教案包括教學目標、教學內容、教學方法、教學過程、教學評價等內容,是教學的重要依據和指導。這些優秀的初中教案范文是教師們教學設計的寶貴資源,可以提升教學效果和學生的學習成績。
初中數學平方差公式教案大全(17篇)篇一
本課的學習目的主要是熟練掌握整式的運算,并且這些知識是以后學習分式、根式運算以及函數等知識的基礎,同時也是學習物理、化學等學科及其他科學技術不可或缺的數學工具。而本節是整式乘法中乘法公式的首要內容,學生只有熟練掌握了包括平方差公式在內的乘法公式及它的推導過程,才能實現本節乃至本章作為數學工具的重要作用。因此,在教學安排上,我選擇從學生熟悉的求多邊形面積入手,遵循從感性認識上升為理性思維的認知規律,得出抽象的。概念,并在多項式乘法的基礎上,再次推導公式,使原本枯燥的數學概念具有一定的實際意義和說理性;之后安排了一系列的例題和練習題,把新知運用到實戰中去,解決簡單的實際問題,這樣既調動了學生學習的主動性,又鍛煉了思維,整個過程由淺入深,在對所得結論不斷觀察、討論、分析中,加深對概念的理解,增強學生應用知識解決問題的能力,從而達到較好的授課效果。
數學是一門抽象的學科,但數學是來源于實際生活的。因此,數學教育的目的是將數學運用到實際生活中去,讓學生深切感受到數學是有價值的科學,來源于生活,是其他科學的基礎。本節公式中字母的含義對學生來講很抽象,是本節的難點,也是學生運用公式解決實際問題的最大障礙,通過鞏固練習,讓學生逐步體會,為今后學習其他乘法公式做好準備。乘法公式的逆用就是因式分解的重要方法,因此,在本節補充練習中,已經開始滲透這部分知識,為后面學習因式分解做好鋪墊。
但是,我在教本章內容時卻始終感到困惑。本以為這一章很簡單,由于教材安排存在一定問題,如將同底數冪乘法、冪的乘方、積的乘方、單項式乘以單項式、單項式乘以多項式、多項式乘以多項式這么多的內容安排在一起,造成學生沒掌握好、消化好,知識間相互混淆,設置了障礙。所以很多學生出現下列錯誤(3x?2)(3x?2)?3x象我們想象中掌握的那么好。
本章教材編者在此安排不太合理,沒有考慮到學生的認知規律,不利于學生很好掌握,所以,我感覺以后上這章的時候不能按照教材課時安排走。否則還會出現今天的問題。
初中數學平方差公式教案大全(17篇)篇二
教學目標:
一、知識與技能。
1、參與探索平方差公式的過程,發展學生的推理能力2、會運用公式進行簡單的乘法運算。
二、過程與方法。
1、經歷探索過程,學會歸納推導出某種特種特定類型乘法并用簡單的。
數學式子表達出,即給出公式。
2、在探索過程的教學中,培養學生觀察、歸納的能力,發展學生的符。
號感和語言描述能力。
三、情感與態度。
以探索、歸納公式和簡單運用公式這一數學情景,加深學生的體驗,增加學習數學和使用的信心。培養學生由觀察-發現-歸納-驗證-使用這一數學方法的逐步形成.
教學重點:公式的簡單運用。
教學難點:公式的推導。
教學方法:學生探索歸納與教師講授結合。
課前準備:投影儀、幻燈片。
初中數學平方差公式教案大全(17篇)篇三
2、注意培養學生分析、綜合和抽象、概括以及運算能力。
教學重點和難點。
難點:用公式的結構特征判斷題目能否使用公式。
教學過程設計。
我們已經學過了多項式的乘法,兩個二項式相乘,在合并同類項前應該有幾項?合并同類項以后,積可能會是三項嗎?積可能是二項嗎?請舉出例子。
讓學生動腦、動筆進行探討,并發表自己的見解。教師根據學生的回答,引導學生進一步思考:
(當乘式是兩個數之和以及這兩個數之差相乘時,積是二項式。這是因為具備這樣特點的兩個二項式相乘,積的四項中,會出現互為相反數的兩項,合并這兩項的結果為零,于是就剩下兩項了。而它們的積等于乘式中這兩個數的平方差)。
繼而指出,在多項式的乘法中,對于某些特殊形式的多項式相乘,我們把它寫成公式,并加以熟記,以便遇到類似形式的多項式相乘時就可以直接運用公式進行計算。以后經常遇到(a+b)(a-b)這種乘法,所以把(a+b)(a-b)=a2-b2作為公式,叫做乘法的平方差公式。
在此基礎上,讓學生用語言敘述公式。
例1計算(1+2x)(1-2x)。
解:(1+2x)(1-2x)。
=12-(2x)2。
=1-4x2.
