在知識點總結(jié)中,我們可以歸納提煉重點內(nèi)容,方便復(fù)習(xí)備考。接下來是一些關(guān)于知識點總結(jié)的實例,希望能給大家提供一些寫作參考和思路。
數(shù)學(xué)輔導(dǎo)班高一數(shù)學(xué)必修二知識點總結(jié)(模板20篇)篇一
函數(shù)是高考數(shù)學(xué)中的重點內(nèi)容,學(xué)習(xí)函數(shù)需要首先掌握函數(shù)的各個知識點,然后運用函數(shù)的各種性質(zhì)來解決具體的問題。
2.函數(shù)的定義域。
函數(shù)的定義域分為自然定義域和實際定義域兩種,如果給定的函數(shù)的解析式(不注明定義域),其定義域應(yīng)指的是使該解析式有意義的自變量的取值范圍(稱為自然定義域),如果函數(shù)是有實際問題確定的,這時應(yīng)根據(jù)自變量的實際意義來確定,函數(shù)的值域是由全體函數(shù)值組成的集合。
3.求解析式。
求函數(shù)的解析式一般有三種種情況:
(1)根據(jù)實際問題建立函數(shù)關(guān)系式,這種情況需引入合適的變量,根據(jù)數(shù)學(xué)的有關(guān)知識找出函數(shù)關(guān)系式。
(2)有時體中給出函數(shù)特征,求函數(shù)的解析式,可用待定系數(shù)法。
(3)換元法求解析式,f[h(x)]=g(x)求f(x)的問題,往往可設(shè)h(x)=t,從中解出x,代入g(x)進行換元來解。掌握求函數(shù)解析式的前提是,需要對各種函數(shù)的性質(zhì)了解且熟悉。
目前我們已經(jīng)學(xué)習(xí)了常數(shù)函數(shù)、指數(shù)與指數(shù)函數(shù)、對數(shù)與對數(shù)函數(shù)、冪函數(shù)、三角函數(shù)、反比例函數(shù)、二次函數(shù)以及由以上幾種函數(shù)加減乘除,或者復(fù)合的一些相對較復(fù)雜的函數(shù),但是這種函數(shù)也是初等函數(shù)。
數(shù)學(xué)輔導(dǎo)班高一數(shù)學(xué)必修二知識點總結(jié)(模板20篇)篇二
棱錐的的性質(zhì):
(1)側(cè)棱交于一點。側(cè)面都是三角形
正棱錐的定義:如果一個棱錐底面是正多邊形,并且頂點在底面內(nèi)的射影是底面的中心,這樣的棱錐叫做正棱錐。
正棱錐的性質(zhì):
(1)各側(cè)棱交于一點且相等,各側(cè)面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的斜高。
(3)多個特殊的直角三角形
esp:
a、相鄰兩側(cè)棱互相垂直的正三棱錐,由三垂線定理可得頂點在底面的射影為底面三角形的垂心。
b、四面體中有三對異面直線,若有兩對互相垂直,則可得第三對也互相垂直。且頂點在底面的射影為底面三角形的垂心。
數(shù)學(xué)輔導(dǎo)班高一數(shù)學(xué)必修二知識點總結(jié)(模板20篇)篇三
高一新生的學(xué)習(xí)主動性太差是一個普遍存在的問題。小學(xué)生,常常是完成了作業(yè)就可以盡情地歡樂。初中生基本上也是如此,聽話的孩子就能學(xué)習(xí)好。高中則不然,作業(yè)雖多,但是只知做作業(yè)就絕對不夠;老師的話也不少,但是誰該干些什么了,老師并不一一具體指明。因此,高中新生必須提高自己學(xué)習(xí)的主動性。準備向?qū)淼拇髮W(xué)生的學(xué)習(xí)方法過渡。
合理規(guī)劃步步為營。
高中的學(xué)習(xí)是非常緊張的。每個學(xué)生都要投入自己的幾乎全部的精力。要想能迅速進步,就要給自己制定一個較長遠的切實可行的學(xué)習(xí)目標和計劃,例如第一學(xué)期的期末,自己計劃達到班級的平均分數(shù),第一學(xué)年,達到年級的前三分之一,如此等等。此外,還要給自己制定學(xué)習(xí)計劃,詳細地安排好自己的零星時間,并及時作出合理的微量調(diào)整。
數(shù)學(xué)輔導(dǎo)班高一數(shù)學(xué)必修二知識點總結(jié)(模板20篇)篇四
1、函數(shù)零點的概念:對于函數(shù),把使成立的實數(shù)叫做函數(shù)的零點。
2、函數(shù)零點的意義:函數(shù)的零點就是方程實數(shù)根,亦即函數(shù)的圖象與軸交點的橫坐標。即:方程有實數(shù)根,函數(shù)的圖象與坐標軸有交點,函數(shù)有零點.
3、函數(shù)零點的求法:
(1)(代數(shù)法)求方程的實數(shù)根;
(2)(幾何法)對于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點.
