通過寫學習心得,可以幫助我們回顧學習的過程,發現問題并加以改進。在這里,小編為大家推薦了一些實習心得的范文,希望能給大家提供一些有益的借鑒和參考。
2023年大數據審計心得體會(案例12篇)篇一
20__年7月5日星期一,再找敏老師和張鳳麗老師的指導下,我們開始了一次審計綜合模擬實訓。目的是為了使我們能比較系統地練習審計的基本流程和技術方法,加深對審計基本理論的理解、基本方法的運用和基本技能的訓練,到達理論與審計實務相結合的統一,提高學生的實踐操作潛力,縮短學生步入社會的適應期,提高審計學專業學生發現線索、查找錯弊問題、綜合分析決定和作出評價及提出推薦的綜合潛力。
審計實訓不僅僅有利于我們加深對審計基本理論的理解、基本方法的運用和基本技能的訓練,到達理論與審計實務相結合的統一,提高學生的實踐操作潛力,縮短學生步入社會的適應期,提高審計學專業學生發現線索、查找錯弊問題、綜合分析決定和作出評價及提出推薦的綜合潛力;而且透過互相學習、互相督促、團結合作,有利于加深同學們之間、同學與老師之間的友誼,增進感情。實訓過程中經過分組分工,明確自我的職責義務,有利于培養同學們團隊意識,對以后的學習工作好處重大。
我們都清楚審計學是一門實踐性很強的課程。我們只依靠理論知識是不夠的,它更需要的是利用我們所學到的理論知識去實踐。透過實訓我們能夠發現自我存在的問題,能夠自我多查閱相關資料或向同學請教,以解決問題。從而,以奠定良好的專業基礎,也為以后的工作做了鋪墊,同時豐富了個人的閱歷。作為一名學生,我想學習的目的不在于透過考試,而是為了獲取知識,獲取工作技能,換句話說,在學校學習是為了能夠適應社會的需要,透過學習保證能夠完成將來的工作,為社會作出貢獻。透過實訓了解到工作的實際需要,使得學習的目的性更明確,得到的效果也相應的更好。
二、實訓的過程及資料。
7月5日實訓開始。第一天的實訓審計工作并沒有真正開始,而是在老師的要求下熟悉軟件,了解審計的大致流程。在進行實質性測試之前,我查看了控制測試的結果,發現,廣東科麗機械股份有限公司的內部控制基本有效,完全能夠進行下一步的實質性測試。
在第一天的實訓課上,老師分配了實訓資料并且將專業兩個班分成四組,每組20個人。以組為單位,實訓結束時上交一份審計結果。我們暫時需要審計的主要資料是貨幣資金、應收賬款、存貨、固定資產、長期借款、主營業務收入、主營業務成本、管理費用、實收資本。
7月6日上午,作為一班第一組,我們召開了一個簡短的會議。會議上,組長對于本次實訓資料作了基本分工:組內20個人又分成四小組,每小組5個人,分別審計上述主要資料;設定主任會計師、部門經理、項目經理(在每小組的小組長任項目經理)。我所在第四小組分到了管理費用審計和實收資本審計兩個資料。由于資料比較少,我們并沒有進行工作細分,而是5個人每人做一份工作底稿上交,最后由項目經理審核決定用最準確,誤差最小的那一份。
為了方便交流,組長還專門建立了名為“一班一組”的qq群,大家在群里熱烈的交談,有什么問題立刻得到解決。
7月8日,每個組基本完成了老師兩天前規定的審計任務。由于完成任務的效率高,提前結束老師布置的資料,因此老師又另外補加了幾項。
7月11日,實訓結束。
三、收獲與體會、存在的問題。
1、收獲與體會。
1)自主學習。實訓期間不像我們平時的上課,在這期間老師不像之前那樣每一節課都和我們一齊,給我們講課,監督我們的學習……而如今幾乎是靠我們自我去把握,我們務必自覺地去學習,遇到不懂的問題時,要自我去查閱相關資料而不是抄同學的實驗結果。遇到問題時,只要找到老師,她是會幫忙我們解決的,從而我們又能夠從中學會一些東西。
2)用心的態度。在實訓期間的確是有點枯燥無味,因為每一天應對的都是同一門課程,一堆數據……這就更需要我們有那份由始至終的用心態度,持續學習的熱情,對知識的渴望。我們需要用心的態度,把每一個實驗做好,把結果做到。
3)團隊精神。在這次的審計實訓,其實也需要我們發揮團隊精神,我們要學會與人溝通,交流,因為有時候只有透過不斷地討論和交流彼此的意見,這樣才能到達實驗的最精確的結果。然而別人遇到不懂的問題時,我們要盡自我的潛力去幫忙同學,因為從中我們也是收益的,我們也會收獲不少東西。
4)理論和實踐相結合。在這次的審計實訓周個性深有體會,原以為學到了一些書本知識就能夠了,就能夠很好地把它運用到實際工作中來。其實我們在學校所學到的書本知識,只是理論知識,我們只有透過實訓,使我們的理論指導實踐,只有這樣,才能更好地與以后的會計工作接軌。我們要做到理論指導實踐,從實踐中不斷總結,從而真正地做到理論與實踐相結合。
2、存在的問題。
除了中間的系統出現了一點小問題外,審計實訓過程基本順利。我做好“實收資本審定表”存盤后退出,然后再進入發現,已經存盤的數據無法從系統中取出。我詢問了其他的同學,發現也有類似的狀況。最后我們只好重做一遍,然后進行抓圖操作,將做好的表整理出來。
經過這些天的審計實訓,是我的審計學知識在實際工作中得到了驗證,并具備了必須的基本實際操作潛力。但在取得實效的同時,我也在操作的過程中發現了自身的許多不足:1、比如自我不夠細心和沒有耐心,經常會因為資料的枯燥而放松自我去想一些不相干的事,以致遺漏了某些細節,導致之后填表時為了謹慎又要重新看一遍,引起了不必要的麻煩;2、雖然實訓中有老師指導,但是很容易就發現自我的審計學基礎知識沒有打好,今后還得加強練習。
由于這次的實訓是團體合作的,小組成員間進行了詳細的分工,所以某些模塊我們沒有參與到,自我感覺有點遺憾,因為不一樣的模塊都是對不一樣的會計基礎知識進行檢驗的結果。
我十分感謝學校能夠帶給我們這次寶貴的實訓機會,還要感謝實訓過程中趙敏老師和張鳳麗老師對我的指導以及同學們的關心和幫忙。透過這次實訓,不僅僅熟練掌握了審計操作的基本技能,將審計專業理論知識和專業實踐有機的結合起來,開闊了我們的視野,增加了我們對審計實踐運作狀況的。
2023年大數據審計心得體會(案例12篇)篇二
本文章是由AI撰寫的,以下是所寫的內容:
一、引言。
隨著數據技術的發展,數據審計已經成為了企業非常重要的一項工作。數據審計通常被定義為“數據的跟蹤、審查和分析,以識別和解決數據不準確、不完整或不一致的問題”。在這篇文章中,我們將分享一些關于數據審計的心得體會。
二、準備工作。
數據審計的第一步是充分準備,包括對數據和業務的了解,整個公司的結構和職能的把握,以及對行業標準和規范的了解和學習。在數據收集和分析之前,還需要建立一個詳細的審核計劃,該計劃涵蓋了審核的時間表、審核標準和要審核的數據。在執行計劃之前,還應進行測試,確保計劃能夠準確無誤地執行。對于一些特殊情況的處理,需要事先有專門負責的相關人員。
