教學工作計劃是教師與學生進行有效溝通和協作的基礎,促進教學互動和學習參與。通過查閱資料和研究教學實踐,我們整理了一些優秀的教學工作計劃供大家參考。
最新數學教案因式分解(專業17篇)篇一
本節課的教學目標是讓學生理解一元二次方程的根與二次三項式因式分解的關系,掌握公式法分解二次三項式。在教學引入中,通過二次三項式因式分解方法的探究,引導學生經歷:觀察思考歸納猜想論證等一系列探究過程,從而讓學生領會和感悟認識問題和解決問題的一般規律:即由特殊到一般,再由一般到特殊,同時培養了的學生動手能力和觀察思考和歸納小結的能力。另一方面通過運用一元二次方程根的知識來分解因式,讓學生體會知識間普遍聯系的數學美。
總的來說,建立在對所任教的學生仔細分析和對教學大綱認真研究基礎上所作的教材處理和教學預設是貼近學生實際的`,經過這節課的學習,學生較好的達到了教學目標的要求,較好的完成了教學任務,教學效果良好。此外,整節課比較好地體現了多媒體在教學上的輔助作用,特別是實物投影儀的運用可以直觀快捷地把學生的練習情況反映在全班學生面前,這些都大大提高了教學效率,增大了教學容量,取得了良好的教學效果。
但本節課也有許多不足之處,如:
2、作業布置這一教學環節作為重要的一環應放入課堂上;
3、模仿練習的題目應該把分解好的部分乘出來看是否與左邊相等,做好返回檢驗的工作,這樣更便于學生的理解。
在今后的教學中應該更好更深刻的研究教材、研究教法、研究我們的學生,備課更充分、更完善些,從而更好的提高課堂教學的有效性。
上海市梅園中學:傅琳。
最新數學教案因式分解(專業17篇)篇二
1.會求反比例函數的解析式;2.鞏固反比例函數圖象和性質,通過對圖象的分析,進一步探究反比例函數的增減性.
【過程與方法】。
經歷觀察、分析、交流的過程,逐步提高運用知識的能力.
【情感態度】。
提高學生的觀察、分析能力和對圖形的感知水平.
【教學重點】。
會求反比例函數的解析式.
【教學難點】。
反比例函數圖象和性質的運用.
教學過程。
一、情景導入,初步認知。
【教學說明】復習上節課的內容,同時引入新課.
二、思考探究,獲取新知。
1.思考:已知反比例函數y=的圖象經過點p(2,4)。
(1)求k的值,并寫出該函數的表達式;。
(2)判斷點a(-2,-4),b(3,5)是否在這個函數的圖象上;。
分析:
(1)題中已知圖象經過點p(2,4),即表明把p點坐標代入解析式成立,這樣能求出k,解析式也就確定了.
(2)要判斷a、b是否在這條函數圖象上,就是把a、b的坐標代入函數解析式中,如能使解析式成立,則這個點就在函數圖象上.否則不在.
(3)根據k的正負性,利用反比例函數的性質來判定函數圖象所在的象限、y隨x的值的變化情況.
【歸納結論】這種求解析式的方法叫做待定系數法求解析式.
2.下圖是反比例函數y=的圖象,根據圖象,回答下列問題:
(1)k的取值范圍是k0還是k0?說明理由;。
(2)如果點a(-3,y1),b(-2,y2)是該函數圖象上的兩點,試比較y1,y2的大小.分析:
(1)由圖象可知,反比例函數y=kx的圖象的兩支曲線分別位于第一、三象限內,在每個象限內,函數值y隨自變量x的增大而減小,因此,k0.
(2)因為點a(-3,y1),b(-2,y2)是該函數圖象上的兩點且-30,-20.所以點a、b都位于第三象限,又因為-3-2,由反比例函數的圖像的性質可知:y1y2.
【教學說明】通過觀察圖象,使學生掌握利用函數圖象比較函數值大小的方法.
