數(shù)學(xué)高考答題方案解析及答案 成人高考數(shù)學(xué)答題技巧總結(jié)篇二
高考立體幾何試題一般共有4道(選擇、填空題3道, 解答題1道),共計(jì)總分27分左右,考查的知識(shí)點(diǎn)在20個(gè)以內(nèi)。選擇填空題考核立幾中的計(jì)算型問題,而解答題著重考查立幾中的邏輯推理型問題,當(dāng)然,二者均應(yīng)以正確的空間想象為前提。隨著新的課程改革的進(jìn)一步實(shí)施,立體幾何考題正朝著“多一點(diǎn)思考,少一點(diǎn)計(jì)算”的發(fā)展。從歷年的考題變化看,以簡單幾何體為載體的線面位置關(guān)系的論證,角與距離的探求是常考常新的熱門話題。
知識(shí)整合
1、有關(guān)平行與垂直(線線、線面及面面)的問題,是在解決立體幾何問題的過程中,大量的、反復(fù)遇到的,而且是以各種各樣的問題(包括論證、計(jì)算角、與距離等)中不可缺少的內(nèi)容,因此在主體幾何的總復(fù)習(xí)中,首先應(yīng)從解決“平行與垂直”的有關(guān)問題著手,通過較為基本問題,熟悉公理、定理的內(nèi)容和功能,通過對問題的分析與概括,掌握立體幾何中解決問題的規(guī)律--充分利用線線平行(垂直)、線面平行(垂直)、面面平行(垂直)相互轉(zhuǎn)化的思想,以提高邏輯思維能力和空間想象能力。
2、判定兩個(gè)平面平行的方法:
(1)根據(jù)定義--證明兩平面沒有公共點(diǎn);
(2)判定定理--證明一個(gè)平面內(nèi)的兩條相交直線都平行于另一個(gè)平面;
(3)證明兩平面同垂直于一條直線。
3、兩個(gè)平面平行的主要性質(zhì):
(1)由定義知:“兩平行平面沒有公共點(diǎn)”。
(2)由定義推得:“兩個(gè)平面平行,其中一個(gè)平面內(nèi)的直線必平行于另一個(gè)平面。
(3)兩個(gè)平面平行的性質(zhì)定理:”如果兩個(gè)平行平面同時(shí)和第三個(gè)平面相交,那么它們的交線平行“。
(4)一條直線垂直于兩個(gè)平行平面中的一個(gè)平面,它也垂直于另一個(gè)平面。
(5)夾在兩個(gè)平行平面間的平行線段相等。
(6)經(jīng)過平面外一點(diǎn)只有一個(gè)平面和已知平面平行。
以上性質(zhì)(2)、(3)、(5)、(6)在課文中雖未直接列為”性質(zhì)定理“,但在解題過程中均可直接作為性質(zhì)定理引用。
解答題分步驟解決可多得分
01、合理安排,保持清醒。
數(shù)學(xué)考試在下午,建議中午休息半小時(shí)左右,睡不著閉閉眼睛也好,盡量放松。然后帶齊用具,提前半小時(shí)到考場。
02、通覽全卷,摸透題情。
剛拿到試卷,一般較緊張,不宜匆忙作答,應(yīng)從頭到尾通覽全卷,盡量從卷面上獲取更多的信息,摸透題情。這樣能提醒自己先易后難,也可防止漏做題。
03、解答題規(guī)范有序。
一般來說,試題中容易題和中檔題占全卷的80%以上,是考生得分的主要來源。
對于解答題中的容易題和中檔題,要注意解題的規(guī)范化,關(guān)鍵步驟不能丟,如三種語言(文字語言、符號(hào)語言、圖形語言)的表達(dá)要規(guī)范,邏輯推理要嚴(yán)謹(jǐn),計(jì)算過程要完整,注意算理算法,應(yīng)用題建模與還原過程要清晰,合理安排卷面結(jié)構(gòu)……對于解答題中的難題,得滿分很困難,可以采用“分段得分”的策略,因?yàn)楦呖奸喚硎恰胺侄卧u分”。
比如可將難題劃分為一個(gè)個(gè)子問題或一系列的步驟,先解決問題的一部分,能解決到什么程度就解決到什么程度,獲取一定的分?jǐn)?shù)。
有些題目有好幾問,前面的小問你解答不出,但后面的小問如果根據(jù)前面的結(jié)論你能夠解答出來,這時(shí)候不妨引用前面的結(jié)論先解答后面的,這樣跳步解答也可以得分。
數(shù)學(xué)高考答題方案解析及答案 成人高考數(shù)學(xué)答題技巧總結(jié)篇三
壓軸題主要出在函數(shù),解幾,數(shù)列三部分內(nèi)容,一般有三小題。記住:第一小題是容易題!爭取做對!第二小題是中難題,爭取拿分!第三小題是整張?jiān)嚲碇须y的題目!也爭取拿分!