教師引導學生分析題目條件是否符合平方差公式特征,并讓學生說出本題中a,b分別表示什么。
例2計算(b2+2a3)(2a3-b2)。
解:(b2+2a3)(2a3-b2)。
=(2a3+b2)(2a3-b2)。
=(2a3)2-(b2)2。
=4a6-b4.
教師引導學生發現,只需將(b2+2a3)中的兩項交換位置,就可用平方差公式進行計算。
課堂練習。
(l)(x+a)(x-a);(2)(m+n)(m-n);
(3)(a+3b)(a-3b);(4)(1-5y)(l+5y)。
例3計算(-4a-1)(-4a+1)。
讓學生在練習本上計算,教師巡視學生解題情況,讓采用不同解法的兩個學生進行板演。
解法1:(-4a-1)(-4a+1)。
=[-(4a+l)][-(4a-l)]。
=(4a+1)(4a-l)。
=(4a)2-l2。
=16a2-1.
解法2:(-4a-l)(-4a+l)。
=(-4a)2-l。
=16a2-1.
根據學生板演,教師指出兩種解法都很正確,解法1先用了提出負號的辦法,使兩乘式首項都變成正的,而后看出兩數的和與這兩數的差相乘的形式,應用平方差公式,寫出結果。解法2把-4a看成一個數,把1看成另一個數,直接寫出(-4a)2-l2后得出結果。采用解法2的同學比較注意平方差公式的特征,能看到問題的本質,運算簡捷。因此,我們在計算中,先要分析題目的數字特征,然后正確應用平方差公式,就能比較簡捷地得到答案。
課堂練習。
1、口答下列各題:
(l)(-a+b)(a+b);(2)(a-b)(b+a);
(3)(-a-b)(-a+b);(4)(a-b)(-a-b)。
2、計算下列各題:
(1)(4x-5y)(4x+5y);(2)(-2x2+5)(-2x2-5);
教師巡視學生練習情況,請不同解法的學生,或發生錯誤的學生板演,教師和學生一起分析解法。
2、運用公式要注意什么?
(1)要符合公式特征才能運用平方差公式;
(2)有些式子表面不能應用公式,但實質能應用公式,要注意變形。
(l)(x+2y)(x-2y);(2)(2a-3b)(3b+2a);
(3)(-1+3x)(-1-3x);(4)(-2b-5)(2b-5);
初中數學平方差公式教案大全(17篇)篇四
二、學習重點。
三、學習難點。
靈活運用平方差和完全平方公式進行整式的簡便運算。
四、學習設計。
(一)預習準備。
(2)思考:如何更簡單迅捷地進行各種乘法公式的運算?[。
(1)(2)(3)(4)。
2.計算:
(1)(2)。
(二)學習過程。
由反之。
反之。
1、填空:
(1)(2)(3)。
(4)(5)。
(6)。
(7)若,則k=。
例1計算:1.2.
現在我們從幾何角度去解釋完全平方公式:
從圖(1)中可以看出大正方形的邊長是a+b,
它是由兩個小正方形和兩個矩形組成,所以。
大正方形的面積等于這四個圖形的面積之和.
則s==。
即:
如圖(2)中,大正方形的邊長是a,它的面積是;矩形dcge與矩形bchf是全等圖形,長都是,寬都是,所以它們的面積都是;正方形hcgm的邊長是b,其面積就是;正方形afme的邊長是,所以它的面積是.從圖中可以看出正方形aemf的面積等于正方形abcd的面積減去兩個矩形dcge和bchf的面積再加上正方形hcgm的面積.也就是:(a-b)2=.這也正好符合完全平方公式.
例2.計算:。
(1)(2)。
變式訓練:
(1)(2)。
(3)(4)(x+5)2c(x-2)(x-3)。
(5)(x-2)(x+2)-(x+1)(x-3)(6)(2x-y)2-4(x-y)(x+2y)。
拓展:1、(1)已知,則=。
(2)已知,求________,________。
(3)不論為任意有理數,的值總是。
a.負數b.零c.正數d.不小于2。
2、(1)已知,求和的值。
(2)已知,求的值。
(3).已知,求的值。
回顧小結。
1.完全平方公式的使用:在做題過程中一定要注意符號問題和正確認識a、b表示的意義,它們可以是數、也可以是單項式,還可以是多項式,所以要記得添括號。
2.解題技巧:在解題之前應注意觀察思考,選擇不同的方法會有不同的效果,要學會優化選擇。
初中數學平方差公式教案大全(17篇)篇五
1、左邊為兩數的和乘以兩數的差,即在左邊是兩個二項式的積,在這兩個二項式中有一項(a)完全相同,另一項(b與-b)互為相反數。右邊為這兩個數的平方差即完全相同的項的平方減去符號相反的平方。
2、公式中的a,b不僅可以表示具體的數字,還可以是單項式,多項式等代數式。
提醒學生利用平方公式計算,首先觀察是否符合公式的特點,這兩個數分別是什么,其次要區別相同的項和相反的項,表示兩數平方差時要加括號。
初中數學平方差公式教案大全(17篇)篇六
平方差公式是在學習多項式乘法等知識的基礎上,自然過渡到具有特殊形式的多項式的乘法,體現教材從一般到特殊的意圖。教材為學生在教學活動中獲得數學的思想方法、能力、素質提供了良好的契機。對它的學習和研究,不僅得到了特殊的多項式乘法的簡便算法,而且為以后的因式分解,分式的化簡、二次根式中的分母有理化、解一元二次方程、函數等內容奠定了基礎,同時也為完全平方公式的學習提供了方法,因此,平方差公式在教材中有承上啟下的作用,是初中階段一個重要的公式。
學生是在學習積的乘方和多項式乘多項式后學習平方差公式的,但在進行積的乘方的運算時,底數是數與幾個字母的積時往往把括號漏掉,在進行多項式乘法運算時常常會確定錯某些次符號及漏項等問題。學生學習平方差公式的困難在于對公式的結構特征以及公式中字母的廣泛的理解,當公式中a、b是式時,要把它括號在平方。
難點:理解掌握平方差公式的結構特點以及靈活運用平方差公式解決實際問題.。
初中數學平方差公式教案大全(17篇)篇七
進一步使學生理解掌握平方差公式,并通過小結使學生理解公式數學表達式與文字表達式在應用上的差異.