最新數學教案因式分解(專業17篇)篇三
根據大綱要求,結合本教材特點和學生認知能力,將教學目標確定為:
知識與技能:1、理解因式分解的含義,能判斷一個式子的變形是否為因式分解。
2、熟練運用提取公因式法分解因式。
過程與方法:在教學過程中,體會類比的數學思想逐步形成獨立思考,主動探索的習慣。
情感態度與價值觀:通過現實情景,讓學生認識到數學的應用價值,并提高學生關注生存環境的環保意識。
最新數學教案因式分解(專業17篇)篇四
知識點:
因式分解定義,提取公因式、應用公式法、分組分解法、二次三項式的因式(十字相乘法、求根)、因式分解一般步驟。
教學目標:
理解因式分解的概念,掌握提取公因式法、公式法、分組分解法等因式分解方法,掌握利用二次方程求根公式分解二次二項式的方法,能把簡單多項式分解因式。
考查重難點與常見題型:
考查因式分解能力,在中考試題中,因式分解出現的頻率很高。重點考查的分式提取公因式、應用公式法、分組分解法及它們的綜合運用。習題類型以填空題為多,也有選擇題和解答題。
教學過程:
多項式的因式分解,就是把一個多項式化為幾個整式的積。分解因式要進行到每一個因式都不能再分解為止。分解因式的常用方法有:
如多項式。
其中m叫做這個多項式各項的公因式,m既可以是一個單項式,也可以是一個多項式。
(2)運用公式法,即用。
寫出結果。
(3)十字相乘法。
(4)分組分解法:把各項適當分組,先使分解因式能分組進行,再使分解因式在各組之間進行。
分組時要用到添括號:括號前面是“+”號,括到括號里的各項都不變符號;括號前面是“-”號,括到括號里的各項都改變符號。
(5)求根公式法:如果有兩個根x1,x2,那么。
1、教學實例:學案示例。
2、課堂練習:學案作業。
3、課堂:
4、板書:
5、課堂作業:學案作業。
6、教學反思:
最新數學教案因式分解(專業17篇)篇五
教學過程中滲透類比的數學思想,形成新的知識結構體系;設置探究式教學,讓學生經歷知識的形成,從而達到對知識的深刻理解與靈活應用。
學法:自主、合作、探索的學習方式。
在教學活動中,既要提高學生獨立解決問題的能力,又要培養團結協作精神,拓展學生探究問題的深度與廣度,體現素質教育的要求。
最新數學教案因式分解(專業17篇)篇六
1、知識與能力:
1)進一步鞏固相似三角形的知識.
2)能夠運用三角形相似的知識,解決不能直接測量物體的長度和高度(如測量金字塔高度問題、測量河寬問題)等的一些實際問題.
2.過程與方法:
經歷從實際問題到建立數學模型的過程,發展學生的抽象概括能力。
3.情感、態度與價值觀:
1)通過利用相似形知識解決生活實際問題,使學生體驗數學來源于生活,服務于生活。
2)通過對問題的探究,培養學生認真踏實的學習態度和科學嚴謹的學習方法,通過獲得成功的經驗和克服困難的經歷,增進數學學習的信心。
(三)教學重點、難點和關鍵。
重點:利用相似三角形的知識解決實際問題。
難點:運用相似三角形的判定定理構造相似三角形解決實際問題。
關鍵:將實際問題轉化為數學模型,利用所學的知識來進行解答。
最新數學教案因式分解(專業17篇)篇七
會應用平方差公式進行因式分解,發展學生推理能力。
2、過程與方法。
經歷探索利用平方差公式進行因式分解的過程,發展學生的逆向思維,感受數學知識的完整性。
3、情感、態度與價值觀。
培養學生良好的互動交流的習慣,體會數學在實際問題中的應用價值。
1、重點:利用平方差公式分解因式。
2、難點:領會因式分解的解題步驟和分解因式的徹底性。
3、關鍵:應用逆向思維的方向,演繹出平方差公式,對公式的應用首先要注意其特征,其次要做好式的變形,把問題轉化成能夠應用公式的方面上來。
采用“問題解決”的教學方法,讓學生在問題的'牽引下,推進自己的思維。
一、觀察探討,體驗新知。
【問題牽引】。
請同學們計算下列各式。