其實(shí)對于所有認(rèn)真復(fù)習(xí)迎考的同學(xué)來說,都有能力與實(shí)力在壓軸題上拿到一半左右的分?jǐn)?shù),要獲取這一半左右的分?jǐn)?shù),不需要大量針對性訓(xùn)練,也不需要復(fù)雜艱深的思考,只需要你有正確的心態(tài)!信心很重要,勇氣不可少。同學(xué)們記住:心理素質(zhì)高者勝!
其實(shí)高考的時(shí)候怎么可能分心呢?這里的分心,不是指你做題目的時(shí)候想著考好去哪里玩。高考時(shí),你是不可能這么想的。你可以回顧高三以往考試,問一下自己:在做后一道題目的時(shí)候,你有沒有想“后一道題目難不難?不知道能不能做出來”“我要不要趕快看看后一題,做不出就去檢查前面題目”“前面不知道做的怎樣,會(huì)不會(huì)粗心錯(cuò)”……這就是影響你解題的“分心”,這些就使你不專心。
專心于現(xiàn)在做的題目,現(xiàn)在做的步驟。現(xiàn)在做哪道題目,腦子里就只有做好這道題目。現(xiàn)在做哪個(gè)步驟,腦子里就只有做好這個(gè)步驟,不去想這步之前對不對,這步之后怎么做,做好當(dāng)下!
你的心態(tài)就是珍惜題目中給你的條件。數(shù)學(xué)題目中的條件都是不多也不少的,一道給出的題目,不會(huì)有用不到的條件,而另一方面,你要相信給出的條件一定是可以做到正確答案的。所以,解題時(shí),一切都須從題目條件出發(fā),只有這樣,一切才都有可能。
在數(shù)學(xué)家波利亞的四個(gè)解題步驟中,第一步審題格外重要,審題步驟中,又有這樣一個(gè)技巧:當(dāng)你對整道題目沒有思路時(shí),步驟(1)將題目條件推導(dǎo)出“新條件”,步驟(2)將題目結(jié)論推導(dǎo)到“新結(jié)論”,步驟(1)就是不要理會(huì)題目中你不理解的部分,只要你根據(jù)題目條件把能做的先做出來,能推導(dǎo)的先推導(dǎo)出來,從而得到“新條件”。步驟(2)就是想要得到題目的結(jié)論,我需要先得到什么結(jié)論,這就是所謂的“新結(jié)論”。然后在“新條件”與“新結(jié)論”之間再尋找關(guān)系。一道難題,難就難在題目條件與結(jié)論的關(guān)系難以建立,而你自己推出的“新條件”與“新結(jié)論”之間的關(guān)系往往比原題更容易建立,這也意味著解出題目的可能性也就越大!
較高境界就是任何一道題目,在你心中沒有難易之分,心中只有根據(jù)題目條件推出新條件,一直推到終的結(jié)論。解題心態(tài)也應(yīng)當(dāng)是寵辱不驚,不以題目易而喜,不以題目難而悲,平常心解題。
最后還有一點(diǎn)要提醒的是,雖然我們認(rèn)為后一題有相當(dāng)分值的易得分部分,但是畢竟已是整場考試的后階段,強(qiáng)弩之末勢不能穿魯縞,疲勞不可避免,因此所有同學(xué)在做后一題時(shí),都要格外小心謹(jǐn)慎,避免易得分部分因?yàn)槠诔鲥e(cuò),導(dǎo)致失分的遺憾結(jié)果出現(xiàn)。
數(shù)學(xué)高考答題方案解析及答案 成人高考數(shù)學(xué)答題技巧總結(jié)篇四
高考試題中的三角函數(shù)題相對比較傳統(tǒng),難度較低,位置靠前,重點(diǎn)突出。因此,在復(fù)習(xí)過程中既要注重三角知識(shí)的基礎(chǔ)性,突出三角函數(shù)的圖象、周期性、單調(diào)性、奇偶性、對稱性等性質(zhì)。以及化簡、求值和最值等重點(diǎn)內(nèi)容的復(fù)習(xí),又要注重三角知識(shí)的工具性,突出三角與代數(shù)、幾何、向量的綜合聯(lián)系,以及三角知識(shí)的應(yīng)用意識(shí)。
第一層次:通過誘導(dǎo)公式和倍角公式的簡單運(yùn)用,解決有關(guān)三角函數(shù)基本性質(zhì)的問題。如判斷符號(hào)、求值、求周期、判斷奇偶性等。
第二層次:三角函數(shù)公式變形中的某些常用技巧的運(yùn)用。如輔助角公式、平方公式逆用、切弦互化等。
第三層次:充分利用三角函數(shù)作為一種特殊函數(shù)的圖象及周期性、奇偶性、單調(diào)性、有界性等特殊性質(zhì),解決較復(fù)雜的函數(shù)問題。如分段函數(shù)值,求復(fù)合函數(shù)值域等。
