂趣。)。
教師總結(jié):
(意圖:掌握畫箭頭的方法,使學(xué)生了解事物個(gè)體既有該事物一般性質(zhì),又有自己的特點(diǎn)。既清楚地表達(dá),又節(jié)省時(shí)間。)。
四、聯(lián)系生活,解決問題。
解決問題:
學(xué)生操作電腦,觀察圖形、分組討論,教師個(gè)別指導(dǎo)。
學(xué)生在分別演示開(關(guān))門過程中,觀察數(shù)據(jù)并總結(jié):邊長(zhǎng)、角度、對(duì)角線長(zhǎng)度的變化引起四邊形的形狀、大小、位置的變化。
四邊形具有不穩(wěn)定性,而三角形沒有這個(gè)特點(diǎn)……。
(意圖:使學(xué)生體會(huì)到數(shù)學(xué)于生活、又服務(wù)于生活,更重要的是培養(yǎng)學(xué)生應(yīng)用知識(shí)解決實(shí)際問題的能力,體會(huì)成功后的喜悅。)。
五、小結(jié)。
1.研究問題從整體到局部的方法;
2.主要從邊長(zhǎng)、角度、對(duì)角線長(zhǎng)度三方面研究特殊四邊形性質(zhì)。
六、作業(yè)。
1.平行四邊形內(nèi)角中,既有兩個(gè)相鄰的角相等,又有一組鄰邊相等,試判斷它是什么圖形。
2.觀察實(shí)際生活中的電動(dòng)門,在開(關(guān))門過程中特殊四邊形的變化。
針對(duì)教學(xué)內(nèi)容、學(xué)生特點(diǎn)及設(shè)計(jì)方案,預(yù)計(jì)下列學(xué)習(xí)效果:
利用多媒體信息技術(shù)圖文并茂、形象直觀的特點(diǎn),通過學(xué)生自主測(cè)量、分析、整理數(shù)據(jù)并總結(jié)其性質(zhì),培養(yǎng)學(xué)生收集、描述和分析數(shù)據(jù)的能力,并達(dá)到初步理解特殊四邊形性質(zhì)的目標(biāo)。
在問題引入、了解整體、測(cè)量個(gè)體、總結(jié)性質(zhì)的過程中,符合事物的認(rèn)識(shí)規(guī)律及探究新知識(shí)的一般方法,初步形成感性認(rèn)識(shí)上升到理性認(rèn)識(shí)的辯證唯物主義思想。
由于個(gè)體差異,針對(duì)教學(xué)目標(biāo)難以達(dá)到的個(gè)別學(xué)生,根據(jù)教學(xué)的進(jìn)展,通過師生之間、學(xué)生之間的對(duì)話交流及時(shí)指導(dǎo),使教學(xué)目標(biāo)得以實(shí)現(xiàn)。
八年級(jí)數(shù)學(xué)分式的運(yùn)算教案(模板15篇)篇十二
教學(xué)目標(biāo):
1、知道一次函數(shù)與正比例函數(shù)的意義.
2、能寫出實(shí)際問題中正比例關(guān)系與一次函數(shù)關(guān)系的解析式.
3、滲透數(shù)學(xué)建模的思想,使學(xué)生體會(huì)到數(shù)學(xué)的抽象性和廣泛的應(yīng)用性.
4、激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,培養(yǎng)學(xué)生分析問題、解決問題的能力.
教學(xué)重點(diǎn):對(duì)于一次函數(shù)與正比例函數(shù)概念的理解.
教學(xué)難點(diǎn):根據(jù)具體條件求一次函數(shù)與正比例函數(shù)的解析式.