三、數據分析。
數據分析是數據審計的核心工作。在進行數據分析前,我們需要先建立基本數據集,確保數據的可靠性和準確性。此外,數據分析需要使用常見的數據分析工具。我們通常使用數據分析軟件進行大數據量的數據處理,包括數據的清洗、轉換、分析和可視化等工作。使用這些工具,可以更快地找出數據異常和錯誤,并幫助我們更快地識別問題并采取相應措施。
四、數據報告和監控。
數據審計完成后,將相關數據問題的分析結果和處理方案匯總成數據審計報告,向相關負責人和部門報告數據審計結果,同時也需要考慮對于未來的數據采集和存儲方式的規范性,預防數據的濫用和泄露。
五、總結。
通過以上幾點,我們深入了解到了數據審計的基本步驟,包括準備工作、數據分析、數據報告和監控。數據審計是數據治理的基本步驟之一,通過數據審計,可以更好地了解企業的數據管理情況,有助于減少數據錯誤,提高數據質量,從而為企業的管理和決策提供基礎依據,更好地發揮企業的效益。
2023年大數據審計心得體會(案例12篇)篇三
今年在集團公司的正確領導下,審計部嚴格遵守國家各項法律、法規,認真履行集團的《內部審計管理制度》。根據集團公司20__年度工作的總體要求和審計計劃,內部審計工作以集團公司企業管理年為中心,加強企業精細化管理,突出重點,切實履行職責,較好地完成了全年審計工作計劃和領導交辦的審計任務,現就20__年度審計工作總結如下:。
一、完成主要工作。
20__年共完成審計項目97項,其中年度財務收支及年度預算執行狀況審計12項,專項經營考核審計1項,任期經濟職責審計2項,投資企業財務收支與資產負債審計3項,基建工程項目預算審計38項,基建工程項目結算審計41項,為完善集團經營管理、提高經濟效益做出了貢獻。
1、預算執行審計與財務收支審計并軌同行。
2、開展專項經營考核審計。
20cc年7月,公司為扭轉__汽車租賃公司年年虧損局面,重新任命總經理,并與之簽訂經營考核職責書。為配合集團經營管理,審計部精心研讀文件精神,深入企業了解經營狀況,與相關單位反復磋商,報請主管領導審核,最終確認__汽車租賃公司的經營績效考核結果,維護公司經營考核嚴肅性,同時也肯定了二級企業勤奮、用心的經營成果。
3、完善投資企業審計,帶給投資評估依據。
為評價對外投資企業的管理效果的需要,根據集團公司領導安排對投資企業進行審計,對20cc年度省深汕、粵深、太壹等三家公司財務收支與資產負債審計,深入、綜合評價投資公司的管理效益。個性是太壹公司經營合同到期,需對今后一段時間進行經營預測,為投資決策帶給依據。
4、加強離任審計,帶給人事管理參考。
20cc年,寶__原總經理、新_湖副總經理崗位變動,根據集團公司安排進行離任審計,對其任期內經營目標的完成、經營、資產管理等進行全面評價,為集團人事考核帶給參考。
5、完善基建工程審計。
20__年,基建工程項目多,現場監管頻繁、預結算審計任務繁重。工程審計人員深入工程項目現場,開展現場工程監督、材料審計等,糾正相關部門流程方面存在錯誤,做到實施事前項目審查、事中監督管理和事后造價控制的系統化工程審計模式。20__年完成基建工程項目預算審計38項,預算金額843。44萬元,核減金額286。84萬元;基建工程項目結算審計40項,結算報審金額1,392。40萬元,核減金額384。39萬元。
根據集團公司要求,對工程結算超過百萬的基建項目,引進外部腦力與市場信息,公平、公正進行工程結算審核。20__年引進外部力量進行工程造價審核1項,結算報審金額228。13萬元,核減金額119。93萬元。為集團降低了工程造價,節省超多的資金。
二、主要工作體會。
1、集團領導重視,是推動內部審計工作的關鍵。
20__年度在集團公司主管領導的高度重視和支持下,克服審計部自有人手不足等困難,成功從二級企業借調財務部長等業務能手來支援,二級企業財務部長熟悉管理與業務流程,給審計工作進展帶來必須便利,推動年度審計工作順利完成。
2、加強過程管控,提升內審質量。
質量是內部審計工作的生命。審計部從制度、手段和成果管理等多個層面入手,全面提升內部審計工作質量。
在管理標準化方面,審計部在審計管理、內部控制、風險管理、審計檔案等方面,制定和完善了管理辦法和實施方案,詳細規定審計年度計劃制定、方案設計、證據收集、底稿日志編寫、報告質量控制、檔案管理等全流程標準體系,逐步構成一整套行之有效的內部審計制度體系。
在信息化方面,隨著企業erp系統上線運行,erp系統豐富的信息量和強大的查尋與信息分析功能能夠大大助力審計工作。審計人員用心學習erp流程操作、深化erp審計系統應用,著手開展erp環境下的項目審計工作。
3、延伸審計項目,合并審計目的,注重審計存在問題整改落實。
2023年大數據審計心得體會(案例12篇)篇四
信息時代的到來,我們感受到的是技術變化日新月異,隨之而來的是生活方式的轉變,我們這樣評論著的信息時代已經變為曾經。如今,大數據時代成為炙手可熱的話題。
信息和數據的定義。維基百科解釋:信息,又稱資訊,是一個高度概括抽象概念,是一個發展中的動態范疇,是進行互相交換的內容和名稱,信息的界定沒有統一的定義,但是信息具備客觀、動態、傳遞、共享、經濟等特性卻是大家的共識。數據:或稱資料,指描述事物的符號記錄,是可定義為意義的實體,它涉及到事物的存在形式。它是關于事件之一組離散且客觀的事實描述,是構成信息和知識的原始材料。數據可分為模擬數據和數字數據兩大類。數據指計算機加工的“原料”,如圖形、聲音、文字、數、字符和符號等。從定義看來,數據是原始的處女地,需要耕耘。信息則是已經處理過的可以傳播的資訊。信息時代依賴于數據的爆發,只是當數據爆發到無法駕馭的狀態,大數據時代應運而生。
在大數據時代,大數據時代區別與轉變就是,放棄對因果關系的渴求,而取而代之關注相關關系。也就是說只要知道“是什么”,而不需要知道“為什么”。數據的更多、更雜,導致應用主意只能盡量觀察,而不是傾其所有進行推理。小數據停留在說明過去,大數據用驅動過去來預測未來。數據的用途意在何為,與數據本身無關,而與數據的解讀者有關,而相關關系更有利于預測未來。大數據更多的體現在海量非結構化數據本身與處理方法的整合。大數據更像是理論與現實齊頭并進,理論來創立處理非結構化數據的方法,處理結果與未來進行驗證。大數據是在互聯網背景下數據從量變到質變的過程。小數據時代也即是信息時代,是大數據時代的前提,大數據時代是升華和進化,本質是相輔相成,而并非相離互斥。