(1)(a+5)(a—5);(2)(4m+3n)(4m—3n)。
【學生活動】動筆計算出上面的兩道題,并踴躍上臺板演。
(1)(a+5)(a—5)=a2—52=a2—25;
(2)(4m+3n)(4m—3n)=(4m)2—(3n)2=16m2—9n2。
【教師活動】引導學生完成下面的兩道題目,并運用數學“互逆”的思想,尋找因式分解的規律。
1、分解因式:a2—25;2、分解因式16m2—9n。
【學生活動】從逆向思維入手,很快得到下面答案:
(1)a2—25=a2—52=(a+5)(a—5)。
(2)16m2—9n2=(4m)2—(3n)2=(4m+3n)(4m—3n)。
【教師活動】引導學生完成a2—b2=(a+b)(a—b)的同時,導出課題:用平方差公式因式分解。
平方差公式:a2—b2=(a+b)(a—b)。
評析:平方差公式中的字母a、b,教學中還要強調一下,可以表示數、含字母的代數式(單項式、多項式)。
二、范例學習,應用所學。
【例1】把下列各式分解因式:(投影顯示或板書)。
(1)x2—9y2;(2)16x4—y4;
(3)12a2x2—27b2y2;(4)(x+2y)2—(x—3y)2;
(5)m2(16x—y)+n2(y—16x)。
【思路點撥】在觀察中發現1~5題均滿足平方差公式的特征,可以使用平方差公式因式分解。
【教師活動】啟發學生從平方差公式的角度進行因式分解,請5位學生上講臺板演。
【學生活動】分四人小組,合作探究。
解:(1)x2—9y2=(x+3y)(x—3y);
(5)m2(16x—y)+n2(y—16x)。
=(16x—y)(m2—n2)=(16x—y)(m+n)(m—n)。
最新數學教案因式分解(專業17篇)篇八
會應用平方差公式進行因式分解,發展學生推理能力.
2.過程與方法。
經歷探索利用平方差公式進行因式分解的過程,發展學生的逆向思維,感受數學知識的完整性.
3.情感、態度與價值觀。
培養學生良好的互動交流的習慣,體會數學在實際問題中的應用價值.
重、難點與關鍵。
1.重點:利用平方差公式分解因式.
2.難點:領會因式分解的解題步驟和分解因式的徹底性.
3.關鍵:應用逆向思維的方向,演繹出平方差公式,對公式的應用首先要注意其特征,其次要做好式的變形,把問題轉化成能夠應用公式的方面上來.
教學方法。
采用“問題解決”的教學方法,讓學生在問題的牽引下,推進自己的思維.
教學過程。
一、觀察探討,體驗新知。
【問題牽引】。
請同學們計算下列各式.
(1)(a+5)(a-5);(2)(4m+3n)(4m-3n).
【學生活動】動筆計算出上面的兩道題,并踴躍上臺板演.
(1)(a+5)(a-5)=a2-52=a2-25;。
(2)(4m+3n)(4m-3n)=(4m)2-(3n)2=16m2-9n2.
【教師活動】引導學生完成下面的兩道題目,并運用數學“互逆”的思想,尋找因式分解的規律.
1.分解因式:a2-25;2.分解因式16m2-9n.
【學生活動】從逆向思維入手,很快得到下面答案:
(1)a2-25=a2-52=(a+5)(a-5).
(2)16m2-9n2=(4m)2-(3n)2=(4m+3n)(4m-3n).
【教師活動】引導學生完成a2-b2=(a+b)(a-b)的同時,導出課題:用平方差公式因式分解.
平方差公式:a2-b2=(a+b)(a-b).
評析:平方差公式中的字母a、b,教學中還要強調一下,可以表示數、含字母的代數式(單項式、多項式).
二、范例學習,應用所學。
【例1】把下列各式分解因式:(投影顯示或板書)。
(1)x2-9y2;(2)16x4-y4;。
(3)12a2x2-27b2y2;(4)(x+2y)2-(x-3y)2;。
(5)m2(16x-y)+n2(y-16x).
【思路點撥】在觀察中發現1~5題均滿足平方差公式的特征,可以使用平方差公式因式分解.