教學(xué)方法:結(jié)構(gòu)教學(xué)法、以學(xué)生“再創(chuàng)造”為主的教學(xué)方法。
教學(xué)過程:
1、復(fù)習(xí)舊課。
前面我們學(xué)習(xí)了函數(shù)的相關(guān)知識(shí),(教師在黑板上畫出本章結(jié)構(gòu)并讓學(xué)生說出前三。
2、引入新課。
就象以前我們學(xué)習(xí)方程、一元一次方程;不等式、一元一次不等式的內(nèi)容時(shí)一樣,我們?cè)趯W(xué)習(xí)了函數(shù)這個(gè)概念以后,要學(xué)習(xí)一些具體的函數(shù),今天我們要學(xué)習(xí)的是一次函數(shù).顧名思義,誰能根據(jù)一次函數(shù)這個(gè)名字,類比一元一次方程、一元一次不等式的概念能舉出一些一次函數(shù)的例子?(學(xué)生完全具備這種類比的能力,所以要快、不要耽誤太多時(shí)間叫幾個(gè)同學(xué)回答就可以了.教師將學(xué)生的正確的例子寫在黑板上)。
這些函數(shù)有什么共同特點(diǎn)呢?(注意根據(jù)學(xué)生情況適當(dāng)引導(dǎo),看能否歸納出一般結(jié)果.)不難看出函數(shù)都是用自變量的一次式表示的,可以寫成()的形式.一般地,如果(是常數(shù),)(括號(hào)內(nèi)用紅字強(qiáng)調(diào))那么y叫做x的一次函數(shù).特別地,當(dāng)b=0時(shí),一次函數(shù)就成為(是常數(shù),)。
3、例題講解。
例1、某油管因地震破裂,導(dǎo)致每分鐘漏出原油30公升。
(1)如果x分鐘共漏出y公升,寫出y與x之間的函數(shù)關(guān)系式。
(2)破裂3.5小時(shí)后,共漏出原油多少公升。
分析:y與x成正比例。
解:(1)(2)(升)。
例2、小丸子的存折上已經(jīng)有500元存款了,從現(xiàn)在開始她每個(gè)月可以得到150元的零用錢,小丸子計(jì)劃每月將零用錢的60%存入銀行,用以購(gòu)買她期盼已久的cd隨身聽(價(jià)值1680元)。
(1)列出小丸子的銀行存款(不計(jì)利息)y與月數(shù)x的函數(shù)關(guān)系式;。
(2)多長(zhǎng)時(shí)間以后,小丸子的銀行存款才能買隨身聽?
分析:銀行存款數(shù)由兩部分構(gòu)成:原有的存款500元,后存入的零用錢。
例3、已知函數(shù)是正比例函數(shù),求的值。
分析:本題考察的是正比例函數(shù)的概念。
解:
4、小結(jié)。
由學(xué)生對(duì)本節(jié)課知識(shí)進(jìn)行總結(jié),教師板書即可.
5、布置作業(yè)。
書面作業(yè):1、書后習(xí)題2、自己寫出一個(gè)實(shí)際中的一次函數(shù)的例子并進(jìn)行討論。
八年級(jí)數(shù)學(xué)分式的運(yùn)算教案(模板15篇)篇十三
1、理解極差的定義,知道極差是用來反映數(shù)據(jù)波動(dòng)范圍的一個(gè)量.
2、會(huì)求一組數(shù)據(jù)的極差.
1、重點(diǎn):會(huì)求一組數(shù)據(jù)的極差.
2、難點(diǎn):本節(jié)課內(nèi)容較容易接受,不存在難點(diǎn)、
從表中你能得到哪些信息?
比較兩段時(shí)間氣溫的高低,求平均氣溫是一種常用的方法、
這是不是說,兩個(gè)時(shí)段的氣溫情況沒有什么差異呢?