數(shù)學(xué)高考答題方案解析及答案 成人高考數(shù)學(xué)答題技巧總結(jié)篇五
(1)概念性強(qiáng):數(shù)學(xué)中的每個(gè)術(shù)語、符號(hào),乃至習(xí)慣用語,往往都有明確具體的含義,這個(gè)特點(diǎn)反映到選擇題中,表現(xiàn)出來的就是試題的概念性強(qiáng),試題的陳述和信息的傳遞,都是以數(shù)學(xué)的學(xué)科規(guī)定與習(xí)慣為依據(jù),決不標(biāo)新立異。
(2)量化突出:數(shù)量關(guān)系的研究是數(shù)學(xué)的一個(gè)重要的組成部分,也是數(shù)學(xué)考試中一項(xiàng)主要的內(nèi)容,在高考的數(shù)學(xué)選擇題中,定量型的試題所占的比重很大,而且許多從形式上看為計(jì)算定量型選擇題,其實(shí)不是簡單或機(jī)械的計(jì)算問題,其中往往蘊(yùn)含了對概念、原理、性質(zhì)和法則的考查,把這種考查與定量計(jì)算緊密地結(jié)合在一起,形成了量化突出的試題特點(diǎn)。
(3)充滿思辨性:這個(gè)特點(diǎn)源于數(shù)學(xué)的高度抽象性、系統(tǒng)性和邏輯性。作為數(shù)學(xué)選擇題,尤其是用于選擇性考試的高考數(shù)學(xué)試題,只憑簡單計(jì)算或直觀感知便能正確作答的試題不多,幾乎可以說并不存在,絕大多數(shù)的選擇題,為了正確作答,或多或少總是要求考生具備一定的觀察、分析和邏輯推斷能力。思辨性的要求充滿題目的字里行間。
(4)形數(shù)兼?zhèn)洌簲?shù)學(xué)的研究對象不僅是數(shù),還有圖形,而且對數(shù)和圖形的討論與研究,不是孤立開來分割進(jìn)行,而是有分有合,將它們辯證統(tǒng)一起來。這個(gè)特色在高中數(shù)學(xué)中已經(jīng)得到充分的顯露。因此,在高考的數(shù)學(xué)選擇題中,便反映出形數(shù)兼?zhèn)溥@一特點(diǎn),其表現(xiàn)是幾何選擇題中常常隱藏著代數(shù)問題,而代數(shù)選擇題中往往又寓有幾何圖形的問題。因此,數(shù)形結(jié)合與形數(shù)分離的解題方法是高考數(shù)學(xué)選擇題的一種重要且有效的思想方法與解題方法。
(5)解法多樣化:以其他學(xué)科比較,“一題多解”的現(xiàn)象在數(shù)學(xué)中表現(xiàn)突出,尤其是數(shù)學(xué)選擇題由于它有備選項(xiàng),給試題的解答提供了豐富的有用信息,有相當(dāng)大的提示性,為解題活動(dòng)展現(xiàn)了廣闊的天地,大大地增加了解答的途徑和方法。常常潛藏著極其巧妙的解法,有利于對考生思維深度的考查。
解題策略
(1)注意審題。把題目多讀幾遍,弄清這個(gè)題目求什么,已知什么,求、知之間有什么關(guān)系,把題目搞清楚了再動(dòng)手答題。
(2)答題順序不一定按題號(hào)進(jìn)行。可先從自己熟悉的題目答起,從有把握的題目入手,使自己盡快進(jìn)入到解題狀態(tài),產(chǎn)生解題的激情和欲望,再解答陌生或不太熟悉的題目。若有時(shí)間,再去拼那些把握不大或無從下手的題。這樣也許能超水平發(fā)揮。
(3)數(shù)學(xué)選擇題大約有70%的題目都是直接法,要注意對符號(hào)、概念、公式、定理及性質(zhì)等的理解和使用,例如函數(shù)的性質(zhì)、數(shù)列的性質(zhì)就是常見題目。
(4)挖掘隱含條件,注意易錯(cuò)易混點(diǎn),例如集合中的空集、函數(shù)的定義域、應(yīng)用性問題的限制條件等。
(5)方法多樣,不擇手段。高考試題凸現(xiàn)能力,小題要小做,注意巧解,善于使用數(shù)形結(jié)合、特值(含特殊值、特殊位置、特殊圖形)、排除、驗(yàn)證、轉(zhuǎn)化、分析、估算、極限等方法,一旦思路清晰,就迅速作答。不要在一兩個(gè)小題上糾纏,杜絕小題大做,如果確實(shí)沒有思路,也要堅(jiān)定信心,“題可以不會(huì),但是要做對”,即使是“蒙”也有25%的勝率。
(6)控制時(shí)間。一般不要超過40分鐘,最好是25分鐘左右完成選擇題,爭取又快又準(zhǔn),為后面的解答題留下充裕的時(shí)間,防止“超時(shí)失分”。