【教師活動】啟發學生從平方差公式的角度進行因式分解,請5位學生上講臺板演.
【學生活動】分四人小組,合作探究.
解:(1)x2-9y2=(x+3y)(x-3y);。
(5)m2(16x-y)+n2(y-16x)。
=(16x-y)(m2-n2)=(16x-y)(m+n)(m-n).
最新數學教案因式分解(專業17篇)篇九
原式變形后,利用完全平方公式變形,計算即可得到結果.
此題考查了因式分解的應用,熟練掌握平方差公式及完全平方公式是解本題的關鍵.
22.已知等式配方后,利用非負數的性質求出a與b的值,即可確定出三角形周長.
此題考查了因式分解的應用,熟練掌握完全平方公式是解本題的關鍵.
23.原式利用平方差公式分解得到結果,即可做出判斷.
此題考查了因式分解的應用,熟練掌握平方差公式是解本題的關鍵.
24.本題考查了分式的化簡求值,解答此題的關鍵是把分式化到最簡,然后代值計算.先將分式的分母分解因式,再約分,然后將已知變形為代入原式即可求解.
最新數學教案因式分解(專業17篇)篇十
3、選擇恰當的方法進行因式分解。
4、應用因式分解來解決一些實際問題。
5、體驗應用知識解決問題的樂趣。
靈活運用因式分解解決問題。
靈活運用恰當的因式分解的方法,拓展練習2、3。
一、創設情景:若a=101,b=99,求a2-b2的值。
利用因式分解往往能將一些復雜的運算簡單化,那么我們先來回顧一下什么是因式分解和怎樣來因式分解。
二、知識回顧。
1、因式分解定義:把一個多項式化成幾個整式積的形式,這種變形叫做把這個多項式分解因式。
判斷下列各式哪些是因式分解?(讓學生先思考,教師提問講解,讓學生明確因式分解的概念以及與乘法的關系)。
(7)。2πr+2πr=2π(r+r)因式分解。
2、。規律總結(教師講解):分解因式與整式乘法是互逆過程。
分解因式要注意以下幾點:(1)。分解的對象必須是多項式。
(2)。分解的結果一定是幾個整式的乘積的形式。(3)。要分解到不能分解為止。
4、強化訓練。
教學引入。
師:教材在《四邊形》這一章《引言》里有這樣一句話:把一個長方形折疊就可以得到一個正方形。現在請同學們拿出一個長方形紙條,按動畫所示進行折疊處理。
動畫演示:
場景一:正方形折疊演示。
師:這就是我們得到的正方形。下面請同學們拿出三角板(刻度尺)和圓規,我們來研究正方形的幾何性質—邊、角以及對角線之間的關系。請大家測量各邊的長度、各角的大小、對角線的長度以及對角線交點到各頂點的長度。
[學生活動:各自測量。]。
鼓勵學生將測量結果與鄰近同學進行比較,找出共同點。
講授新課。
找一兩個學生表述其結論,表述是要注意糾正其語言的規范性。
動畫演示:
場景二:正方形的性質。
師:這些性質里那些是矩形的性質?
[學生活動:尋找矩形性質。]。
動畫演示:
場景三:矩形的性質。
師:同樣在這些性質里尋找屬于菱形的性質。
[學生活動;尋找菱形性質。]。
動畫演示:
場景四:菱形的性質。
師:這說明正方形具有矩形和菱形的全部性質。
及時提出問題,引導學生進行思考。
師:根據這些性質,我們能不能給正方形下一個定義?怎么樣給正方形下一個準確的定義?