數據未來的故事。數據的發展,給我們帶來什么預期和啟示?金融業業天然有大數據的潛質。客戶數據、交易數據、管理數據等海量數據不斷增長,海量機遇和挑戰也隨之而來,適應變革,適者生存。我們可以有更廣闊的學習空間、可以有更精準的決策判斷能力這些都基于數據的收集、整理、駕馭、分析能力,基于脫穎而出的創新思維和執行。因此,建設“數據倉庫”,培養“數據思維”,養成“數據治理”,創造“數據融合”,實現“數據應用”才能擁抱“大數據”時代,從數據中攫取價值,笑看風云變換,穩健贏取未來。
一部似乎還沒有寫完的書。
——讀《大數據時代》有感及所思。
讀了《大數據時代》后,感覺到一個大變革的時代將要來臨。雖然還不怎么明了到底要徹底改變哪些思維和操作方式,但顯然作者想要“終結”或顛覆一些傳統上作為我們思維和生存基本理論、方法和方式。在這樣的想法面前,我的思想被強烈震撼,不禁戰栗起來。“在小數據時代,我們會假象世界是怎樣運作的,然后通過收集和分析數據來驗證這種假想。”“隨著由假想時代到數據時代的過渡,我們也很可能認為我們不在需要理論了?!睍袔缀蹩隙ㄒ嵏步y計學的理論和方法,也試圖通過引用《連線》雜志主編安德森的話“量子物理學的理論已經脫離實際”來“終結”量子力學。對此我很高興,因為統計學和量子力學都是我在大學學習時學到抽筋都不能及格的課目。但這兩個理論實在太大,太權威,太基本了,我想我不可能靠一本書就能擺脫這兩個讓我頭疼一輩子的東西。作者其實也不敢旗幟鮮明地提出要顛覆它們的論點,畢竟還是在前面加上了“很可能認為”這樣的保護傘。
有偏見”,跟作者一起先把統計學和量子力學否定掉再說。反正我也不喜歡、也學不會它們。
當我們人類的數據收集和處理能力達到拍字節甚至更大之后,我們可以把樣本變成全部,再加上有能力正視混雜性而忽視精確性后,似乎真的可以拋棄以抽樣調查為基礎的統計學了。但是由統計學和量子力學以及其他很多“我們也很可能認為我們不再需要的”理論上溯,它們幾乎都基于一個共同的基礎——邏輯。要是不小心把邏輯或者邏輯思維或者邏輯推理一起給“不再需要”的話,就讓我很擔心了!《大數據時代》第16頁“大數據的核心就是預測”。邏輯是——描述時空信息“類”與“類”之間長時間有效不變的先后變化關系規則。兩者似乎是做同一件事??纱髷祿摹安皇且蚬P系,而是相關關系”,“知道是什么就夠了,沒必要知道為什么”,而邏輯學四大基本定律(同一律、矛盾律、排中律和充足理由律)中的充足理由律又“明確規定”任何事物都有其存在的充足理由。且邏輯推理三部分——歸納邏輯、溯因邏輯和演繹邏輯都是基于因果關系。兩者好像又是對立的。在同一件事上兩種方法對立,應該只有一個結果,就是要否定掉其中之一。這就是讓我很擔心的原因。
可我卻不能拭目以待,像旁觀者一樣等著哪一個“脫穎而出”,因為我身處其中。問題不解決,我就沒法思考和工作,自然就沒法活了!
更何況還有兩個更可怕的事情。
其二:人和機器的根本區別在于人有邏輯思維而機器沒有?!洞髷祿r代》也擔心“最后做出決策的將是機器而不是人”。如果真的那一天因為放棄邏輯思維而出現科幻電影上描述的機器主宰世界消滅人類的結果,那我還不如現在就趁早跳樓。
都是在胡說八道,所謂的擔心根本不存在。但問題出現了,還是解決的好,不然沒法睡著覺。自己解決不了就只能依靠專家來指點迷津。
所以想向《大數據時代》的作者提一個合理化建議:把這本書繼續寫下去,至少加一個第四部分——大數據時代的邏輯思維。
合纖部車民。
2013年11月10日。
一、學習總結。
采用某些技術,從技術中獲得洞察力,也就是bi或者分析,通過分析和優化實現。
對企業未來運營的預測。
在如此快速的到來的大數據革命時代,我們還有很多知識需要學習,許多思維需要轉變,許多技術需要研究。職業規劃中,也需充分考慮到大數據對于自身職業的未來發展所帶來的機遇和挑戰。當我們掌握大量數據,需要考慮有多少數字化的數據,又有哪些可以通過大數據的分析處理而帶來有價值的用途?在大數據時代制勝的良藥也許是創新的點子,也許可以利用外部的數據,通過多維化、多層面的分析給我們日后創業帶來價值。借力,順勢,合作共贏。
2023年大數據審計心得體會(案例12篇)篇五
描述小組在完成平臺安裝時候遇到的問題以及如何解決這些問題的,要求截圖加文字描述。
問題一:在決定選擇網站綁定時,當時未找到網站綁定的地方。解決辦法:之后小組討論后,最終找到網站綁定的地方,點擊后解決了這個問題。
問題二:當時未找到tcp/ip屬性這一欄。
解決辦法:當時未找到tcp/ip屬性這一欄,通過老師的幫助和指導,順利的點擊找到了該屬性途徑,啟用了這一屬性,完成了這一步的安裝步驟。
問題三:在數據庫這一欄中,當時未找到“foodmartsaledw”這個文件。
問題四:在此處的sqlserver的導入和導出向導,這個過程非常的長。
解決辦法:在此處的sqlserver的導入和導出向導,這個過程非常的長,當時一直延遲到了下課的時間,小組成員經討論,懷疑是否是電腦不兼容或其他問題,后來經問老師,老師說此處的加載這樣長的時間是正常的,直到下課后,我們將電腦一直開著到寢室直到軟件安裝完為止。
問題五:問題二:.不知道維度等概念,不知道怎么設置表間關系的數據源。關系方向不對。
解決辦法:百度維度概念,設置好維度表和事實表之間的關系,關系有時候是反的——點擊反向,最后成功得到設置好表間關系后的數據源視圖。(如圖所示)。
這個大圖當時完全不知道怎么做,后來問的老師,老師邊講邊幫我們操作完成的。
問題六:由于發生以下連接問題,無法將項目部署到“localhost”服務器:無法建立連接。請確保該服務器正在運行。若要驗證或更新目標服務器的名稱,請在解決方案資源管理器中右鍵單擊相應的項目、選擇“項目屬性”、單擊“部署”選項卡,然后輸入服務器的名稱。”因為我在配置數據源的時候就無法識別“localhost”,所以我就打開數據庫屬性頁面:圖1-圖2圖一:
圖二:
解決辦法:解決辦法:圖2步驟1:從圖1到圖2后,將目標下的“服務器”成自己的sqlserver服務器名稱行sqlservermanagementstudio可以)步驟2:點確定后,選擇“處理”,就可以成功部署了。
問題七:無法登陸界面如圖:
解決方法:嘗試了其他用戶登陸,就好了。
(1)在幾周的學習中,通過老師課堂上耐心細致的講解,耐心的指導我們如何一步一步的安裝軟件,以及老師那些簡單清晰明了的課件,是我了解了sql的基礎知識,學會了如何創建數據庫,以及一些基本的數據應用。陌生到熟悉的過程,從中經歷了也體會到了很多感受,面臨不同的知識組織,我們也遇到不同困難。