根據(jù)兩段時(shí)間的氣溫情況可繪成的折線圖、
觀察一下,它們有區(qū)別嗎?說說你觀察得到的結(jié)果、
本節(jié)課在教材中沒有相應(yīng)的例題,教材p152習(xí)題分析。
問題1可由極差計(jì)算公式直接得出,由于差值較大,結(jié)合本題背景可以說明該村貧富差距較大、問題2涉及前一個(gè)學(xué)期統(tǒng)計(jì)知識(shí)首先應(yīng)回憶復(fù)習(xí)已學(xué)知識(shí)、問題3答案并不唯一,合理即可。
八年級(jí)數(shù)學(xué)分式的運(yùn)算教案(模板15篇)篇十四
教學(xué)目標(biāo):
1、知識(shí)目標(biāo):了解圖案最常見的構(gòu)圖方式:軸對(duì)稱、平移、旋轉(zhuǎn)……,理解簡(jiǎn)單圖案設(shè)計(jì)的意圖。認(rèn)識(shí)和欣賞平移,旋轉(zhuǎn)在現(xiàn)實(shí)生活中的應(yīng)用,能夠靈活運(yùn)用軸對(duì)稱、平移、旋轉(zhuǎn)的組合,設(shè)計(jì)出簡(jiǎn)單的圖案。
2、能力目標(biāo):經(jīng)歷收集、欣賞、分析、操作和設(shè)計(jì)的過程,培養(yǎng)學(xué)生收集和整理信息的能力,分析和解決問題的能力,合作和交流的能力以及創(chuàng)新能力。
3、情感體驗(yàn)點(diǎn):經(jīng)歷對(duì)典型圖案設(shè)計(jì)意圖的分析,進(jìn)一步發(fā)展學(xué)生的空間觀念,增強(qiáng)審美意識(shí),培養(yǎng)學(xué)生積極進(jìn)取的生活態(tài)度。
重點(diǎn)與難點(diǎn):
重點(diǎn):靈活運(yùn)用軸對(duì)稱、平移、旋轉(zhuǎn)……等方法及它們的組合進(jìn)行的圖案設(shè)計(jì)。
難點(diǎn):分析典型圖案的設(shè)計(jì)意圖。
疑點(diǎn):在設(shè)計(jì)的圖案中清晰地表現(xiàn)自己的設(shè)計(jì)意圖。
教具學(xué)具準(zhǔn)備:
提前一周布置學(xué)生以小組為單位,通過各種渠道收集到的圖案、圖標(biāo)的剪貼、臨摹以及。多種常見的圖案及其形成過程的動(dòng)畫演示。
教學(xué)過程設(shè)計(jì):
1、情境導(dǎo)入:在優(yōu)美的音樂中,逐個(gè)展示生活中常見的典型圖案,并讓學(xué)生試著說一說每種圖案標(biāo)志的對(duì)象。(展示課本圖3—23)。
明確在欣賞了圖案后,簡(jiǎn)單地復(fù)習(xí)旋轉(zhuǎn)的概念,為下面圖案的設(shè)計(jì)作好理論準(zhǔn)備。對(duì)教材給出的六個(gè)圖案通過觀察、分析進(jìn)行議論交流,讓學(xué)生初步了解圖案的設(shè)計(jì)中常常運(yùn)用圖形變換的思想方法,為學(xué)生自己設(shè)計(jì)圖案指明方向。其中圖(1)、(2)、(3)、(4)、(5)、(6)都可以通過旋轉(zhuǎn)適合角度形成(可以讓學(xué)生自己說說每個(gè)旋轉(zhuǎn)的角度和旋轉(zhuǎn)的次數(shù)及旋轉(zhuǎn)中心的位置),另外圖(2)、(3)、(5)也可以通過軸對(duì)稱變換形成(可以讓學(xué)生指出對(duì)軸對(duì)稱及對(duì)稱軸的條數(shù)),而圖(2)可以通過平移形成。
2、課本。
1欣賞課本75頁圖3—24的圖案,并分析這個(gè)圖案形成過程。
評(píng)注:圖案是密鋪圖案的代表,旨在通過對(duì)典型圖案的分析欣賞,使學(xué)生逐步能夠進(jìn)行圖案設(shè)計(jì),同時(shí)了解軸對(duì)稱、平移、旋轉(zhuǎn)變換是圖案制作的基本手段。例題解答的關(guān)鍵是確定“基本圖案”,然后再運(yùn)用平移、旋轉(zhuǎn)關(guān)系加以說明,注意旋轉(zhuǎn)中心可以為圖形上某一特征的點(diǎn)。