[學生活動:積極思考,有同學做躍躍欲試狀。]。
師:請同學們回想矩形與菱形的定義,可以根據矩形與菱形的定義類似的給出正方形的定義。
學生應能夠向出十種左右的定義方式,其余作相應鼓勵,把以下三種板書:
“有一組鄰邊相等的矩形叫做正方形。”
“有一個角是直角的菱形叫做正方形。”
“有一個角是直角且有一組鄰邊相等的平行四邊形叫做正方形。”
師:根據定義,我們把平行四邊形、矩形、菱形和正方形它們之間的關系梳理一下。
試一試把下列各式因式分解:。
(1)。1-x2=(1+x)(1-x)(2)。4a2+4a+1=(2a+1)2。
(3)。4x2-8x=4x(x-2)(4)。2x2y-6xy2=2xy(x-3y)。
三、例題講解。
例1、分解因式。
(1)-x3y3+x2y+xy(2)6(x-2)+2x(2-x)。
(3)(4)y2+y+。
例2、分解因式。
4、-1-2a-a2=5、x2-6x+9-y26、x2-4y2+x+2y=。
例3、分解因式。
1、72-2(13x-7)22、8a2b2-2a4b-8b3。
三、知識應用。
1、(4x2-9y2)÷(2x+3y)2、(a2b-ab2)÷(b-a)。
3、解方程:(1)x2=5x(2)(x-2)2=(2x+1)2。
四、拓展應用。
2、20042+20xx被20xx整除嗎?
3、若n是整數,證明(2n+1)2-(2n-1)2是8的倍數。
五、課堂小結:今天你對因式分解又有哪些新的認識?
最新數學教案因式分解(專業17篇)篇十一
因式分解定義,提取公因式、應用公式法、分組分解法、二次三項式的因式(十字相乘法、求根)、因式分解一般步驟。
理解因式分解的概念,掌握提取公因式法、公式法、分組分解法等因式分解方法,掌握利用二次方程求根公式分解二次二項式的方法,能把簡單多項式分解因式。
考查因式分解能力,在中考試題中,因式分解出現的頻率很高。重點考查的分式提取公因式、應用公式法、分組分解法及它們的綜合運用。習題類型以填空題為多,也有選擇題和解答題。
因式分解知識點
多項式的因式分解,就是把一個多項式化為幾個整式的積。分解因式要進行到每一個因式都不能再分解為止。分解因式的常用方法有:
(1)提公因式法
如多項式
其中m叫做這個多項式各項的公因式, m既可以是一個單項式,也可以是一個多項式。
(2)運用公式法,即用
寫出結果。
(3)十字相乘法
(4)分組分解法:把各項適當分組,先使分解因式能分組進行,再使分解因式在各組之間進行。
分組時要用到添括號:括號前面是“+”號,括到括號里的各項都不變符號;括號前面是“-”號,括到括號里的各項都改變符號。
(5)求根公式法:如果有兩個根x1,x2,那么
2、教學實例:學案示例
3、課堂練習:學案作業
4、課堂:
5、板書:
6、課堂作業:學案作業
7、教學反思:
最新數學教案因式分解(專業17篇)篇十二
“整式的乘法”是整式的加減的后續學習從冪的運算到各種整式的乘法,整章教材都突出了學生的自主探索過程,依據原有的知識基礎,或運用乘法的各種運算規律,或借助直觀而又形象的圖形面積,得到各種運算的基本法則、兩個主要的乘法公式及因式分解的基本方法學生自己對知識內容的探索、認識與體驗,完全有利于學生形成合理的知識結構,提高數學思維能力.利用公式法進行因式分解時,注意把握多項式的特點,對比乘法公式乘積結果的形式,選擇正確的分解方法。
因式分解是一種常用的代數式的恒等變形,因式分解是多項式乘法公式的逆向變形,它是將一個多項式變形為多項式與多項式的乘積。
2、教學目標。
(1)會推導乘法公式。
(2)在應用乘法公式進行計算的基礎上,感受乘法公式的作用和價值。
(3)會用提公因式法、公式法進行因式分解。
(5)在因式分解中,經歷觀察、探索和做出推斷的過程,提高分析問題和解決問題的能力。
3、重點、難點和關鍵。
重點:乘法公式的意義、分式的由來和正確運用;用提公因式法和公式法進行因式分解。
難點:正確運用乘法公式;正確分解因式。
關鍵:正確理解乘法公式和因式分解的意義。
二、本單元教學的方法和策略:
3.讓學生掌握基本的數學事實與數學活動經驗,減輕不必要的記憶負擔.。
三、課時安排:
2.1平方差公式1課時。
2.2完全平方公式2課時。
最新數學教案因式分解(專業17篇)篇十三
2、鞏固因式分解常用的三種方法。
3、選擇恰當的方法進行因式分解。
4、應用因式分解來解決一些實際問題。
5、體驗應用知識解決問題的樂趣。
一、創設情景:若a=101,b=99,求a2-b2的值。
利用因式分解往往能將一些復雜的運算簡單化,那么我們先來回顧一下什么是因式分解和怎樣來因式分解。
二、知識回顧。
1、因式分解定義:把一個多項式化成幾個整式積的形式,這種變形叫做把這個多項式分解因式.