理大數據的規模。大數據進修學習內容模板:
linux安裝,文件系統,系統性能分析hadoop學習原理。
大數據飛速發展時代,做一個合格的大數據開發工程師,只有不斷完善自己,不斷提高自己技術水平,這是一門神奇的課程。
2、在學習sql的過程中,讓我們明白了原來自己的電腦可以成為一個數據庫,也可以做很多意想不到的事。以及在學習的過程中讓我的動手能力增強了,也讓我更加懂得了原來電腦的世界是如此的博大精深,如此的神秘。通過這次的學習鍛煉了我們的動手能力,上網查閱的能力。改善了我只會用電腦上網的尷尬處境,是電腦的用處更大。讓我們的小組更加的團結,每個人對自己的分工更加的明確,也鍛煉了我們的團結協作,互幫互助的能力。
3、如果再有機會進行平臺搭建,會比這一次的安裝更加順手。而在導入數據庫和報表等方面也可以避免再犯相同的錯誤,在安裝lls時可以做的更好。相信報表分析也會做的更加簡單明了有條理。
總結。
大數據時代是信息化社會發展必然趨勢在大學的最后一學期里學習了這門課程是我們受益匪淺。讓我們知道了大數據大量的存在于現代社會生活中隨著新興技術的發展與互聯網底層技術的革新數據正在呈指數級增長所有數據的產生形式都是數字化。如何收集、管理和分析海量數據對于企業從事的一切商業活動都顯得尤為重要。
大數據時代是信息化社會發展必然趨勢,我們只有緊緊跟隨時代的發展才能在以后的工作生活中中獲得更多的知識和經驗。
三、
結語。
2023年大數據審計心得體會(案例12篇)篇六
讀了《大數據時代》后,感覺到一個大變革的時代將要來臨。雖然還不怎么明了到底要徹底改變哪些思維和操作方式,但顯然作者想要“終結”或顛覆一些傳統上作為我們思維和生存基本理論、方法和方式。在這樣的想法面前,我的思想被強烈震撼,不禁戰栗起來。
“在小數據時代,我們會假象世界是怎樣運作的,然后通過收集和分析數據來驗證這種假想?!薄半S著由假想時代到數據時代的過渡,我們也很可能認為我們不在需要理論了?!睍袔缀蹩隙ㄒ嵏步y計學的理論和方法,也試圖通過引用《連線》雜志主編安德森的話“量子物理學的理論已經脫離實際”來“終結”量子力學。對此我很高興,因為統計學和量子力學都是我在大學學習時學到抽筋都不能及格的課目。但這兩個理論實在太大,太權威,太基本了,我想我不可能靠一本書就能擺脫這兩個讓我頭疼一輩子的東西。作者其實也不敢旗幟鮮明地提出要顛覆它們的論點,畢竟還是在前面加上了“很可能認為”這樣的保護傘。
近幾十年,我們總是在遇到各種各樣的新思維。在新思維面前我們首先應該做到的就是要破和立,要改變自己的傳統,跟上時代的腳步。即使腦子還跟不上,嘴巴上也必須跟上,否則可能會被扣上思想僵化甚至阻礙世界發展的大帽子。既然大數據是“通往未來的必然改變”,那我就必須“不受限于傳統的思維模式和特定領域里隱含的固有偏見”,跟作者一起先把統計學和量子力學否定掉再說。反正我也不喜歡、也學不會它們。
當我們人類的數據收集和處理能力達到拍字節甚至更大之后,我們可以把樣本變成全部,再加上有能力正視混雜性而忽視精確性后,似乎真的可以拋棄以抽樣調查為基礎的統計學了。但是由統計學和量子力學以及其他很多“我們也很可能認為我們不再需要的”理論上溯,它們幾乎都基于一個共同的基礎——邏輯。要是不小心把邏輯或者邏輯思維或者邏輯推理一起給“不再需要”的話,就讓我很擔心了!
《大數據時代》第16頁“大數據的核心就是預測”。邏輯是——描述時空信息“類”與“類”之間長時間有效不變的先后變化關系規則。兩者似乎是做同一件事??纱髷祿摹安皇且蚬P系,而是相關關系”,“知道是什么就夠了,沒必要知道為什么”,而邏輯學四大基本定律(同一律、矛盾律、排中律和充足理由律)中的充足理由律又“明確規定”任何事物都有其存在的充足理由。且邏輯推理三部分——歸納邏輯、溯因邏輯和演繹邏輯都是基于因果關系。兩者好像又是對立的。在同一件事上兩種方法對立,應該只有一個結果,就是要否定掉其中之一。這就是讓我很擔心的原因。
可我卻不能拭目以待,像旁觀者一樣等著哪一個“脫穎而出”,因為我身處其中。問題不解決,我就沒法思考和工作,自然就沒法活了!更何況還有兩個更可怕的事情。
其一:量子力學搞了一百多年,為了處理好混雜性問題,把質量和速度結合到能量上去了,為了調和量子力學與相對論的矛盾,又搞出一個量子場論,再七搞八搞又有了蟲洞和羅森橋,最后把四維的時空彎曲成允許時間旅行的樣子,恨不得馬上造成那可怕的時間旅行機器。唯一阻止那些“愛因斯坦”們“瞎胡鬧”的就是因果關系,因為爸爸就是爸爸,兒子就是兒子。那么大數據會不會通過正視混雜性,放棄因果關系最后反而搞出時間機器,讓爸爸不再是爸爸,兒子不再是兒子了呢?其二:人和機器的根本區別在于人有邏輯思維而機器沒有?!洞髷祿r代》也擔心“最后做出決策的將是機器而不是人”。如果真的那一天因為放棄邏輯思維而出現科幻電影上描述的機器主宰世界消滅人類的結果,那我還不如現在就趁早跳樓。
還好我知道自己對什么統計學、量子力學、邏輯學和大數據來說都是門外漢,也許上面一大篇都是在胡說八道,所謂的擔心根本不存在。但問題出現了,還是解決的好,不然沒法睡著覺。自己解決不了就只能依靠專家來指點迷津。
所以想向《大數據時代》的作者提一個合理化建議:把這本書繼續寫下去,至少加一個第四部分——大數據時代的邏輯思維。
2023年大數據審計心得體會(案例12篇)篇七
大數據時代的到來,給人們的學習和生活帶來了巨大的變革。近期,我讀完了一本關于大數據的書籍《大數據》,在書中我了解到了大數據的定義、特點、應用和對社會產生的影響。通過這本書的學習,我深刻認識到了大數據對于現代社會的重要性,并從中汲取了一些啟示和體會。
首先,我的第一個體會是對大數據的新認識。在書中,大數據被定義為指數據量巨大、處理難度大,無法通過傳統的數據處理工具和方法進行處理和分析的數據。大數據的特點主要包括“四V”,即數據量大(Volume)、處理速度快(Velocity)、數據種類繁多(Variety)和價值密度低(Value)。通過學習這些概念,我意識到了大數據處理的復雜性和重要性。在現代社會中,隨著互聯網技術的快速發展,海量的數據正在不斷產生,而利用這些數據尋找規律、洞察趨勢對于企業和科學研究等領域都具有重要意義。
其次,我通過閱讀《大數據》這本書,對大數據應用的廣泛性有了更深入的了解。大數據不僅可以被用于商業領域的市場調研和用戶行為分析,還可以被運用于醫療、金融、政府等各個領域。例如,在醫療領域,大數據分析可以幫助醫生更準確地診斷疾病,提高治療效果;在金融領域,大數據可以用于風險評估和投資策略制定。這些例子讓我認識到大數據不僅僅是一個概念,它已經深入到我們的生活和工作中,并對各個領域產生了重要的影響。