教學重點和難點:公式的應用及推廣.
1.(1)用較簡單的代數式表示下圖紙片的面積.
(2)沿直線裁一刀,將不規則的右圖重新拼接成一個矩形,并用代數式表示出你新拼圖形的面積.
講評要點:
沿hd、gd裁開均可,但一定要讓學生在裁開之前知道。
hd=bc=gd=fe=a-b,
這樣裁開后才能重新拼成一個矩形.希望推出公式:
a2-b2=(a+b)(a-b)。
2.(1)敘述平方差公式的數學表達式及文字表達式;。
(2)試比較公式的兩種表達式在應用上的差異.
說明:平方差公式的數學表達式在使用上有三個優點.(1)公式具體,易于理解;(2)公式的特征也表現得突出,易于初學的人“套用”;(3)形式簡潔.但數學表達式中的a與b有概括性及抽象性,這樣也就造成對具體問題存在一個判定a、b的`問題,否則容易對公式產生各種主觀上的誤解.
依照公式的文字表達式可寫出下面兩個正確的式子:
經對比,可以讓人們體會到公式的文字表達式抽象、準確、概括.因而也就“欠”明確(如結果不知是誰與誰的平方差).故在使用平方差公式時,要全面理解公式的實質,靈活運用公式的兩種表達式,比如用文字公式判斷一個題目能否使用平方差公式,用數學公式確定公式中的a與b,這樣才能使自己的計算即準確又靈活.
3.判斷正誤:
(1)(4x+3b)(4x-3b)=4x2-3b2;(×)(2)(4x+3b)(4x-3b)=16x2-9;(×)。
(3)(4x+3b)(4x-3b)=4x2+9b2;(×)(4)(4x+3b)(4x-3b)=4x2-9b2;(×)。
(1)102×98;(2)(y+2)(y-2)(y2+4).
解:(1)102×98(2)(y+2)(y-2)(y2+4)。
=(100+2)(100-2)=(y2-4)(y2+4)。
=9996;。
(1)103×97;(2)(x+3)(x-3)(x2+9);。
(3)59.8×60.2;(4)(x-)(x2+)(x+).
3.請每位同學自編兩道能運用平方差公式計算的題目.
例2填空:
思考題:什么樣的二項式才能逆用平方差公式寫成兩數和與這兩數的差的積?
(某兩數平方差的二項式可逆用平方差公式寫成兩數和與這兩數的差的積)。
練習。
填空:
1.x2-25=()();。
2.4m2-49=(2m-7)();。
3.a4-m4=(a2+m2)()=(a2+m2)()();。
例3計算:
(1)(a+b-3)(a+b+3);(2)(m2+n-7)(m2-n-7).
解:(1)(a+b-3)(a+b+3)(2)(m2+n-7)(m2-n-7)。
=[(a+b)-3][(a+b)+3]=[(m2-7)+n][(m2-7)-n]。
=(a+b)2-9=a2+2ab+b2-9.=(m2-7)2-n2。
=m4-14m2+49-n2.
1.什么是平方差公式?一般兩個二項式相乘的積應是幾項式?
3.怎樣判斷一個多項式的乘法問題是否可以用平方差公式?
(1)(a2+b)(a2-b);(2)(-4m2+5n)(4m2+5n);。
(3)(x2-y2)(x2+y2);(4)(9a2+7b2)(7b2-9a2).
(1)69×71;(2)53×47;(3)503×497;(4)40×39.