判斷下列各式哪些是因式分解?(讓學生先思考,教師提問講解,讓學生明確因式分解的概念以及與乘法的關系)。
(7).2πr+2πr=2π(r+r)因式分解。
2、.規律總結(教師講解):分解因式與整式乘法是互逆過程.
分解因式要注意以下幾點:(1).分解的對象必須是多項式.
(2).分解的結果一定是幾個整式的乘積的形式.(3).要分解到不能分解為止.
4、強化訓練。
試一試把下列各式因式分解:。
(3).4x2-8x=4x(x-2)(4).2x2y-6xy2=2xy(x-3y)。
三、例題講解。
例1、分解因式。
(1)-x3y3+x2y+xy(2)6(x-2)+2x(2-x)。
(3)(4)y2+y+例2、分解因式。
4、-1-2a-a2=5、x2-6x+9-y26、x2-4y2+x+2y=。
例3、分解因式。
1、72-2(13x-7)22、8a2b2-2a4b-8b3。
三、知識應用。
1、(4x2-9y2)÷(2x+3y)2、(a2b-ab2)÷(b-a)。
3、解方程:(1)x2=5x(2)(x-2)2=(2x+1)2。
四、拓展應用。
2、20042+2004被2005整除嗎?
3、若n是整數,證明(2n+1)2-(2n-1)2是8的倍數.
五、課堂小結:今天你對因式分解又有哪些新的認識?
最新數學教案因式分解(專業17篇)篇十四
知識點:
因式分解定義,提取公因式、應用公式法、分組分解法、二次三項式的因式(十字相乘法、求根)、因式分解一般步驟。
教學目標:
理解因式分解的概念,掌握提取公因式法、公式法、分組分解法等因式分解方法,掌握利用二次方程求根公式分解二次二項式的方法,能把簡單多項式分解因式。
考查重難點與常見題型:
考查因式分解能力,在中考試題中,因式分解出現的頻率很高。重點考查的分式提取公因式、應用公式法、分組分解法及它們的綜合運用。習題類型以填空題為多,也有選擇題和解答題。
教學過程:
多項式的因式分解,就是把一個多項式化為幾個整式的積。分解因式要進行到每一個因式都不能再分解為止。分解因式的常用方法有:
(1)提公因式法。
如多項式。
其中m叫做這個多項式各項的公因式,m既可以是一個單項式,也可以是一個多項式。
(2)運用公式法,即用寫出結果。
(3)十字相乘法。
(4)分組分解法:把各項適當分組,先使分解因式能分組進行,再使分解因式在各組之間進行。
分組時要用到添括號:括號前面是“+”號,括到括號里的各項都不變符號;括號前面是“-”號,括到括號里的各項都改變符號。
(5)求根公式法:如果有兩個根x1,x2,那么。
2、教學實例:學案示例。
3、課堂練習:學案作業。
4、課堂:
5、板書:
6、課堂作業:學案作業。
7、教學反思:
最新數學教案因式分解(專業17篇)篇十五
3、選擇恰當的方法進行因式分解。
4、應用因式分解來解決一些實際問題。
5、體驗應用知識解決問題的樂趣。
靈活運用因式分解解決問題。
一、創設情景:若a=101,b=99,求a2-b2的值。
利用因式分解往往能將一些復雜的運算簡單化,那么我們先來回顧一下什么是因式分解和怎樣來因式分解。
二、知識回顧。
1、因式分解定義:把一個多項式化成幾個整式積的形式,這種變形叫做把這個多項式分解因式。
判斷下列各式哪些是因式分解?(讓學生先思考,教師提問講解,讓學生明確因式分解的概念以及與乘法的關系)。
(7).2πr+2πr=2π(r+r)因式分解。
2、.規律總結(教師講解):分解因式與整式乘法是互逆過程。
分解因式要注意以下幾點:(1).分解的對象必須是多項式。
(2).分解的結果一定是幾個整式的乘積的形式。(3).要分解到不能分解為止。
4、強化訓練。
試一試把下列各式因式分解:
(1).1-x2=(1+x)(1-x)(2).4a2+4a+1=(2a+1)2。
(3).4x2-8x=4x(x-2)(4).2x2y-6xy2=2xy(x-3y)。