4、二次函數(shù)的零點:
(1)△0,方程有兩不等實根,二次函數(shù)的圖象與軸有兩個交點,二次函數(shù)有兩個零點.
(2)△=0,方程有兩相等實根(二重根),二次函數(shù)的圖象與軸有一個交點,二次函數(shù)有一個二重零點或二階零點.
(3)△0,方程無實根,二次函數(shù)的圖象與軸無交點,二次函數(shù)無零點.
猜你感興趣:
1.高一化學(xué)必修一重點知識點歸納
2.高一化學(xué)必修一重要知識點整理
3.高一化學(xué)必修一重點知識點
4.高中化學(xué)必修一必備知識點總結(jié)
5.人教版高一英語必修一知識點歸納
數(shù)學(xué)輔導(dǎo)班高一數(shù)學(xué)必修二知識點總結(jié)(模板20篇)篇五
本節(jié)知識包括函數(shù)的單調(diào)性、函數(shù)的奇偶性、函數(shù)的周期性、函數(shù)的最值、函數(shù)的對稱性和函數(shù)的圖象等知識點。函數(shù)的單調(diào)性、函數(shù)的奇偶性、函數(shù)的周期性、函數(shù)的最值、函數(shù)的對稱性是學(xué)習(xí)函數(shù)的圖象的基礎(chǔ),函數(shù)的圖象是它們的綜合。所以理解了前面的幾個知識點,函數(shù)的圖象就迎刃而解了。
1、函數(shù)單調(diào)性的定義。
2、函數(shù)單調(diào)性的判斷和證明:
(1)定義法。
(2)復(fù)合函數(shù)分析法。
(3)導(dǎo)數(shù)證明法。
(4)圖象法。
1、函數(shù)的奇偶性和周期性的定義。
2、函數(shù)的奇偶性的判定和證明方法。
3、函數(shù)的周期性的判定方法。
1、函數(shù)圖象的作法。
(1)描點法。
(2)圖象變換法。
2、圖象變換包括圖象:平移變換、伸縮變換、對稱變換、翻折變換。
本節(jié)是段考和高考必不可少的考查內(nèi)容,是段考和高考考查的重點和難點。選擇題、填空題和解答題都有,并且題目難度較大。在解答題中,它可以和高中數(shù)學(xué)的每一章聯(lián)合考查,多屬于拔高題。多考查函數(shù)的單調(diào)性、最值和圖象等。
1、求函數(shù)的單調(diào)區(qū)間,必須先求函數(shù)的定義域,即遵循“函數(shù)問題定義域優(yōu)先的原則”。
2、單調(diào)區(qū)間必須用區(qū)間來表示,不能用集合或不等式,單調(diào)區(qū)間一般寫成開區(qū)間,不必考慮端點問題。
3、在多個單調(diào)區(qū)間之間不能用“或”和“”連接,只能用逗號隔開。
4、判斷函數(shù)的奇偶性,首先必須考慮函數(shù)的定義域,如果函數(shù)的定義域不關(guān)于原點對稱,則函數(shù)一定是非奇非偶函數(shù)。
5、作函數(shù)的圖象,一般是首先化簡解析式,然后確定用描點法或圖象變換法作函數(shù)的圖象。
數(shù)學(xué)輔導(dǎo)班高一數(shù)學(xué)必修二知識點總結(jié)(模板20篇)篇六
本節(jié)主要包括函數(shù)的模型、函數(shù)的應(yīng)用等知識點。主要是理解函數(shù)解應(yīng)用題的一般步驟靈活利用函數(shù)解答實際應(yīng)用題。
1、常見的函數(shù)模型有一次函數(shù)模型、二次函數(shù)模型、指數(shù)函數(shù)模型、對數(shù)函數(shù)模型、分段函數(shù)模型等。
2、用函數(shù)解應(yīng)用題的基本步驟是:
(1)閱讀并且理解題意。(關(guān)鍵是數(shù)據(jù)、字母的實際意義);
(2)設(shè)量建模;
(3)求解函數(shù)模型;
(4)簡要回答實際問題。
常見考法:
本節(jié)知識在段考和高考中考查的形式多樣,頻率較高,選擇題、填空題和解答題都有。多考查分段函數(shù)和較復(fù)雜的函數(shù)的最值等問題,屬于拔高題,難度較大。
誤區(qū)提醒:
1、求解應(yīng)用性問題時,不僅要考慮函數(shù)本身的定義域,還要結(jié)合實際問題理解自變量的取值范圍。
2、求解應(yīng)用性問題時,首先要弄清題意,分清條件和結(jié)論,抓住關(guān)鍵詞和量,理順數(shù)量關(guān)系,然后將文字語言轉(zhuǎn)化成數(shù)學(xué)語言,建立相應(yīng)的數(shù)學(xué)模型。
【典型例題】
例1:
(1)某種儲蓄的月利率是0。36%,今存入本金100元,求本金與利息的和(即本息和)y(元)與所存月數(shù)x之間的函數(shù)關(guān)系式,并計算5個月后的本息和(不計復(fù)利)。
(2)按復(fù)利計算利息的一種儲蓄,本金為a元,每期利率為r,設(shè)本利和為y,存期為x,寫出本利和y隨存期x變化的函數(shù)式。如果存入本金1000元,每期利率2。25%,試計算5期后的本利和是多少?解:(1)利息=本金×月利率×月數(shù)。y=100+100×0。36%·x=100+0。36x,當(dāng)x=5時,y=101。8,∴5個月后的本息和為101。8元。
例2:
某民營企業(yè)生產(chǎn)a,b兩種產(chǎn)品,根據(jù)市場調(diào)查和預(yù)測,a產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1,b產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2(注:利潤與投資單位是萬元)
(1)分別將a,b兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式。
(2)該企業(yè)已籌集到10萬元資金,并全部投入a,b兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能是企業(yè)獲得利潤,其利潤約為多少萬元。(精確到1萬元)。
數(shù)學(xué)輔導(dǎo)班高一數(shù)學(xué)必修二知識點總結(jié)(模板20篇)篇七
1、指數(shù)函數(shù)的概念:一般地,函數(shù)叫做指數(shù)函數(shù)(exponential),其中x是自變量,函數(shù)的定義域為r.