第三,大數據在社會中的影響力也讓我深受觸動。通過大數據的分析,科學家們可以預測自然災害的發生和規模,幫助人們采取相應的措施減少災害造成的損失;政府們可以利用大數據分析來改進公共服務和決策,提高社會治理效能。大數據還可以通過對人群行為的分析,為企業提供精準的廣告定位和銷售策略,幫助企業提高競爭力。大數據的應用正引領著社會的進步和發展,讓我感到對于大數據的學習和掌握變得格外重要。
第四,在書中我還學到了大數據的應對方法和技術。大數據處理的復雜性要求我們運用先進的技術和工具。例如,云計算能夠提供強大的計算和存儲能力,幫助我們處理海量的數據;機器學習和人工智能則能夠幫助我們從復雜的數據中提取有價值的信息。了解到這些技術后,我決定在大數據領域繼續深入學習,提高自己的技術水平。
最后,通過讀完《大數據》,我深刻體會到大數據的革命性和不可逆轉性。大數據已經成為了當今社會的一個重要標志,影響著我們生活的各個方面。不僅是企業和科研機構,普通人也需要掌握一定的大數據分析和處理能力,才能適應這個快速變化的時代。因此,在日常生活中,我們要提高自己對于大數據的認識和運用,并不斷學習相關的知識和技能。
總之,通過閱讀《大數據》,我對大數據有了全新的認識,了解到了其廣泛的應用領域和對社會的重要影響。同時,我也學到了一些大數據的應對方法和技術。大數據已經成為一個時代的產物,對于每個人來說,掌握大數據的知識和技能變得愈發重要。我希望通過自己的努力,能夠在大數據時代中不斷學習和成長,為社會的發展貢獻自己的力量。
2023年大數據審計心得體會(案例12篇)篇八
隨著云計算和物聯網的日漸普及,大數據逐漸成為各行各業的核心資源。然而,海量的數據需要采取一些有效措施來處理和分析,以便提高數據質量和精度。由此,數據預處理成為數據挖掘中必不可少的環節。在這篇文章中,我將分享一些在大數據預處理方面的心得體會,希望能夠幫助讀者更好地應對這一挑戰。
作為數據挖掘的第一步,預處理的作用不能被忽視。一方面,在真實世界中采集的數據往往不夠完整和準確,需要通過數據預處理來清理和過濾;另一方面,數據預處理還可以通過特征選取、數據變換和數據采樣等方式,將原始數據轉化為更符合建模需求的格式,從而提高建模的精度和效率。
數據預處理的方法有很多,要根據不同的數據情況和建模目的來選擇適當的方法。在我實際工作中,用到比較多的包括數據清理、數據變換和離散化等方法。其中,數據清理主要包括異常值處理、缺失值填充和重復值刪除等;數據變換主要包括歸一化、標準化和主成分分析等;而離散化則可以將連續值離散化為有限個數的區間值,方便后續分類和聚類等操作。
第四段:實踐中的應用。
雖然看起來理論很簡單,但在實踐中往往遇到各種各樣的問題。比如,有時候需要自己編寫一些腳本來自動化數據預處理的過程。而這需要我們對數據的文件格式、數據類型和編程技巧都非常熟悉。此外,在實際數據處理中,還需要經常性地檢查和驗證處理結果,確保數據質量達到預期。
第五段:總結。
綜上所述,數據預處理是數據挖掘中非常重要的一步,它可以提高數據質量、加快建模速度和提升建模效果。在實際應用中,我們需要結合具體業務情況和數據特征來選擇適當的預處理方法,同時也需要不斷總結經驗,提高處理效率和精度??傊?,數據預處理是數據挖掘中的一道不可或缺的工序,只有通過正確的方式和方法,才能獲得可靠和準確的數據信息。
2023年大數據審計心得體會(案例12篇)篇九
大數據時代成為炙手可熱的話題。筆者在這說明信息和數據,只是試圖首先說明信息、數據的關系和不同,也試圖說明,為什么信息時代轉變為了大數據時代?大數據時代帶給了我們什么?下面是本站小編為大家收集整理的大數據時代。
歡迎大家閱讀。
這本書里主要介紹的是大數據在現代商業運作上的應用,以及它對現代商業運作的影響。
《大數據時代》這本書的結構框架遵從了學術性書籍的普遍方式。也既,從現象入手,繼而通過對現象的解剖提出對這一現象的解釋。然后在通過解釋在對未來進行預測,并對未來可能出現的問題提出自己看法與對策。
下面來重點介紹《大數據時代》這本書的主要內容。
《大數據時代》開篇就講了google通過人們在搜索引擎上搜索關鍵字留下的數據提前成功的預測了20xx年美國的h1n1的爆發地與傳播方向以及可能的潛在患者的事情。google的預測比政府提前將近一個月,相比之下政府只能夠在流感爆發一兩個周之后才可以弄到相關的數據。同時google的預測與政府數據的相關性高達97%,這也就意味著google預測數據的置信區間為3%,這個數字遠遠小于傳統統計學上的常規置信區間5%!而這個數字就是大數據時代預測結果的相對準確性與事件的可預測性的最好證明!通過這一事以及其他的案例,維克托提出了在大數據時代“樣本=總體”的思想。我們都知道當樣本無限趨近于總體的時候,通過計算得到的描述性數據將無限的趨近于事件本身的性質。而之前采取的“樣本總體”的做法很大程度上無法做到更進一步的描述事物,因為之前的時代數據的獲取與存儲處理本身有很大的難度只導致人們采取抽樣的方式來測量事物。而互聯網終端與計算機的出現使數據的獲取、存儲與處理難度大大降低,因而相對準確性更高的“樣本=總體”的測算方式將成為大數據時代的主流,同時大數據時代本身也是建立在大批量數據的存儲與處理的基礎之上的。
接下來,維克多又通過了ibm追求高精確性的電腦翻譯計劃的失敗與google只是將所有出現過的相應的文字語句掃描并儲存在詞庫中,所以無論需要翻譯什么,只要有聯系google詞庫就會出現翻譯,雖然有的時候的翻譯很無厘頭,但是大多數時候還是正確的,所以google的電腦翻譯的計劃的成功,表明大數據時代對準確性的追求并不是特別明顯,但是相反大數據時代是建立在大數據的基礎住上的,所以大數據時代追求的是全方位覆蓋的數字測度而不管其準確性到底有多高,因為大量的數據會湮埋少數有問題的數據所帶來的影響。同時大量的數據也會無限的逼近事物的原貌。
之后,維克托又預測了一個在大數據時代催生的重要職業——數據科學家,這是一群數學家、統計學與編程家的綜合體,這一群人將能夠從獲取的數據中得到任何他們想要的結果。換言之,只要數據充足我們的一切外在的與內在的我們不想讓他人知道的東西都見會在這一群家伙的面前展現得淋漓盡致。所以為了避免個人隱私在大數據時代被這一群人利用,維克托建議將這一群人分為兩部分,一部分使用數據為商業部門服務,而另一群人則負責審查這一些人是否合法的獲得與應用數據,是否侵犯了個人隱私。
無論如何,大數據時代將會到來,不管我們接受還是不接受!