評(píng)注:可以取其中的任何一個(gè)為基本圖案,然后通過變換得到。而且變化方式也可以是:左下角的圖案通過軸對(duì)稱變換得到左上圖和右下圖。
(二)課內(nèi)練習(xí)。
(1)以小組為單位,由每組指定一個(gè)同學(xué)展示該組搜集得到的圖案,并在全班交流。
(2)利用下面提供的基本圖形,用平移、旋轉(zhuǎn)、軸對(duì)稱、中心對(duì)稱等方法進(jìn)行圖案設(shè)計(jì),并簡(jiǎn)要說明自己的設(shè)計(jì)意圖。
(三)議一議。
生活中還有那些圖案用到了平移或旋轉(zhuǎn)?分析其中的一個(gè),并與同伴進(jìn)行交流。
(四)課時(shí)小結(jié)。
本課時(shí)的重點(diǎn)是了解平移、旋轉(zhuǎn)和軸對(duì)稱變換是圖案設(shè)計(jì)的基本方法,并能運(yùn)用這些變換設(shè)計(jì)出一些簡(jiǎn)單的圖案。
通過今天的學(xué)習(xí),你對(duì)圖案的設(shè)計(jì)又增加了哪些新的認(rèn)識(shí)?(可以利用平移、旋轉(zhuǎn)、軸對(duì)稱等多種方法來設(shè)計(jì),而且設(shè)計(jì)的圖案要能表達(dá)自己的創(chuàng)作意圖,再就是圖案的設(shè)計(jì)一定要新穎,獨(dú)特,這樣才能使人過目不忘,達(dá)到標(biāo)志的效果。)。
進(jìn)一步搜集身邊的各種標(biāo)志性圖案,嘗試著重新設(shè)計(jì)它,并結(jié)合實(shí)際背景分析它的設(shè)計(jì)意圖。
八年級(jí)數(shù)學(xué)分式的運(yùn)算教案(模板15篇)篇十五
《正方形》這節(jié)課是九年義務(wù)教育人教版數(shù)學(xué)教材八年級(jí)下冊(cè)第十九章第二節(jié)的內(nèi)容。縱觀整個(gè)初中教材,《正方形》是在學(xué)生掌握了平行線、三角形、平行四邊形、矩形、菱形等有關(guān)知識(shí)及簡(jiǎn)單圖形的平移和旋轉(zhuǎn)等平面幾何知識(shí),并且具備有初步的觀察、操作等活動(dòng)經(jīng)驗(yàn)的基礎(chǔ)上出現(xiàn)的。既是前面所學(xué)知識(shí)的延續(xù),又是對(duì)平行四邊形、菱形、矩形進(jìn)行綜合的不可缺少的重要環(huán)節(jié)。
本節(jié)課的重點(diǎn)是正方形的概念和性質(zhì),難點(diǎn)是理解正方形與平行四邊形、矩形、菱形之間的內(nèi)在聯(lián)系。根據(jù)大綱要求,本節(jié)課制定了知識(shí)、能力、情感三方面的目標(biāo)。
(一)知識(shí)目標(biāo):
1、要求學(xué)生掌握正方形的概念及性質(zhì);
2、能正確運(yùn)用正方形的性質(zhì)進(jìn)行簡(jiǎn)單的計(jì)算、推理、論證;
(二)能力目標(biāo):
1、通過本節(jié)課培養(yǎng)學(xué)生觀察、動(dòng)手、探究、分析、歸納、總結(jié)等能力;
2、發(fā)展學(xué)生合情推理意識(shí),主動(dòng)探究的習(xí)慣,逐步掌握說理的基本方法;
(三)情感目標(biāo):
1、讓學(xué)生樹立科學(xué)、嚴(yán)謹(jǐn)、理論聯(lián)系實(shí)際的良好學(xué)風(fēng);
2、培養(yǎng)學(xué)生互相幫助、團(tuán)結(jié)協(xié)作、相互討論的團(tuán)隊(duì)精神;
3、通過正方形圖形的完美性,培養(yǎng)學(xué)生品格的完美性。
該段學(xué)生具有一定的獨(dú)立思考和探究的能力,但語言表達(dá)能力方面稍有欠缺,所以在本節(jié)課的教學(xué)過程中,特意設(shè)計(jì)了讓學(xué)生自己組織語言培養(yǎng)說理能力,讓學(xué)生們能逐步提高。