注意:指數(shù)函數(shù)的底數(shù)的取值范圍,底數(shù)不能是負數(shù)、零和1.
2、指數(shù)函數(shù)的圖象和性質(zhì)。
【函數(shù)的應(yīng)用】。
1、函數(shù)零點的概念:對于函數(shù),把使成立的實數(shù)叫做函數(shù)的零點。
2、函數(shù)零點的意義:函數(shù)的零點就是方程實數(shù)根,亦即函數(shù)的圖象與軸交點的橫坐標。即:
方程有實數(shù)根函數(shù)的圖象與軸有交點函數(shù)有零點.
3、函數(shù)零點的求法:
求函數(shù)的零點:
1(代數(shù)法)求方程的實數(shù)根;。
2(幾何法)對于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點.
4、二次函數(shù)的零點:
二次函數(shù).
1)△0,方程有兩不等實根,二次函數(shù)的圖象與軸有兩個交點,二次函數(shù)有兩個零點.
2)△=0,方程有兩相等實根(二重根),二次函數(shù)的圖象與軸有一個交點,二次函數(shù)有一個二重零點或二階零點.
3)△0,方程無實根,二次函數(shù)的圖象與軸無交點,二次函數(shù)無零點.
數(shù)學(xué)輔導(dǎo)班高一數(shù)學(xué)必修二知識點總結(jié)(模板20篇)篇八
基本初等函數(shù)性質(zhì)的考查,以導(dǎo)數(shù)知識為背景的函數(shù)問題;以向量知識為背景的函數(shù)問題;從具體函數(shù)的考查轉(zhuǎn)向抽象函數(shù)考查;從重結(jié)果考查轉(zhuǎn)向重過程考查;從熟悉情景的考查轉(zhuǎn)向新穎情景的考查。
向量具有數(shù)與形的雙重性,高考中向量試題的命題趨向:考查平面向量的基本概念和運算律;考查平面向量的坐標運算;考查平面向量與幾何、三角、代數(shù)等學(xué)科的綜合性問題。
突出工具性,淡化獨立性,突出解,是不等式命題的新取向。高考中不等式試題的命題趨向:基本的線性規(guī)劃問題為必考內(nèi)容,不等式的性質(zhì)與指數(shù)函數(shù)、對數(shù)函數(shù)、三角函數(shù)、二交函數(shù)等結(jié)合起來,考查不等式的性質(zhì)、最值、函數(shù)的單調(diào)性等;證明不等式的試題,多以函數(shù)、數(shù)列、解析幾何等知識為背景,在知識網(wǎng)絡(luò)的交匯處命題,綜合性強,能力要求高;解不等式的試題,往往與公式、根式和參數(shù)的討論聯(lián)系在一起。考查學(xué)生的等價轉(zhuǎn)化能力和分類討論能力;以當(dāng)前經(jīng)濟、社會生產(chǎn)、生活為背景與不等式綜合的應(yīng)用題仍將是高考的熱點,主要考查學(xué)生閱讀理解能力以及分析問題、解決問題的能力。
20xx年已經(jīng)變得簡單,20xx年難度依然不大,基本的三視圖的考查難點不大,以及球與幾何體的組合體,涉及切,接的問題,線面垂直、平行位置關(guān)系的考查,已經(jīng)線面角,面面角和幾何體的體積計算等問題,都是重點考查內(nèi)容。
小題主要涉及圓錐曲線方程,和直線與圓的位置關(guān)系,以及圓錐曲線幾何性質(zhì)的考查,極坐標下的解析幾何知識,解答題主要考查直線和圓的知識,直線與圓錐曲線的知識,涉及圓錐曲線方程,直線與圓錐曲線方程聯(lián)立,定點,定值,范圍的考查,考試的難度降低。
導(dǎo)數(shù)的考查還是以理科19題,文科20題的形式給出,從常見函數(shù)入手,導(dǎo)數(shù)工具作用(切線和單調(diào)性)的考查,綜合性強,能力要求高;往往與公式、導(dǎo)數(shù)往往與參數(shù)的討論聯(lián)系在一起,考查轉(zhuǎn)化與化歸能力,但今年的難點整體偏低。