我覺得《大數據時代》這本書寫的很好,很值得一讀。因為會給我們很多啟發,比如你在相關的社交網站發表的言論或者照片都很有可能被“數據科學家”們利用,從而再將相關數據賣給各大網店。不過,事實就是我們將會成為被預測被引誘的對象。所以說,小心你在網上留下的痕跡。
我喜歡這本書是因為它給我展現了一個新的世界。
讀了《大數據時代》后,感覺到一個大變革的時代將要來臨。雖然還不怎么明了到底要徹底改變哪些思維和操作方式,但顯然作者想要“終結”或顛覆一些傳統上作為我們思維和生存基本理論、方法和方式。在這樣的想法面前,我的思想被強烈震撼,不禁戰栗起來。
“在小數據時代,我們會假象世界是怎樣運作的,然后通過收集和分析數據來驗證這種假想。”“隨著由假想時代到數據時代的過渡,我們也很可能認為我們不在需要理論了。”書中幾乎肯定要顛覆統計學的理論和方法,也試圖通過引用《連線》雜志主編安德森的話“量子物理學的理論已經脫離實際”來“終結”量子力學。對此我很高興,因為統計學和量子力學都是我在大學學習時學到抽筋都不能及格的課目。但這兩個理論實在太大,太權威,太基本了,我想我不可能靠一本書就能擺脫這兩個讓我頭疼一輩子的東西。作者其實也不敢旗幟鮮明地提出要顛覆它們的論點,畢竟還是在前面加上了“很可能認為”這樣的保護傘。
近幾十年,我們總是在遇到各種各樣的新思維。在新思維面前我們首先應該做到的就是要破和立,要改變自己的傳統,跟上時代的腳步。即使腦子還跟不上,嘴巴上也必須跟上,否則可能會被扣上思想僵化甚至阻礙世界發展的大帽子。既然大數據是“通往未來的必然改變”,那我就必須“不受限于傳統的思維模式和特定領域里隱含的固有偏見”,跟作者一起先把統計學和量子力學否定掉再說。反正我也不喜歡、也學不會它們。
當我們人類的數據收集和處理能力達到拍字節甚至更大之后,我們可以把樣本變成全部,再加上有能力正視混雜性而忽視精確性后,似乎真的可以拋棄以抽樣調查為基礎的統計學了。但是由統計學和量子力學以及其他很多“我們也很可能認為我們不再需要的”理論上溯,它們幾乎都基于一個共同的基礎——邏輯。要是不小心把邏輯或者邏輯思維或者邏輯推理一起給“不再需要”的話,就讓我很擔心了!
《大數據時代》第16頁“大數據的核心就是預測”。邏輯是——描述時空信息“類”與“類”之間長時間有效不變的先后變化關系規則。兩者似乎是做同一件事??纱髷祿摹安皇且蚬P系,而是相關關系”,“知道是什么就夠了,沒必要知道為什么”,而邏輯學四大基本定律(同一律、矛盾律、排中律和充足理由律)中的充足理由律又“明確規定”任何事物都有其存在的充足理由。且邏輯推理三部分——歸納邏輯、溯因邏輯和演繹邏輯都是基于因果關系。兩者好像又是對立的。在同一件事上兩種方法對立,應該只有一個結果,就是要否定掉其中之一。這就是讓我很擔心的原因。
可我卻不能拭目以待,像旁觀者一樣等著哪一個“脫穎而出”,因為我身處其中。問題不解決,我就沒法思考和工作,自然就沒法活了!更何況還有兩個更可怕的事情。
其一:量子力學搞了一百多年,為了處理好混雜性問題,把質量和速度結合到能量上去了,為了調和量子力學與相對論的矛盾,又搞出一個量子場論,再七搞八搞又有了蟲洞和羅森橋,最后把四維的時空彎曲成允許時間旅行的樣子,恨不得馬上造成那可怕的時間旅行機器。唯一阻止那些“愛因斯坦”們“瞎胡鬧”的就是因果關系,因為爸爸就是爸爸,兒子就是兒子。那么大數據會不會通過正視混雜性,放棄因果關系最后反而搞出時間機器,讓爸爸不再是爸爸,兒子不再是兒子了呢?其二:人和機器的根本區別在于人有邏輯思維而機器沒有?!洞髷祿r代》也擔心“最后做出決策的將是機器而不是人”。如果真的那一天因為放棄邏輯思維而出現科幻電影上描述的機器主宰世界消滅人類的結果,那我還不如現在就趁早跳樓。
還好我知道自己對什么統計學、量子力學、邏輯學和大數據來說都是門外漢,也許上面一大篇都是在胡說八道,所謂的擔心根本不存在。但問題出現了,還是解決的好,不然沒法睡著覺。自己解決不了就只能依靠專家來指點迷津。
所以想向《大數據時代》的作者提一個合理化建議:把這本書繼續寫下去,至少加一個第四部分——大數據時代的邏輯思維。
在《大數據時代》一書中,大數據時代與小數據時代的區別:1、思維慣例。大數據時代區別與轉變就是,放棄對因果關系的渴求,而取而代之關注相關關系。也就是說只要知道“是什么”,而不需要知道“為什么”。作者語言絕對,卻反思其本質區別。數據的更多、更雜,導致應用主意只能盡量觀察,而不是傾其所有進行推理?這也是明智之舉2、使用用途。小數據停留在說明過去,大數據用驅動過去來預測未來。筆者認為數據的用途意在何為,與數據本身無關,而與數據的解讀者有關,而相關關系更有利于預測未來。3、結構。大數據更多的體現在海量非結構化數據本身與處理方法的整合。大數據更像是理論與現實齊頭并進,理論來創立處理非結構化數據的方法,處理結果與未來進行驗證。4、分析基礎。大數據是在互聯網背景下數據從量變到質變的過程。筆者認為,小數據時代也即是信息時代,是大數據時代的前提,大數據時代是升華和進化,本質是相輔相成,而并非相離互斥。