初中數學平方差公式教案大全(17篇)篇八
教學目標:
1、經歷探索完全平方公式的過程,并從完全平方公式的推導過程中,培養學生觀察、發現、歸納、概括、猜想等探究創新能力,發展邏輯推理能力和有條理的表達能力。
2、體會公式的發現和推導過程,理解公式的本質,從不同的層次上理解完全平方公式,并會運用公式進行簡單的計算。
4、在學習中使學生體會學習數學的樂趣,培養學習數學的信心,感愛數學的內在美。
教學重點:
1、弄清完全平方公式的來源及其結構特點,用自己的.語言說明公式及其特點;
教學難點:
教學方法:
探索討論、歸納總結。
教學過程:
一、回顧與思考。
活動內容:復習已學過的平方差公式。
1、平方差公式:(a+b)(a―b)=a2―b2;
公式的結構特點:左邊是兩個二項式的乘積,即兩數和與這兩數差的積。
右邊是兩數的平方差。
2、應用平方差公式的注意事項:弄清在什么情況下才能使用平方差公式。
二、情境引入。
活動內容:提出問題:
一塊邊長為a米的正方形實驗田,由于效益比較高,所以要擴大農田,將其邊長增加b米,形成四塊實驗田,以種植不同的新品種(如圖)。
用不同的形式表示實驗田的總面積,并進行比較。
活動內容:
1、通過多項式的乘法法則來驗證(a+b)2=a2+2ab+b2的正確性。并利用兩數和的完全平方公式推導出兩數差的完全平方公式:(a―b)2=a2―2ab+b2。
2、引導學生利用幾何圖形來驗證兩數差的完全平方公式。
3、分析完全平方公式的結構特點,并用語言來描述完全平方公式。
結構特點:左邊是二項式(兩數和(差))的平方;
右邊是兩數的平方和加上(減去)這兩數乘積的兩倍。
語言描述:兩數和(或差)的平方,等于這兩數的平方和加上(或減去)這兩數積的兩倍。
2、總結口訣:首平方,尾平方,兩倍乘積放中央,加減看前方,同加異減。
五、鞏固練習:
1、下列各式中哪些可以運用完全平方公式計算。
一、學習目標。
1、會推導完全平方公式,并能運用公式進行簡單的計算。
二、學習重點:會用完全平方公式進行運算。
三、學習難點:理解完全平方公式的結構特征并能靈活應用公式進行計算。
四、學習設計。
(一)預習準備。
(1)預習書p23―26。
(2)思考:和的平方等于平方的和嗎?
1、已知實數x、y都大于2,試比較這兩個數的積與這兩個數的和的大小,并說明理由。
2、已知(a+b)2=24,(a―b)2=20,求:
(1)ab的值是多少?
(2)a2+b2的值是多少?
3、已知2(x+y)=―6,xy=1,求代數式(x+2)―(3xy―y)的值。
1、(5―x2)2等于;
答案:25―10x2+x4。
解析:解答:(5―x2)2=25―10x2+x4。
2、(x―2y)2等于;
答案:x2―8xy+4y2。
解析:解答:(x―2y)2=x2―8xy+4y2。
3、(3a―4b)2等于;
答案:9a2―24ab+16b2。
解析:解答:(3a―4b)2=9a2―24ab+16b2。
初中數學平方差公式教案大全(17篇)篇九
同號兩數來相加,絕對值加不變號。
異號相加大減小,大數決定和符號。
互為相反數求和,結果是零須記好。
【注】“大”減“小”是指絕對值的大小。
有理數的減法運算。
減正等于加負,減負等于加正。
有理數的乘法運算符號法則。
同號得正異號負,一項為零積是零。
合并同類項。
說起合并同類項,法則千萬不能忘。
只求系數代數和,字母指數留原樣。
去、添括號法則。
去括號或添括號,關鍵要看連接號。
擴號前面是正號,去添括號不變號。
括號前面是負號,去添括號都變號。
解方程。
已知未知鬧分離,分離要靠移完成。
移加變減減變加,移乘變除除變乘。
兩數和乘兩數差,等于兩數平方差。
積化和差變兩項,完全平方不是它。
首平方與末平方,首末二倍中間放。
和的平方加聯結,先減后加差平方。
首平方又末平方,二倍首末在中央。
和的平方加再加,先減后加差平方。
解一元一次方程。
先去分母再括號,移項變號要記牢。
同類各項去合并,系數化“1”還沒好。
求得未知須檢驗,回代值等才算了。
解一元一次方程。
先去分母再括號,移項合并同類項。