答案不,或是邏輯推理題,以及解答題中的開放型試題的考查,都是重點,理科13,文科14題。
數(shù)學(xué)輔導(dǎo)班高一數(shù)學(xué)必修二知識點總結(jié)(模板20篇)篇九
(1)指數(shù)函數(shù)的定義域為所有實數(shù)的集合,這里的前提是a大于0,對于a不大于0的情況,則必然使得函數(shù)的定義域不存在連續(xù)的區(qū)間,因此我們不予考慮。
(2)指數(shù)函數(shù)的值域為大于0的實數(shù)集合。
(3)函數(shù)圖形都是下凹的。
(4)a大于1,則指數(shù)函數(shù)單調(diào)遞增;a小于1大于0,則為單調(diào)遞減的。
(5)可以看到一個顯然的規(guī)律,就是當(dāng)a從0趨向于無窮大的.過程中(當(dāng)然不能等于0),函數(shù)的曲線從分別接近于y軸與x軸的正半軸的單調(diào)遞減函數(shù)的位置,趨向分別接近于y軸的正半軸與x軸的負半軸的單調(diào)遞增函數(shù)的位置。其中水平直線y=1是從遞減到遞增的一個過渡位置。
(6)函數(shù)總是在某一個方向上無限趨向于x軸,永不相交。
(7)函數(shù)總是通過(0,1)這點。
(8)顯然指數(shù)函數(shù)。
數(shù)學(xué)輔導(dǎo)班高一數(shù)學(xué)必修二知識點總結(jié)(模板20篇)篇十
為借鑒。這叫“一人有病,全體吃藥。”高中數(shù)學(xué)課沒有那么多時間,除了少數(shù)幾種典型錯,其它錯誤,不能一一顧及。只能“誰有病,誰吃藥”。如果學(xué)生“有病”,而自己卻又忘記吃藥,那么沒人會一再地提醒他應(yīng)該注意些什么。如果能及時改錯,那么錯誤就可能轉(zhuǎn)變?yōu)樨敻唬蔀椴辉俜高@種錯誤的預(yù)防針。但是,如果不能及時改錯,這個錯誤就將形成一處隱患,一處“地雷”,遲早要惹禍。有的學(xué)生認為,自己考試成績上不去,是因為自己做題太粗心。而且,自己特愛粗心。其實,原因并非如此。打一個比方。比如說,學(xué)習(xí)開汽車。右腳下面,往左踩,是踩剎車。往右踩,是踩油門。其機械原理,設(shè)計原因,操作規(guī)程都可以講的清清楚楚。如果新司機真正掌握了這一套,請問,可以同意他開車上街嗎?恐怕他自己也知道自己還缺乏練習(xí)。一兩次能正確地完成任務(wù),并不能說明永遠不出錯。練習(xí)的數(shù)量不夠,往往是學(xué)生出錯的真正原因。大家一定要看到,如果,自己的基礎(chǔ)背景是地雷密布,隱患無窮,那么,今后的數(shù)學(xué)將是難以學(xué)好的。
積累資料隨時整理。
要注意積累復(fù)習(xí)資料。把課堂筆記,練習(xí),區(qū)單元測驗,各種試卷,都分門別類按時間順序整理好。每讀一次,就在上面標記出自己下次閱讀時的重點內(nèi)容。這樣,復(fù)習(xí)資料才能越讀越精,一目了然。
精挑慎選課外讀物。
初中學(xué)生學(xué)數(shù)學(xué),如果不注意看課外讀物,一般地說,不會有什么影響。高中則大不相同。高中數(shù)學(xué)考的是學(xué)生解決新題的能力。作為一名高中生,如果只是圍著自己的老師轉(zhuǎn),不論老師的水平有多高,必然都會存在著很大的局限性。因此,要想學(xué)好數(shù)學(xué),必須打開一扇門,看看外面的世界。當(dāng)然,也不要自立門戶,另起爐灶。一旦脫離校內(nèi)教學(xué)和自己的老師的教學(xué)體系,也必將事倍功半。
數(shù)學(xué)輔導(dǎo)班高一數(shù)學(xué)必修二知識點總結(jié)(模板20篇)篇十一
高中學(xué)生學(xué)數(shù)學(xué)靠的也是一個字:悟!