數據未來的故事。數據的發展,給我們帶來什么預期和啟示?銀行業天然有大數據的潛質??蛻魯祿?、交易數據、管理數據等海量數據不斷增長,海量機遇和挑戰也隨之而來,適應變革,適者生存。我們可以有更廣闊的業務發展空間、可以有更精準的決策判斷能力、可以有更優秀的經營管理能力??可以這些都基于數據的收集、整理、駕馭、分析能力,基于脫穎而出的創新思維和執行。因此,建設“數據倉庫”,培養“數據思維”,養成“數據治理”,創造“數據融合”,實現“數據應用”才能擁抱“大數據”時代,從數據中攫取價值,笑看風云變換,穩健贏取未來。
2023年大數據審計心得體會(案例12篇)篇十
近年來,隨著科技的迅速發展和互聯網的普及,大數據已經逐漸成為企業決策和市場營銷的利器。在這個信息爆炸的時代,大數據的應用給企業帶來了巨大的商機和競爭優勢。然而,如何正確運用和分析大數據成為了當前企業面臨的難題。在我從事市場營銷工作的過程中,我慢慢積累了一些關于大數據營銷的心得體會。
第二段:數據收集與分析。
在大數據時代,數據的收集和分析是非常重要的環節。對于企業來說,了解消費者的購買行為和偏好是制定營銷策略的基礎。通過互聯網和移動設備等信息渠道的廣泛應用,企業可以獲得大量的數據資源。在數據收集方面,企業需要通過合法的途徑獲得用戶的授權,并且保護用戶的隱私安全。對于數據分析,企業需要依靠先進的數據分析工具和技術,將龐大的數據量轉化為有意義的商業價值,并深度挖掘數據背后的關聯關系和消費者行為特點。
第三段:個性化營銷。
大數據時代的一個重要特點是個性化營銷的實施。通過大數據分析,企業可以準確了解消費者的需求和興趣,從而為其提供更加個性化的產品和服務。個性化營銷不僅可以提高消費者的購買滿意度,還可以增加企業的用戶粘性和忠誠度。例如,在電商平臺,通過分析用戶的瀏覽和購買記錄,企業可以為用戶推薦感興趣的商品,提高用戶的購買轉化率。個性化營銷的實施需要企業具備良好的數據分析能力和精準的營銷策略。
第四段:精準投放與實時監控。
大數據營銷的另一個重要優勢是精準投放和實時監控。通過大數據分析,企業可以更加精確地確定目標受眾和投放渠道,避免資源的浪費和效果的缺失。同時,企業可以依靠實時數據監控市場反饋,及時調整營銷策略和方案,提高市場反應的速度和精度。例如,在線廣告投放中,企業可以根據用戶的興趣和行為特點進行定向廣告投放,提高廣告的點擊和轉化率。精準投放和實時監控可以幫助企業更好地運用有限的資源,取得更好的市場效果。
第五段:隱私保護與道德問題。
大數據營銷的廣泛應用也伴隨著隱私保護和道德問題的關注。企業在收集和利用大數據的同時,需要遵守相關法律法規和行業準則,保護用戶的隱私權益。同時,企業也需要審慎操作和使用大數據,避免濫用和泄露用戶的個人信息。在大數據營銷實施的過程中,企業需要時刻關注道德和社會責任,堅持合法、透明和公平的原則,維護消費者利益和行業形象。
結尾段。
總之,大數據營銷是當下企業必須面對的挑戰和機遇。對于市場營銷人員來說,正確運用和分析大數據是提升競爭力和效率的重要手段。我深刻體會到,在大數據時代,通過科學合理地利用大數據,企業可以更加深入地了解消費者需求,提供更好的產品和服務,從而取得競爭優勢。然而,在推動大數據營銷的同時,也需要關注隱私保護和道德責任,切實維護消費者的權益。只有在科技與道德的雙輪驅動下,大數據營銷才能為企業帶來長久的商業價值和社會效益。
2023年大數據審計心得體會(案例12篇)篇十一
“大數據”概念早在1980年就有國外的學者提出,可是最近幾年才廣泛受到大家的關注。當“大數據”這個概念傳到中國的時候,瞬間引起了轟動。隨即,各種有關“大數據”的資料和書籍充斥的我們的視野。隨意打開某個電子商務平臺圖書類頁面,在搜索框中搜索“大數據”三個字,就會出現好多本有關“大數據”的書籍??墒?,有一個很有趣的現象就是:幾乎所有的平臺上,出現的第一本關于“大數據”的書籍一定是《大數據時代》。一點進去,這本書推薦欄里的第一句話就是:迄今為止全世界最好的一本大數據專著。同時,為這本書做推薦的都是各行業的精英領袖。所有“大數據”方面的書籍也是這本書銷量最高,評價最好。
我從來不會因為哪本書暢銷和很多人推薦就盲目跟風的去看一本書。因為我知道通常在這種情況下選擇一本書,整個閱讀的體會和感受是無法遵從自己的內心的,整個過程都很容易夾雜著別人對這本書的感受。所以通常我讀書的節奏大多都是跟不上“潮流”的,但往往經過風雨洗禮之后沉淀下來的都是精華。坦白講,閱讀這本書的初衷并不是因為我想從書中獲取到多少大數據方面的精華,只是很想知道對于這么一個很直白的名詞,作者是怎么寫出這么厚的一本書的。這種初衷或許很無知和幼稚,可就是這種“愚蠢”的好奇心,讓我更透徹的看到書中的精華。
在看《大數據時代》這本書之前,我的所有讀后感都是集中在書籍給了我什么思考。對于這本書的讀后感,除了觀點碰撞之外,我還會加上大部分個人看這本書的體會。因為這本書,已經完全讓我模糊了大多數人口中的“全世界最好的書”是一種什么標準。也許《大數據時代》真的無法承載那么高的贊美!