系數化1還沒好,準確無誤不白忙。
因式分解與乘法。
和差化積是乘法,乘法本身是運算。
積化和差是分解,因式分解非運算。
因式分解。
兩式平方符號異,因式分解你別怕。
兩底和乘兩底差,分解結果就是它。
兩式平方符號同,底積2倍坐中央。
因式分解能與否,符號上面有文章。
同和異差先平方,還要加上正負號。
同正則正負就負,異則需添冪符號。
因式分解。
一提二套三分組,十字相乘也上數。
四種方法都不行,拆項添項去重組。
重組無望試求根,換元或者算余數。
多種方法靈活選,連乘結果是基礎。
同式相乘若出現,乘方表示要記住。
【注】一提(提公因式)二套(套公式)。
因式分解。
一提二套三分組,叉乘求根也上數。
五種方法都不行,拆項添項去重組。
對癥下藥穩又準,連乘結果是基礎。
二次三項式的因式分解。
先想完全平方式,十字相乘是其次。
兩種方法行不通,求根分解去嘗試。
比和比例。
兩數相除也叫比,兩比相等叫比例。
外項積等內項積,等積可化八比例。
分別交換內外項,統統都要叫更比。
同時交換內外項,便要稱其為反比。
前后項和比后項,比值不變叫合比。
前后項差比后項,組成比例是分比。
兩項和比兩項差,比值相等合分比。
前項和比后項和,比值不變叫等比。
解比例。
外項積等內項積,列出方程并解之。
求比值。
由已知去求比值,多種途徑可利用。
活用比例七性質,變量替換也走紅。
消元也是好辦法,殊途同歸會變通。
正比例與反比例。
商定變量成正比,積定變量成反比。
正比例與反比例。
變化過程商一定,兩個變量成正比。
變化過程積一定,兩個變量成反比。
判斷四數成比例。
四數是否成比例,遞增遞減先排序。
兩端積等中間積,四數一定成比例。
判斷四式成比例。
四式是否成比例,生或降冪先排序。
兩端積等中間積,四式便可成比例。
比例中項。
成比例的四項中,外項相同會遇到。
有時內項會相同,比例中項少不了。
比例中項很重要,多種場合會碰到。
成比例的四項中,外項相同有不少。
有時內項會相同,比例中項出現了。
同數平方等異積,比例中項無處逃。
根式與無理式。
表示方根代數式,都可稱其為根式。
根式異于無理式,被開方式無限制。
被開方式有字母,才能稱為無理式。
無理式都是根式,區分它們有標志。
被開方式有字母,又可稱為無理式。
求定義域。
求定義域有講究,四項原則須留意。
負數不能開平方,分母為零無意義。
指是分數底正數,數零沒有零次冪。
限制條件不唯一,滿足多個不等式。
求定義域要過關,四項原則須注意。
負數不能開平方,分母為零無意義。
分數指數底正數,數零沒有零次冪。
限制條件不唯一,不等式組求解集。
解一元一次不等式。
先去分母再括號,移項合并同類項。
系數化“1”有講究,同乘除負要變向。
先去分母再括號,移項別忘要變號。
同類各項去合并,系數化“1”注意了。
同乘除正無防礙,同乘除負也變號。
解一元一次不等式組。
大于頭來小于尾,大小不一中間找。
大大小小沒有解,四種情況全來了。
同向取兩邊,異向取中間。
中間無元素,無解便出現。
幼兒園小鬼當家,(同小相對取較小)。
敬老院以老為榮,(同大就要取較大)。
軍營里沒老沒少。(大小小大就是它)。
大大小小解集空。(小小大大哪有哇)。
解一元二次不等式。
首先化成一般式,構造函數第二站。
判別式值若非負,曲線橫軸有交點。
a正開口它向上,大于零則取兩邊。
代數式若小于零,解集交點數之間。
方程若無實數根,口上大零解為全。
小于零將沒有解,開口向下正相反。
異號兩個平方項,因式分解有辦法。
兩底和乘兩底差,分解結果就是它。
初中數學平方差公式教案大全(17篇)篇十
1.掌握平方差公式的推導和運用,以及對平方差公式的幾何背景的理解;(重點)。
2.掌握平方差公式的應用.(重點)。
一、情境導入。
1.教師引導學生回憶多項式與多項式相乘的法則.
學生積極舉手回答.
多項式與多項式相乘的法則:多項式與多項式相乘,先用一個多項式的每一項分別乘以另一個多項式的每一項,再把所得的積相加.
2.教師肯定學生的表現,并講解一種特殊形式的多項式與多項式相乘——平方差公式.