先看筆記后做作業(yè)。
有的高一學(xué)生感到,老師講過的,自己已經(jīng)聽得明明白白了。但是,為什么自己一做題就困難重重了呢?其原因在于,學(xué)生對教師所講的內(nèi)容的理解,還沒能達到教師所要求的層次。因此,每天在做作業(yè)之前,一定要把課本的有關(guān)內(nèi)容和當(dāng)天的課堂筆記先看一看。能否堅持如此,常常是好學(xué)生與差學(xué)生的最大區(qū)別。尤其練習(xí)題不太配套時,作業(yè)中往往沒有老師剛剛講過的題目類型,因此不能對比消化。如果自己又不注意對此落實,天長日久,就會造成極大損失。
做題之后加強反思。
有的學(xué)生認為,要想學(xué)好數(shù)學(xué),只要多做題,功到自然成。其實不然。一般說做的題太少,很多熟能生巧的問題就會無從談起。因此,應(yīng)該適當(dāng)?shù)囟嘧鲱}。但是,只顧鉆入題海,堆積題目,在考試中一般也是難有作為的。打個比喻:有很多人,因為工作的需要,幾乎天天都在寫字。結(jié)果,寫了幾十年的.字了,他寫字的水平能有什么提高嗎?一般說,他寫字的水平常常還是原來的水平。也就是說多寫字不等于是受到了寫字的訓(xùn)練!要把提高當(dāng)成自己的目標,要把自己的活動合理地系統(tǒng)地組織起來,要總結(jié)反思,水平才能長進。
主動復(fù)習(xí)總結(jié)提高。
打個比方,就象女孩洗頭那樣。1、把頭發(fā)弄散亂,加以清洗。2、中間分縫。3、將其一半分股編繞,捆結(jié)固定。4、再將另一半分股編繞,捆結(jié)固定。5、疏理辮稍。6、照鏡子調(diào)整。我們進行章節(jié)總結(jié)的過程也是大體如此。
1、要把課本,筆記,區(qū)單元測驗試卷,校周末測驗試卷,都從頭到尾閱讀一遍。要一邊讀,一邊做標記,標明哪些是過一會兒要摘錄的。要養(yǎng)成一個習(xí)慣,在讀材料時隨時做標記,告訴自己下次再讀這份材料時的閱讀重點。長期保持這個習(xí)慣,學(xué)生就能由博反約,把厚書讀成薄書。積累起自己的獨特的,也就是最適合自己進行復(fù)習(xí)的材料。這樣積累起來的資料才有活力,才能用的上。
2、把本章節(jié)的內(nèi)容一分為二,一部分是基礎(chǔ)知識,一部分是典型問題。要把對技能的要求,列進這兩部分中的一部分,不要遺漏。
3、在基礎(chǔ)知識的疏理中,要羅列出所學(xué)的所有定義,定理,法則,公式。要做到三會兩用。即:會文字表述,會圖象符號表述,會推導(dǎo)證明。同時能從正反兩方面對其進行應(yīng)用。
4、把重要的,典型的各種問題進行編隊。要盡量地把他們分類,找出它們之間的位置關(guān)系,總結(jié)出問題間的來龍去脈。就象我們欣賞一場團體操表演,我們不能只盯住一個人看,看他從哪跑到哪,都做了些什么動作。我們一定要居高臨下地看,看全場的結(jié)構(gòu)和變化。不然的話,陷入題海,徒勞無益。這一點,是提高高中數(shù)學(xué)水平的關(guān)鍵所在。
5、總結(jié)那些尚未歸類的問題,作為備注進行補充說明。
6、找一份適當(dāng)?shù)臏y驗試卷,例如北京四中的本章節(jié)測試試卷,電腦網(wǎng)校的本節(jié)試卷,我校去年此時所用的試卷。一定要計時測驗。然后再對照答案,查漏補缺。
數(shù)學(xué)輔導(dǎo)班高一數(shù)學(xué)必修二知識點總結(jié)(模板20篇)篇十二
11三視圖:
正視圖:從前往后。
側(cè)視圖:從左往右。
俯視圖:從上往下。
22畫三視圖的原則:
長對齊、高對齊、寬相等。
33直觀圖:斜二測畫法。
44斜二測畫法的步驟:
(1).平行于坐標軸的線依然平行于坐標軸;。
(2).平行于y軸的線長度變半,平行于x,z軸的線長度不變;。
(3).畫法要寫好。
5用斜二測畫法畫出長方體的步驟:(1)畫軸(2)畫底面(3)畫側(cè)棱(4)成圖。
1.3空間幾何體的表面積與體積。
(一)空間幾何體的表面積。
1棱柱、棱錐的表面積:各個面面積之和。
2圓柱的表面積3圓錐的表面積。
4圓臺的表面積。
5球的表面積。
(二)空間幾何體的體積。
1柱體的體積。
2錐體的體積。
3臺體的體積。
4球體的體積。
數(shù)學(xué)輔導(dǎo)班高一數(shù)學(xué)必修二知識點總結(jié)(模板20篇)篇十三
高中數(shù)學(xué)共有五本必修和選修1—1,1—2(文科),2—1,2—2,2—3(理科),主要為代數(shù)(高考占比約為50%)和幾何(高考占比25—30%),其他(算法,概率統(tǒng)計等)。