針對(duì)本節(jié)課的特點(diǎn),采用"實(shí)踐--觀察--總結(jié)歸納--運(yùn)用"為主線的教學(xué)方法。
通過學(xué)生動(dòng)手,采取幾種不同的方法構(gòu)造出正方形,然后引導(dǎo)學(xué)生探究正方形的概念。通過觀察、討論、歸納、總結(jié)出正方形性質(zhì)定理,最后以課堂練習(xí)加以鞏固定理,并通過一道拔高題對(duì)定義、性質(zhì)理解、鞏固加以升華。
本節(jié)課重點(diǎn)是從培養(yǎng)學(xué)生探索精神和分析歸納總結(jié)能力為出發(fā)點(diǎn),著重指導(dǎo)學(xué)生動(dòng)手、觀察、思考、分析、總結(jié)得出結(jié)論。在小組討論中通過互相學(xué)習(xí),讓學(xué)生體驗(yàn)合作學(xué)習(xí)的樂趣。
第一環(huán)節(jié):相關(guān)知識(shí)回顧。
以提問的形式復(fù)習(xí)平行四邊形、矩形、菱形的定義及性質(zhì)之后,引導(dǎo)學(xué)生發(fā)現(xiàn)矩形、菱形的實(shí)質(zhì)是由平行四邊形角度、邊長(zhǎng)的變化得到的。并啟發(fā)學(xué)生考慮,若這兩種變化同時(shí)發(fā)生在平行四邊形上,則會(huì)得到什么樣的圖形?讓學(xué)生們通過手上的學(xué)具演示以上兩種變化,從而得出結(jié)論。
第二環(huán)節(jié):新課講解通過學(xué)生們的發(fā)現(xiàn)引出課題“正方形”
1、正方形的定義:引導(dǎo)學(xué)生說出自己變化出正方形的過程,并再次利用課件形象演示出由平行四邊形的邊、角的變化演變出正方形的過程。請(qǐng)同學(xué)們舉手發(fā)言,歸納總結(jié)出正方形定義:一組鄰邊相等,且一個(gè)角是直角的平行四邊形是正方形。再由此定義啟發(fā)學(xué)生們發(fā)現(xiàn)正方形的三個(gè)必要條件,并且由這三個(gè)條件通過重新組合即一組鄰邊相等與平行四邊形組成菱形再加上一個(gè)角是直角可得到正方形的另兩個(gè)定義:一個(gè)角是直角的菱形是正方形;一組鄰邊相等的矩形是正方形。此內(nèi)容借助課件演示其變化過程,進(jìn)一步啟發(fā)學(xué)生發(fā)現(xiàn),正方形既是特殊的菱形,又是特殊的矩形,從而總結(jié)出正方形的性質(zhì)。
2、正方形的性質(zhì)定理1:正方形的四個(gè)角都是直角,四條邊都相等;
定理2:正方形的兩條對(duì)角線相等,并且互相垂直、平分,每條對(duì)角線平分一組對(duì)角。
以上是對(duì)正方形定義和性質(zhì)的學(xué)習(xí),之后是進(jìn)行例題講解。
4、課堂練習(xí):第一部分采用三道有關(guān)正方形的周長(zhǎng)、面積、對(duì)角線、邊長(zhǎng)計(jì)算的填空題,目的是對(duì)正方形性質(zhì)的進(jìn)一步理解,并考察學(xué)生掌握的情況。
第二部分是選擇題,通過體現(xiàn)生活中實(shí)際問題,來提升學(xué)生所學(xué)的知識(shí),并加以綜合練習(xí),提高他們的綜合素質(zhì),使他們充分認(rèn)識(shí)到數(shù)學(xué)實(shí)質(zhì)是來源于生活并要服務(wù)于生活。
5、課堂小結(jié):此環(huán)節(jié)我是通過圖框的形式小結(jié)正方形和前階段所學(xué)特殊四邊形之間的內(nèi)在聯(lián)系,通過對(duì)所學(xué)幾種四邊形內(nèi)在聯(lián)系體現(xiàn)正方形完美的本質(zhì),渲染學(xué)生們應(yīng)追求象正方形一樣方正的品質(zhì),從而要努力學(xué)習(xí)以豐富的知識(shí)充實(shí)自己,達(dá)到理想中的完美。
6、作業(yè)設(shè)計(jì):作業(yè)是教材159頁,第12、14兩小道證明題,通過此作業(yè)讓同學(xué)們進(jìn)一步鞏固有關(guān)正方形的知識(shí)。