二、合作探究。
探究點:平方差公式。
【類型一】直接運用平方差公式進行計算。
初中數學平方差公式教案大全(17篇)篇十一
平方差公式的教學已經是好幾次了,舊教材總是定向于代數方法,新課程理念同幾何意義探究,這也是對教學者的一次挑戰,通過教學,我從中領會到它所蘊含的新的教學理念,新的教學方式和方法。
1、在教學設計時應提供充分探索與交流的空間,使學生進一步經歷觀察,實驗、猜測、推理、交流、反思等活動,我在設計中讓學生從計算花圃面積入手,要求學生找出不同的計算方法,學生欣然接受了挑戰,通過交流,給出了兩種方法,繼而通過觀察發現了面積的求法與乘法公式之間的吻合,激發了學生學習興趣的同時也激活了學生的思維,所以這個探究過程是很有效的。
2、我知道培養學生數形結合思想方法和能力的重要性,通過幾何意義說明平方差方式的探究過程,學生可以切實感受到兩者之間的聯系,學會一些探究的基本方法與思路,并體會到數學證明的靈巧間法與和諧美是很有必要的。
3、加強師生之間的活動也是必要的。在活動中,通過我的組織、引導和鼓勵下,學生不斷地思考和探究,并積極地進行交流,使活動有序進行,我始終以平等、欣賞、尊重的態度參與到學生活動中,營造出了一個和諧,寬松的教學環境。
初中數學平方差公式教案大全(17篇)篇十二
本節課的目標是會推導公式(a+b)(a-b)=a2-b2,并能簡單計算。上一節學了多項式×多項式的運算法則,因此在回顧舊知識利用法則來計算(a+2)(a-2),(2x-y)(2x+y)的同時直接引入本節課的內容,問學生上面的兩個多項式乘多項式中各個式有什么特征?結果又有什么特征,學生的回答跟預測的差不多看是能看出來但要把他描述出來有點困難,因此指導并和學生一起用語言描述:二項式乘二項式中其中一項相同,另一項互為相反數的積等于(自己不回答學生回答)兩項的平方差,這時就問對嗎?學生很快就能反映過來,更能加深印象結果應該等于相同項的平方—互為相反數項的平方。繼續探究同類型的計算:(x+1)(x-1);(m+2)(m-2);(2x+1)(2x-1),都能找到此規律,讓學生歸納出結論(用式子),因為從特殊到一般的歸納學生比較擅長,得出結論是:(a+b)(a-b)=a2-b2,因為結果是平方差所以把公式的名稱叫為平方差公式。接著那學生嘗試著用文字歸納,為了歸納的方便把連接兩項的符號看成運算符號,該怎么描述此規律:兩項的和乘兩項的差(提示學生這兩項跟前面的兩項是一樣的)等于這兩項的平方差,接著幾個二項式乘二項式的練習讓學生板演,目的是看看學生的易錯點并一起歸納怎樣做不容易出錯及應注意那些事項:利用平方公式計算,首先觀察是否符合公式的特點,用不同的符號把找到相同的項和相反的項表示出來,并把它寫成公式的形式,先不要急著答案出來。讓學生比較用法則計算跟用公式計算的區別,平方差公式(a-b)(a+b)=a2-b2它是特殊的整式的乘法,運用這一公式可以迅速而簡捷地計算出符合公式的特征的多項式乘法的結果,但運用公式計算一定要看是否符合公式的特征,嚴格要求不能亂套公式。
為了讓學生理解公式的幾何背景,通過拼圖計算,既可以直觀說明公式的幾何特征,又可以體現數形結合。
初中數學平方差公式教案大全(17篇)篇十三
本周x上午我聽了x老師一節關于《運用平方差公式進行因式分解》的公開課,x老師以自己扎實的數學基本功,細致嚴謹的數學解題思路,靈活輕松的師生互動,為我們獻上了一節優質的數學課。
x老師針對本章內容所要用上了前面的知識做了細致的.復習。實現了本章節知識點的聯系與復習回顧,對接下去的學習做了很好的鋪墊。
x老師通過求長方形的面積來引導學生探索、總結出運用平方差公式進行因式分解的法則,利用數形結合,讓學生對這個法則的理解更深入,同時突破了難點,體現了以教師為主導、學生自主探究、討論、合作交流的新課改理念。
x老師通過練習,讓學生觀察步驟,并做出總結。使學生加深了對知識的理解,學會觀察,發現,總結知識。最后x老師還給學生編了個解題的順口溜,既方便讓學生記憶,又能鞏固知識。
(1)整節課老師講得多,學生個別回答較少。
(2)學生的討論與合作學習還需加強,討論問題還不夠深入,應讓學生從合作學習中有所提高,從與它人的交流中碰撞出思維的火花。
(3)還需加強的對知識點的認識,比如為什么要學升降冪,是為了結果的有序,數學的結果需要簡潔有序。這樣讓學生很清楚,有目的的學習效果總是比較好的。
初中數學平方差公式教案大全(17篇)篇十四
重點、難點根據公式的特征及問題的特征選擇適當的公式計算.
教學過程。
一、議一議。
1.邊長為(a+b)的正方形面積是多少?
2.邊長分別為a、b拍的兩個正方形面積和是多少?
3.你能比較(1)(2)的結果嗎?說明你的理由.師生共同討論:學生回答(1)(a+b)(2)a+b(3)因為(a+b)=a+2ab+b,所以(a+b)-(a+b)=a+2ab+b-a-b=2ab,即(1)中的正方形面積比(2)中的正方形面積大.