高一上期將會學(xué)習(xí)必修1整本書(集合和函數(shù),初等函數(shù),方程的根等),必修四(三角函數(shù))等。主要為函數(shù)內(nèi)容的學(xué)習(xí),主要考察學(xué)生的抽象思維。而且函數(shù)的基本概念和性質(zhì),為整個高中的代數(shù)奠定了基礎(chǔ)。在這一階段的學(xué)習(xí),學(xué)生應(yīng)該盡量培養(yǎng)自己的抽象思維,多思考。可以適當(dāng)少做題,多花時間在知識概念等的復(fù)習(xí)和理解上面,弄清楚所學(xué)內(nèi)容之間的邏輯聯(lián)系。
高一下期將會學(xué)習(xí)必修四(向量,三角函數(shù)和差公式等),必修五(解三角形,數(shù)列,解不等式)等。這一階段的內(nèi)容,主要考察學(xué)生的推演和計算能力。可以適當(dāng)多做題,多訓(xùn)練,提高自己計算的速度和準確性。
高二將會進入幾何部分的學(xué)習(xí)。
高二上期學(xué)習(xí)必修二(立體幾何,直線和圓),必修三(算法,概率統(tǒng)計)等。這一階段的內(nèi)容對學(xué)生的空間想象力(立體幾何)和邏輯思維能力要求較高,同時也要求學(xué)生具備較高的計算水平(經(jīng)過高一下的訓(xùn)練)。同時,這也是對學(xué)生學(xué)習(xí)數(shù)學(xué)相對比較輕松的一個學(xué)期。所以,可以在學(xué)好本學(xué)期內(nèi)容的基礎(chǔ)上,對上學(xué)期的內(nèi)容多做復(fù)習(xí),溫故而知新。
高二下期主要學(xué)習(xí)選修部分(圓錐曲線,導(dǎo)數(shù)等)。這一學(xué)期的內(nèi)容是整個高考的壓軸,也是最難的內(nèi)容。它對學(xué)生各方面能力的要求都很高,是學(xué)生拿高分必須要學(xué)好的部分。對于這一階段的學(xué)習(xí),一定要形成自己的思想,在多思考的基礎(chǔ)上,一定要動筆!
總之,對于數(shù)學(xué)的學(xué)習(xí),新課很重要!接觸知識的第一印象,很大程度上決定了你對整個板塊知識的邏輯關(guān)系的認識。只有理清楚了數(shù)學(xué)各個知識之間的邏輯聯(lián)系,形成自己的一套體系,才能更快更好地學(xué)好數(shù)學(xué)。
數(shù)學(xué)是高考科目之一,故從初一開始就要認真地學(xué)習(xí)數(shù)學(xué)。進入高中以后,往往有不少同學(xué)不能適應(yīng)數(shù)學(xué)學(xué)習(xí),進而影響到學(xué)習(xí)的積極性,甚至成績一落千丈。出現(xiàn)這樣的情況,原因很多。但主要是由于同學(xué)們不了解高中數(shù)學(xué)教學(xué)內(nèi)容特點與自身學(xué)習(xí)方法有問題等因素所造成的。有不少同學(xué)把提高數(shù)學(xué)成績的希望寄托在大量做題上。我認為這是不妥當(dāng)?shù)模艺J為,“不要以做題多少論英雄”,重要的不在做題多,而在于做題的效益要高。做題的目的在于檢查你學(xué)的知識,方法是否掌握得很好。如果你掌握得不準,甚至有偏差,那么多做題的結(jié)果,反而鞏固了你的缺欠,因此,要在準確地把握住基本知識和方法的基礎(chǔ)上做一定量的練習(xí)是必要的。
其次要掌握正確的學(xué)習(xí)方法。鍛煉自己學(xué)數(shù)學(xué)的能力,轉(zhuǎn)變學(xué)習(xí)方式,要改變單純接受的學(xué)習(xí)方式,要學(xué)會采用接受學(xué)習(xí)與探究學(xué)習(xí)、合作學(xué)習(xí)、體驗學(xué)習(xí)等多樣化的方式進行學(xué)習(xí),要在教師的指導(dǎo)下逐步學(xué)會“提出問題—實驗探究—開展討論—形成新知—應(yīng)用反思”的學(xué)習(xí)方法。這樣,通過學(xué)習(xí)方式由單一到多樣的轉(zhuǎn)變,我們在學(xué)習(xí)活動中的自主性、探索性、合作性就能夠得到加強,成為學(xué)習(xí)的主人。
總之,對高中生來說,學(xué)好數(shù)學(xué),要抱著濃厚的興趣去學(xué)習(xí)數(shù)學(xué),積極展開思維的翅膀,主動地參與教育全過程,充分發(fā)揮自己的主觀能動性,愉快有效地學(xué)數(shù)學(xué)。
數(shù)學(xué)輔導(dǎo)班高一數(shù)學(xué)必修二知識點總結(jié)(模板20篇)篇十四
1、閱讀材料:概括材料意思(或有一個意思,或有幾個意思);通過時間、人物等關(guān)鍵詞聯(lián)系課本知識,鎖定課本相關(guān)內(nèi)容。