三、例題講解。
例1、分解因式。
(1)-x3y3+x2y+xy(2)6(x-2)+2x(2-x)。
(3)(4)y2+y+例2、分解因式。
4、-1-2a-a2=5、x2-6x+9-y26、x2-4y2+x+2y=。
例3、分解因式。
1、72-2(13x-7)22、8a2b2-2a4b-8b3。
三、知識應用。
1、(4x2-9y2)÷(2x+3y)2、(a2b-ab2)÷(b-a)。
3、解方程:(1)x2=5x(2)(x-2)2=(2x+1)2。
四、拓展應用。
2、20042+2004被2005整除嗎?
3、若n是整數,證明(2n+1)2-(2n-1)2是8的倍數。
五、課堂小結:今天你對因式分解又有哪些新的認識?
最新數學教案因式分解(專業17篇)篇十六
九九乘法表是小學生學習數學時一定要學習的內容,為小學生抄寫一份九九乘法表也是不少家長的功課之一。其實用excel作一份乘法表也是一個不錯的選擇。it168曾經發表過一篇利用vba編程實現“九九乘法表”的文章,它就為我們指引了一條很不錯的制作乘法表的道路,令我們很受啟發。
在excel中,除了用vba編程來制作乘法表以外,我們還可以直接利用公式來寫乘法表,效果也是不錯的。下面我們以excel2007為例來說明。
一、建立乘法表。
首先我們在excel中建立一份空的表格,在b1:j1單元格區域分別填寫數字1至9,在a2:a10單元格也分別填寫數字1至9,得到如圖1所示表格。
圖1excel2007填寫基本數字。
圖2excel2007填充單元格。
在此公式中其實只用到了一個if函數。所寫乘法表中被乘數是b1:j1中的數據,而乘數則是a2:a10單元格中的數據。我們所用公式的意思可以這樣理解:首先判斷被乘數是否小于或等于乘數,如果是,那么就輸出結果,如果不是,那么在此單元格中就輸出空值。
二、為乘法表格添加表格線。
感覺那乘法表有些簡陋?不要緊,我們為表格加上表格線就好了,
當然,只為那些有內容的單元格添加表格線。辦法嗎?首先隱藏不必要的輔助數據,然后再用條件格式的方法為乘法表添加表格線。
先點擊a列列標選中a列全部單元格,點擊右鍵,在彈出菜單中點擊“隱藏”命令,然后再點擊第一行的行號,選中全部第一行的單元格,再點擊右鍵,在彈出菜單中點擊“隱藏”命令,這樣,輔助數據就不見了。
現在,我們再選中b2單元格,然后點擊功能區“開始”選項卡“樣式”功能組“條件格式”按鈕,在彈出的菜單中點擊“新建規則”命令,打開“新建格式規則”對話框。然后在“選擇規則類型”列表中選擇“使用公式確定要設置格式的單元格”命令,然后在“為符合此公式的值設置格式”下方的輸入框中輸入公式“=b2“””,如圖3所示。
圖3excel2007編輯格式規則。
再點擊下方的“格式”按鈕,打開“設置單元格格式”對話框,在“邊框”選項卡中設置單元格的邊框格式,如圖4所示。當然,我們還可以做出其它的設置。確定后,b2單元格就會添加有邊框了。
圖4excel2007設置單元格格式。
再選中b2單元格,然后點擊功能區“開始”選項卡“剪貼板”功能組中“格式刷”按鈕,然后“刷取”b2:j10單元格區域復制格式,那么,在乘法表中非空的那些單元格就會自動添加邊框線,而沒有內容的那些單元格則不會有任何變化。如圖5所示。
圖5excel2007添加邊框線。
好了,不多說了,有興趣自己試試吧。
最新數學教案因式分解(專業17篇)篇十七
3、選擇恰當的方法進行因式分解。
5、體驗應用知識解決問題的樂趣。
靈活運用恰當的因式分解的方法,拓展練習2、3。
一、創設情景:若a=101,b=99,求a2-b2的值。
利用因式分解往往能將一些復雜的運算簡單化,那么我們先來回顧一下什么是因式分解和怎樣來因式分解。
二、知識回顧。
1、因式分解定義:把一個多項式化成幾個整式積的形式,這種變形叫做把這個多項式分解因式.