二、做一做。
例1.利用完全平方式計算1.102。
三、試一試。
計算:。
1.(a+b+c)。
2.(a+b)師生共同分析:對于1要把多項式完全平方轉化為二項式的完全平方,要使用加法結合律,為使用完全平方公式創造條件.如(a+b+c)=[a+(b+c)]對于(2)可化為(a+b)=(a+b)(a+b).學生動筆:在練習本上解答,并與同伴交流你的做法.學生敘述。
四、隨堂練習。
p381。
五、小結。
本節課進一步學習了完全平方公式,在應用此公式運算時注意以下幾點.1.使用完全平方公式首先要熟記公式和公式的'特征,不能出現(ab)=ab的錯誤,或(ab)=aab+b(漏掉2倍)等錯誤.2.要能根據公式的特征及題目的特征靈活選擇適當的公式計算.3.用加法結合律,可為使用公式創造了條件.利用了這種方法,可以把多項式的完全平方轉化為二項式的完全平方.
六、作業。
課本習題1.14p381、2、3.
七、教后反思。
1.9整式的除法第一課時單項式除以單項式教學目標1.經歷探索單項式除法的法則過程,了解單項式除法的意義.
2.理解單項式除法法則,會進行單項式除以單項式運算.重點、難點重點:單項式除以單項式的運算.難點:單項式除以單項式法則的理解.
初中數學平方差公式教案大全(17篇)篇十五
探索單項式除以單項式法則(出示投影1)計算下列各題,并說說你的理由1.xyx,(8mn)(2mn),(abc)(3ab).師生共同分析:此題是做除法運算,可以從兩方面思考:根據除法是乘法的逆運算,將除法問題轉化為乘法問題去解決,即()x=xy,由單項式乘以單項式法則可得(xy)x=xy,因此,xyx=xy.另外,根據同底數冪的除法法則,由約分也可得=xy.學生動筆:寫出(2)(3)題的結果。教師板書:xyx=xy,(8mn)(2mn)=4n,(abc)(3ab)=abc師:以上運算是單項式除以單項式的運算,你能說說如何進行單項式除以單項式的運算?學生活動:小組討論,教師引導學生從系數、同底數冪、只在被除式含有的字母三方面思考,討論充分后,由一名同學敘述,其余同學補充糾正。出示單項式除法法則(投影顯示)單項式相除,把系數、同底數冪分別相除后,作為商的因式;對于只在被除式里含有的字母,則連同它的指數作為商的一個因式。
p401學生活動:讓四名同學到黑板板演,其余同學在練習本上計算,同伴可交流,互相訂正。教師巡回檢查,對存在問題及時更正。待四名板演同學完成后,師生共同訂正。
本節課主要學習了單項式除以單項式的運算。在運用法則計算時應注意以下幾點:
1.系數相除與同底數冪相除的區別;
2.符號問題;
初中數學平方差公式教案大全(17篇)篇十六
2、了解開方與乘方互為逆運算,會用平方運算求某些非負數的平方根,進行簡單的開平方運算。
了解平方根的概念,求某些非負數的平方根。
了解被開方數的非負性;
1、我們已經學習過哪些運算?它們中互為逆運算的是?
答:加法、減法、乘法、除法、乘方五種運算。加法與減法互逆;乘法與除法互逆。
2、什么叫乘方?什么叫冪?乘方有沒有逆運算?完成下面填空。
32=()()2=9。
(—3)2=()()2=。
()2=()()2=0。
()2=()。
02=()()2=—4。
3、左邊算式已知底數、指數求冪,右邊算式已知冪、指數求底數。
一般地,如果一個數的平方等于a,那么這個數叫做a的平方根,也叫做a的二次方根。
即如果x2=a,那么叫做的平方根。請按照第3頁的舉例你再舉兩個例子說明:
叫做開平方,平方與互為逆運算。
4、觀察上面兩組算式,歸納一個數的平方根的性質是:
一個正數有兩個平方根,它們互為相反數;
零有一個平方根,它是零本身;
交流:(1)的平方根是什么?
(2)0.16的平方根是什么?
(3)0的平方根是什么?
(4)—9的平方根是什么?
一個正數a有兩個平方根,它們互為相反數。
這兩個平方根合在一起記作。
如果x2=a,那么x=,其中符號讀作根號,a叫做被開方數。
這里的a表示什么樣的數?a是非負數。
1、判斷下面的說法是否正確:
1)—5是25的平方根;()。
2)25的平方根是—5;()。
3)0的平方根是0()。
4)1的平方根是1()。
5)(—3)2的平方根是—3()。
6)—32的平方根是—3()。
2、閱讀課本第4頁例題1,按例題格式判斷下列各數有沒有平方根,若有,求其平方根。若沒有,說明為什么。
(1)0.81(2)(3)—100(4)(—4)2。
(5)1.69(6)(7)10(8)5。
本節課你學到哪些知識?哪些地方是我們要注意的?你還有哪些疑惑?