2、設(shè)問:看是“表明”“體現(xiàn)”“原因”“目的”“影響”等。
3、多管齊下,嘗試不同方法。
篩選法:根據(jù)審題,搞清楚題目的基本要求,根據(jù)基本要求,把四個選項一一過濾,直到找到正確的選項。
重點突破法:在審題中確定關(guān)鍵詞后,如果對關(guān)鍵詞相關(guān)的史實了解清楚,那么可不用逐一考慮各個選項,而是直接確定正確答案。
猜測法:如果對各個選項認識不清,無法確定正確的選項,可用猜測法,猜測時有以下規(guī)律:一般情況下,選項如果超出課本知識范圍或超出課表范圍,則為錯誤。
數(shù)學(xué)輔導(dǎo)班高一數(shù)學(xué)必修二知識點總結(jié)(模板20篇)篇十五
高中最重要的階段,大家一定要把握好高中,多做題,多練習(xí),為高考奮戰(zhàn),小編為大家整理了14高一必修物理知識點,希望對大家有幫助。
1.心態(tài)上不要著急,要適度緊張,慢慢適應(yīng)
剛從初中升上高中的學(xué)生普遍不能一下子適應(yīng)過來,都覺得高一物理難學(xué)。老師也講得比較慢,知識是一點一點滲透的。一道題不會做,立刻記起來,暫時想不明白,以后可以慢慢問老師,記住不是你一個人不適應(yīng),不會,這是整個高一階段是共同現(xiàn)象。
2. 做好知識的同化、和順應(yīng),重建
許多事例表明,同學(xué)們大都能夠比較自覺地同化新知識,但往往不能自覺地采用順應(yīng)的認知方式。在需要更新或重建認知結(jié)構(gòu)的物理新知識學(xué)習(xí)中,被初中的不全面的知識和模糊概念所影響。例如:初中物理中描述物體運動狀態(tài)的`物理量有速度(速率)、路程和時間;高中物理描述物體運動狀態(tài)的物理量有速度、位移、時間、加速度等,其中速度位移和加速度除了有大小還有方向,是矢量。教師應(yīng)及時指導(dǎo)學(xué)生順應(yīng)新知識,辨析速度和速率、位移和路程的區(qū)別,指導(dǎo)學(xué)生掌握建立坐標系選取正方向,然后再列運動學(xué)方程的研究方法。用新的知識和新的方法來調(diào)整、替代原有的認知結(jié)構(gòu)。避免人為的走彎路加高學(xué)習(xí)物理的臺階。
2.學(xué)會構(gòu)建物理模型,學(xué)會在頭腦中想象正確的物理情境
中學(xué)物理教學(xué)中常用的研究方法是:確定研究對象,對研究對象進行簡化建立物理模型,在一定范圍內(nèi)研究物理模型,分析總結(jié)得出規(guī)律,討論規(guī)律的適用范圍及注意事項。例如:平行四邊形法則、牛頓第一定律建立都是如此。建立物理模型是培養(yǎng)抽象思維能力、建立形象思維的重要途徑。要通過對物理概念和規(guī)律建立過程的講解,使學(xué)生領(lǐng)會這種研究物理問題的方法;通過規(guī)律的應(yīng)用培養(yǎng)學(xué)生建立和應(yīng)用物理模型的能力,實現(xiàn)知識的遷移。
數(shù)學(xué)輔導(dǎo)班高一數(shù)學(xué)必修二知識點總結(jié)(模板20篇)篇十六
(2)兩個平面的位置關(guān)系:
兩個平面平行-----沒有公共點;兩個平面相交-----有一條公共直線。
a、平行。
兩個平面平行的判定定理:如果一個平面內(nèi)有兩條相交直線都平行于另一個平面,那么這兩個平面平行。
二面角。
(1)半平面:平面內(nèi)的一條直線把這個平面分成兩個部分,其中每一個部分叫做半平面。
(3)二面角的棱:這一條直線叫做二面角的棱。
(4)二面角的面:這兩個半平面叫做二面角的面。
(5)二面角的平面角:以二面角的棱上任意一點為端點,在兩個面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所成的角叫做二面角的平面角。
(6)直二面角:平面角是直角的二面角叫做直二面角。
兩個平面垂直的性質(zhì)定理:如果兩個平面互相垂直,那么在一個平。
二面角求法:直接法(作出平面角)、三垂線定理及逆定理、面積射影定理、空間向量之法向量法(注意求出的角與所需要求的角之間的等補關(guān)系)。
數(shù)學(xué)輔導(dǎo)班高一數(shù)學(xué)必修二知識點總結(jié)(模板20篇)篇十七
一個東西是集合還是元素并不是絕對的,很多情況下是相對的,集合是由元素組成的集合,元素是組成集合的元素。
例如:你所在的班級是一個集合,是由幾十個和你同齡的同學(xué)組成的集合,你相對于這個班級集合來說,是它的一個元素;而整個學(xué)校又是由許許多多個班級組成的集合,你所在的班級只是其中的一分子,是一個元素。