看完這本書,我隨意調查了一些閱讀過這本書并且給這本書絕對好評的朋友。詢問他們這本書好在哪里?大多數的回答是說《大數據時代》這本書讓對大數據一無所知的他們了解了大數據這個概念,同時通過很多案例說明原來大數據能有這么大的用處,影響會有這么大!僅此而已。我看完這本書最大的感受是這本書分為上、下兩部分。前120多頁為上部分,后120多頁為下部分。之所以說《大數據時代》是一本關于大數據的入門書,是因為這本書用了前面120多頁的篇幅反復的強調大數據的出現對社會發展影響很大,并且要人們轉變小數據時代慣有的思想。所以整本書的前半部分就強調大數據時代的三個轉變:1、大數據利用所有的數據,而不再僅僅依靠一小部分數據,不再依賴于隨機采樣。2、大數據數據多,不再熱衷于追求精確性,也不再期待精確性。3、大數據時代不再熱衷于尋找因果關系,而是追求相關關系。所以整個上半部分沒什么可詳說的。我們重點聊聊本書的后半部分。
既然一直都在強調大數據對我們的意義,總要有具體體現。整本書中,我感觸最大的一個案例就是某公司通過分析大數據發現:新品發布的時候,舊一代的產品可能會出現短暫的價格上漲。因為人們在心理上就認為新產品的推出,舊產品就會便宜,從而就會提高購買量。這個發現和我們平常的心理是完全違背的,而且如果不用數據來證明,直接講道理給大家可能還是無法相信。這就是大數據對我們很多傳統思維的顛覆。一旦涉及到思維的改變,往往就會引起整個社會的大變動。
大數據這個概念的出現,讓大數據逐漸發展形成一條價值鏈。在這條價值鏈上,數據本身、技能和思維是最重要的環節。隨著互聯網技術的發展,越來越多的公司都能收集到大量的數據,這些數據也會越來越公開。可是在這些公司中,不是所有的公司都有從數據中提取價值或者用數據催生創新思想的技能。于是就會出現以下兩種公司,一種是掌握了專業技能但不一定擁有數據或者提出數據創新性用途才能的公司,另一種就是擁有超前思維,懂得怎樣挖掘數據的新價值的創新公司。短時間內,我們可能會感覺擁有創新思維,懂得挖掘出數據新價值的大數據思維是最重要的。可是等到產業成熟之后,所有人都知曉了大數據的意義,所有人便開始挖掘自己的大數據思維。同時,隨著科技的進步,掌握大數據技術的也將成為常態。所以到后來,整個價值鏈的核心環節還是回到了數據本身。而到那時候,大數據的公開性也就越來越小。
在大談完大數據對人類發展的積極意義之后,作者也考慮到大數據時代的風險。這一部分是作者腦洞大開的精彩之處,同時也是最荒謬的一部分。書中說大數據時代將要懲罰未來犯罪,這樣可以在嫌疑人在可能犯罪之前就把犯罪行為給防止。這樣的社會,大數據儼然已經延伸到了我們每個人生活的點滴。幾乎我們在生活中所做的一切都在大數據的“監控”之下,我想到那時候,別說我們每個人的隱私已經沒有的了,嚴重一點可以說是我們可能連人都不算了。在我們人的社會屬性中,自由權利是一項很重要的指標。通過大數據懲罰人的未來犯罪已經否定了人的自由選擇能力和人的行為責任自負。同時,由于數據是永久保存,大數據預測也是通過每個人之前的數據來判斷,所以大數據同樣也否定了人的求善心理。還有,從現在各種大數據預測的結果來看,很多發言人都說大數據不是百分百的準確。所以利用大數據來判斷人的行為發展已經違背了大數據不追求精確性的特征,這也是書中自相矛盾的地方。
對于一個新事物,如果能讓大家了解這個事物并且對此產生興趣,這已經算是一本不錯的入門書了。
從小到大,雞湯對于我們來說一直都挺珍貴的。身體虛弱了,喝點雞湯能夠補充營養。心靈受傷了,看點心靈雞湯可以鼓舞人心??墒墙鼛啄?,人們生活水平提高了,營養富余,雞湯已經不是人們補營養的期待了。同樣,心靈雞湯也是如此。
心靈雞湯其實是一個很虛偽的東西。很多人都被心靈雞湯誘人的外表給迷惑。在我看來,心靈雞湯很大的一個特征就是:立人的志,但是就不告訴你實現志的方法。很多人每次在失意的時候就喜歡看心靈雞湯,希望能得到慰藉??赐旰笠灿X得醍醐灌頂,感覺整個世界都亮了。但又有幾個人想過喝完這些雞湯之后你除了看似重拾夢想,你還獲得了什么?你知道怎么去做嗎?《大數據時代》就是這樣一本書。整本書從頭到尾都在向讀者講述大數據的意義,當然期間也會用相應的案例來證明大數據確實有這樣的能力。但是,整本書從沒有涉及到技術層面的問題?;蛟S對于大數據這種依靠互聯網技術的新事物,即使向讀者講技術,也沒有幾個人看得懂,可是整本書沒有一點關于大數據思維的技能引導。給出的案例中只有少數案例向讀者講述了這個公司為什么要利用大數據來解決這種問題,大多數都只是告訴讀者國外某家公司運用大數據得出了某種結論。同時,在本書中文譯作者寫的序里,強調自己翻譯這本著作的一大優點是可以結合國內的案例來分析書中的理論,結果,看到最后一頁都沒有看到一個國內企業關于大數據運用的案例。
之所以我稱之為“心靈雞湯”,還有一個原因就是作者在書中大講特講的大數據的作用,事實上按照現在的經濟發展水平和社會文明發展程度是很難實現的。書中很多時候的理論都是要建立在社會各項文明都發展健全的基礎上才能實現。
看到這個標題,大家可能會覺得我夸大其詞,受到如此多人好評的書怎么是“傳銷手冊”呢?對于這個表達,我只想說兩點:1、此說法僅代表我個人觀點,是否認同是個人問題。2、此說法主要針對本書的上部分。
我們都知道傳銷組織在發展下線的前期是要花大力氣去培訓的,也就是洗腦。而對于一個陌生又很難以理解的事物,最好的“洗腦”方式就是重復。《大數據時代》這本書就是運用這種方式,前半部分為了讓讀者能夠接受“大數據”這個概念,作者反反復復提醒讀者大數據不是隨機采樣、不追求精確和不尋找因果關系。同時用很多看似很通俗易懂其實看完后還是不知道說了什么的案例來讓人信服大數據的作用。書中的后半部分雖然也是用這種方式來感染讀者,可后半部分中作者的暢想和對大數據的威脅分析還是對讀者有一些實質意義的,所以后半部分的“傳銷”影響就不是很重要。
大數據時代是未來的趨勢,這誰都不會否認。大數據改造了我們的生活,改變著我們的世界。不管它是以一種什么樣的姿態面向世界,它都沒有錯,因為大數據只是一種工具。但當人類開始質疑甚至恐懼大數據的時候,人類就該思考自己是否利用好這個好工具了。
2023年大數據審計心得體會(案例12篇)篇十二
隨著信息技術的飛速發展,現代社會中產生了大量的數據,而這些數據需要被正確的收集、處理以及存儲。這就是大數據數據預處理的主要任務。數據預處理是數據分析、數據挖掘以及機器學習的第一步,這也就意味著它對于最終的數據分析結果至關重要。
第二段:數據質量問題。
在進行數據預處理的過程中,數據質量問題是非常常見的。比如說,可能會存在數據重復、格式不統一、空值、異常值等等問題。這些問題將極大影響到數據的可靠性、準確性以及可用性。因此,在進行數據預處理時,我們必須對這些問題進行全面的識別、分析及處理。
第三段:數據篩選。
在進行數據預處理時,數據篩選是必不可少的一步。這一步的目的是選擇出有價值的數據,并剔除無用的數據。這樣可以減小數據集的大小,并且提高數據分析的效率。在進行數據篩選時,需要充分考慮到維度、時間和規模等方面因素,以確保所選的數據具有合適的代表性。
第四段:數據清洗。
數據清洗是數據預處理的核心環節之一,它可以幫助我們發現和排除未知數據,從而讓數據集變得更加干凈、可靠和可用。其中,數據清洗涉及到很多的技巧和方法,比如數據標準化、數據歸一化、數據變換等等。在進行數據清洗時,需要根據具體情況采取不同的方法,以確保數據質量的穩定和準確性。
第五段:數據集成和變換。
數據預處理的最后一步是數據集成和變換。數據集成是為了將不同來源的數據融合為一個更綜合、完整的數據集合。數據變換,則是為了更好的展示、分析和挖掘數據的潛在價值。這些數據變換需要根據具體的研究目標進行設計和執行,以達到更好的結果。
總結:
數據預處理是數據分析、數據挖掘和機器學習的基礎。在進行預處理時,需要充分考慮到數據質量問題、數據篩選、數據清洗以及數據集成和變換等方面。只有通過這些環節的處理,才能得到滿足精度、可靠性、準確性和可用性等要求的數據集合。