判斷下列各式哪些是因式分解?(讓學生先思考,教師提問講解,讓學生明確因式分解的概念以及與乘法的關系)。
2、.規律總結(教師講解):分解因式與整式乘法是互逆過程.
分解因式要注意以下幾點:(1).分解的對象必須是多項式.
(2).分解的結果一定是幾個整式的乘積的形式.(3).要分解到不能分解為止.
4、強化訓練。
教學引入。
師:教材在《四邊形》這一章《引言》里有這樣一句話:把一個長方形折疊就可以得到一個正方形。現在請同學們拿出一個長方形紙條,按動畫所示進行折疊處理。
動畫演示:
場景一:正方形折疊演示。
師:這就是我們得到的正方形。下面請同學們拿出三角板(刻度尺)和圓規,我們來研究正方形的幾何性質—邊、角以及對角線之間的關系。請大家測量各邊的長度、各角的大小、對角線的長度以及對角線交點到各頂點的長度。
[學生活動:各自測量。]。
鼓勵學生將測量結果與鄰近同學進行比較,找出共同點。
講授新課。
找一兩個學生表述其結論,表述是要注意糾正其語言的規范性。
動畫演示:
場景二:正方形的性質。
師:這些性質里那些是矩形的性質?
[學生活動:尋找矩形性質。]。
動畫演示:
場景三:矩形的性質。
師:同樣在這些性質里尋找屬于菱形的性質。
[學生活動;尋找菱形性質。]。
動畫演示:
場景四:菱形的性質。
師:這說明正方形具有矩形和菱形的全部性質。
及時提出問題,引導學生進行思考。
師:根據這些性質,我們能不能給正方形下一個定義?怎么樣給正方形下一個準確的定義?
[學生活動:積極思考,有同學做躍躍欲試狀。]。
師:請同學們回想矩形與菱形的`定義,可以根據矩形與菱形的定義類似的給出正方形的定義。
學生應能夠向出十種左右的定義方式,其余作相應鼓勵,把以下三種板書:
“有一組鄰邊相等的矩形叫做正方形。”
“有一個角是直角的菱形叫做正方形。”
“有一個角是直角且有一組鄰邊相等的平行四邊形叫做正方形。”
師:根據定義,我們把平行四邊形、矩形、菱形和正方形它們之間的關系梳理一下。
(1).1-x2=(1+x)(1-x)(2).4a2+4a+1=(2a+1)2。
(3).4x2-8x=4x(x-2)(4).2x2y-6xy2=2xy(x-3y)。
三、例題講解。
例1、分解因式。
(1)-x3y3+x2y+xy(2)6(x-2)+2x(2-x)。
(3)(4)y2+y+。
例2、分解因式。
4、-1-2a-a2=5、x2-6x+9-y26、x2-4y2+x+2y=。
例3、分解因式。
1、72-2(13x-7)22、8a2b2-2a4b-8b3。
三、知識應用。
1、(4x2-9y2)÷(2x+3y)2、(a2b-ab2)÷(b-a)。
3、解方程:(1)x2=5x(2)(x-2)2=(2x+1)2。
四、拓展應用。
2、20042+20xx被20xx整除嗎?
3、若n是整數,證明(2n+1)2-(2n-1)2是8的倍數.
五、課堂小結:今天你對因式分解又有哪些新的認識?