班級相對于你是集合,相對于學(xué)校是元素,參照物不同,得到的結(jié)論也不同,可見,是集合還是元素,并不是絕對的。
解集合問題的關(guān)鍵。
解集合問題的關(guān)鍵:弄清集合是由哪些元素所構(gòu)成的,也就是將抽象問題具體化、形象化,將特征性質(zhì)描述法表示的集合用列舉法來表示,或用韋恩圖來表示抽象的集合,或用圖形來表示集合;比如用數(shù)軸來表示集合,或是集合的元素為有序?qū)崝?shù)對時,可用平面直角坐標系中的圖形表示相關(guān)的集合等。
數(shù)學(xué)輔導(dǎo)班高一數(shù)學(xué)必修二知識點總結(jié)(模板20篇)篇十八
(1)指數(shù)函數(shù)的定義域為所有實數(shù)的集合,這里的前提是a大于0,對于a不大于0的情況,則必然使得函數(shù)的定義域不存在連續(xù)的區(qū)間,因此我們不予考慮。
(2)指數(shù)函數(shù)的值域為大于0的實數(shù)集合。
(3)函數(shù)圖形都是下凹的。
(4)a大于1,則指數(shù)函數(shù)單調(diào)遞增;a小于1大于0,則為單調(diào)遞減的。
(5)可以看到一個顯然的規(guī)律,就是當(dāng)a從0趨向于無窮大的過程中(當(dāng)然不能等于0),函數(shù)的曲線從分別接近于y軸與x軸的正半軸的單調(diào)遞減函數(shù)的位置,趨向分別接近于y軸的正半軸與x軸的負半軸的單調(diào)遞增函數(shù)的位置。其中水平直線y=1是從遞減到遞增的一個過渡位置。
(6)函數(shù)總是在某一個方向上無限趨向于x軸,永不相交。
(7)函數(shù)總是通過(0,1)這點。
(8)顯然指數(shù)函數(shù)無xx。
奇偶性。
定義。
一般地,對于函數(shù)f(x)。
(1)如果對于函數(shù)定義域內(nèi)的任意一個x,都有f(-x)=-f(x),那么函數(shù)f(x)就叫做奇函數(shù)。
(2)如果對于函數(shù)定義域內(nèi)的任意一個x,都有f(-x)=f(x),那么函數(shù)f(x)就叫做偶函數(shù)。
(3)如果對于函數(shù)定義域內(nèi)的任意一個x,f(-x)=-f(x)與f(-x)=f(x)同時成立,那么函數(shù)f(x)既是奇函數(shù)又是偶函數(shù),稱為既奇又偶函數(shù)。
(4)如果對于函數(shù)定義域內(nèi)的任意一個x,f(-x)=-f(x)與f(-x)=f(x)都不能成立,那么函數(shù)f(x)既不是奇函數(shù)又不是偶函數(shù),稱為非奇非偶函數(shù)。
數(shù)學(xué)輔導(dǎo)班高一數(shù)學(xué)必修二知識點總結(jié)(模板20篇)篇十九
對數(shù)函數(shù)的一般形式為,它實際上就是指數(shù)函數(shù)的反函數(shù)。因此指數(shù)函數(shù)里對于a的規(guī)定,同樣適用于對數(shù)函數(shù)。
右圖給出對于不同大小a所表示的函數(shù)圖形:
可以看到對數(shù)函數(shù)的圖形只不過的指數(shù)函數(shù)的圖形的關(guān)于直線y=x的對稱圖形,因為它們互為反函數(shù)。
(1)對數(shù)函數(shù)的'定義域為大于0的實數(shù)集合。
(2)對數(shù)函數(shù)的值域為全部實數(shù)集合。
(3)函數(shù)總是通過(1,0)這點。
(4)a大于1時,為單調(diào)遞增函數(shù),并且上凸;a小于1大于0時,函數(shù)為單調(diào)遞減函數(shù),并且下凹。
(5)顯然對數(shù)函數(shù)。
數(shù)學(xué)輔導(dǎo)班高一數(shù)學(xué)必修二知識點總結(jié)(模板20篇)篇二十
上課要認真聽講,不走神盡量少走神不要自以為是,要虛心向老師學(xué)習(xí)。不要以為老師講得簡單而放棄聽講,如果真出現(xiàn)這種情況可以當(dāng)成是復(fù)習(xí)、鞏固。盡量與老師保持一致、同步,不能自搞一套,否則就等于是完全自學(xué)了。入門以后,有了一定的基礎(chǔ),則允許有自己一定的自主學(xué)習(xí)間,也就是說允許有一些自己的東西,學(xué)得越多,自己的東西越多。
整理糾錯本。
上課以聽講為主,還要有一個筆記本,有些東西要記下來。知識結(jié)構(gòu)、的解題方法、的例題、不太懂的地方等等都要記下來。課后還要整理筆記,一方面是為了“消化好”,另一方面還要對筆記作好補充。筆記本不只是記上課老師講的,還要作一些讀書摘記,自己在作業(yè)中發(fā)現(xiàn)的好題、好的解法也要記在筆記本上。