1、檢驗下面各題中前面的數是不是后面的數的平方根。
(1)12,144()(2)0.2,0.04()。
(3)102,104()(4)14,256()。
2、選擇題(1)0.01的平方根是()。
a、0.1b、0.1c、0.0001d、0.0001。
(2)因為(0.3)2=0.09所以()。
a、0.09是0.3的平方根。b、0.09是0.3的3倍。
c、0.3是0.09的平方根。d、0.3不是0.09的平方根。
3、判斷下列說法是否正確:
(1)—9的平方根是—3;()。
(2)49的平方根是7;()。
(3)(—2)2的平方根是()。
(4)—1是1的平方根;()。
(5)若x2=16則x=4()。
(6)7的平方根是49。()。
1)812)0。253)4)(—6)2。
5、求下列各式中的x:
(1)x=16(2)x=(3)x=15(4)4x=81。
1、一個數的平方等于它本身,這個數是一個數的平方根等于它本身,這個數是。
2、若3a+1沒有平方根,那么a一定。3、若4a+1的平方根是5,則a=。
4、一個數x的平方根等于m+1和m—3,則m=。x=。
5、若|a—9|+(b—4)=0,則ab的平方根是。
6、熟背1至20的平方的結果。
初中數學平方差公式教案大全(17篇)篇十七
2.注意培養學生分析、綜合和抽象、概括以及運算能力.
教學重點和難點。
難點:用公式的結構特征判斷題目能否使用公式.
教學過程設計。
我們已經學過了多項式的乘法,兩個二項式相乘,在合并同類項前應該有幾項?合并同類項以后,積可能會是三項嗎?積可能是二項嗎?請舉出例子.
讓學生動腦、動筆進行探討,并發表自己的見解.教師根據學生的回答,引導學生進一步思考:
(當乘式是兩個數之和以及這兩個數之差相乘時,積是二項式.這是因為具備這樣特點的兩個二項式相乘,積的四項中,會出現互為相反數的兩項,合并這兩項的結果為零,于是就剩下兩項了.而它們的積等于乘式中這兩個數的平方差)。
繼而指出,在多項式的乘法中,對于某些特殊形式的多項式相乘,我們把它寫成公式,并加以熟記,以便遇到類似形式的多項式相乘時就可以直接運用公式進行計算.以后經常遇到(a+b)(a-b)這種乘法,所以把(a+b)(a-b)=a2-b2作為公式,叫做乘法的平方差公式.
在此基礎上,讓學生用語言敘述公式.
二、運用舉例變式練習。
例1計算(1+2x)(1-2x).
解:(1+2x)(1-2x)。
=12-(2x)2。
=1-4x2.
教師引導學生分析題目條件是否符合平方差公式特征,并讓學生說出本題中a,b分別表示什么.
例2計算(b2+2a3)(2a3-b2).
解:(b2+2a3)(2a3-b2)。
=(2a3+b2)(2a3-b2)。
=(2a3)2-(b2)2。
=4a6-b4.
教師引導學生發現,只需將(b2+2a3)中的兩項交換位置,就可用平方差公式進行計算.
課堂練習。
(l)(x+a)(x-a);(2)(m+n)(m-n);。
(3)(a+3b)(a-3b);(4)(1-5y)(l+5y).
例3計算(-4a-1)(-4a+1).
讓學生在練習本上計算,教師巡視學生解題情況,讓采用不同解法的兩個學生進行板演.
解法1:(-4a-1)(-4a+1)。
=[-(4a+l)][-(4a-l)]。
=(4a+1)(4a-l)。
=(4a)2-l2。
=16a2-1.
解法2:(-4a-l)(-4a+l)。
=(-4a)2-l。
=16a2-1.
根據學生板演,教師指出兩種解法都很正確,解法1先用了提出負號的辦法,使兩乘式首項都變成正的,而后看出兩數的和與這兩數的差相乘的形式,應用平方差公式,寫出結果.解法2把-4a看成一個數,把1看成另一個數,直接寫出(-4a)2-l2后得出結果.采用解法2的同學比較注意平方差公式的特征,能看到問題的本質,運算簡捷.因此,我們在計算中,先要分析題目的數字特征,然后正確應用平方差公式,就能比較簡捷地得到答案.
課堂練習。
1.口答下列各題:
(l)(-a+b)(a+b);(2)(a-b)(b+a);。
(3)(-a-b)(-a+b);(4)(a-b)(-a-b).
2.計算下列各題:
(1)(4x-5y)(4x+5y);(2)(-2x2+5)(-2x2-5);。
教師巡視學生練習情況,請不同解法的學生,或發生錯誤的學生板演,教師和學生一起分析解法.
三、小結。
2.運用公式要注意什么?
(1)要符合公式特征才能運用平方差公式;。
(2)有些式子表面不能應用公式,但實質能應用公式,要注意變形.
四、作業。
(l)(x+2y)(x-2y);(2)(2a-3b)(3b+2a);。
(3)(-1+3x)(-1-3x);(4)(-2b-5)(2b-5);。
2.計算:
(3)x(x-3)-(x+7)(x-7);(4)(2x-5)(x-2)+(3x-4)(3x+4).