在日常學習、工作或生活中,大家總少不了接觸作文或者范文吧,通過文章可以把我們那些零零散散的思想,聚集在一塊。相信許多人會覺得范文很難寫?這里我整理了一些優秀的范文,希望對大家有所幫助,下面我們就來了解一下吧。
圓柱的體積教學反思圓錐的體積教學反思篇一
積等于和它等底等高的圓柱體積的三分之一,并能運用這個關系計算圓錐的體積,讓學生從感性認識上升到理性認識。
我讓學生觀察,先猜測圓錐的體積和什么有關,學生聯系到了圓柱的體積,在猜想中激發學生的學習興趣,使學生明白學習目標。教師從展示實物圖形到空間圖形,采用對比的方法,不斷加深學生對形體的認識。然后讓學生動手實驗:有的組用捏橡皮泥的方法,有的組用到沙子的方法;有的組用計算的方法。讓孩子親歷教學的驗證過程,從實驗中得出結論:等底等高的圓錐體體積是圓柱體體積的三分之一,從而推出圓錐的體積公式。接著我趁熱打鐵,讓學生想一想等積等高的時候,圓柱和圓錐有什么樣的關系?等積等底的時候,圓柱和圓錐又會有什么樣的關系?這樣,就有一種水到渠成的感覺。對圓錐的體積建立了鮮明的印象之后,就應用公式解決實際的生活問題,起到鞏固深化知識點的作用。
在教學之后感覺到遺憾的是,由于教具有限,參與實驗的學生不多,如果每個小組準備一套學具,讓他們以小組合作學習的方式使每個學生都能真切的參與到探究中去,這樣每個學生都能懷著喜悅的心情進行學習,最大限度的發揮每個學生的自主學習的能力,這樣的學習不僅使學生學會了知識,更重要的是培養了學生的能力。
教材中圓錐體積的相對練習較少,但在考試里面實際解決問題中卻常常需要學生能夠靈活應用,所以特別增加了一課時練習。教學中的一組填空題,對于幫助學生深入理解等底等高圓柱與圓錐的聯系很有價值。通過練習,學生們明確了圓柱與等底等高的圓錐體積和為4個圓錐的體積(或三分之四個圓柱的體積),而它們的體積相差2個圓錐的體積(或三分之二個圓柱的體積)??。掌握這些知識對于解決實際問題很有幫助,如將圓柱削成最大的圓錐,求削去部分的體積是多少,就可直接用圓柱的體積乘三分之二從而使計算簡便。
教學的最后我與孩子們一起通過大量的練習,引導總結出了圓柱和圓錐體積和高(或者是底面積)相等,那么圓錐的底面積(或高)是圓柱的3倍,圓柱的底面積(或高)是圓錐的三分之一。
總而言之,圓柱圓錐的體積計算是教學的重點和難點,也是考試中學生容易丟分的危險高發內容,我在后面的教學中需要精講和精煉,讓學生熟能生巧、巧能生精,內化成自己的數學直覺方為最高層次!
圓柱的體積教學反思圓錐的體積教學反思篇二
圓柱的體積這部分知識是學生在有了圓柱、圓和長方體的相關知識基礎上進行教學的。通過對圓柱體積的具體研究,理解圓柱體的體積公式的推導過程,會計算圓柱的體積;體現數學知識“從生活中來到生活中去”的理念,激發學生的學習興趣和對科學知識的求知欲,使學生樂于探索,善于探究。
《課程標準》指出:要創設與學生生活環境、知識背景密切相關的、又是學生感興趣的學習情境,讓學生在觀察、操作、猜測、交流、反思等活動中體會數學知識的產生、形成與發展的過程,獲得積極的情感體驗,感受數學的力量,同時掌握必要的基礎知識與基本技能。在本節課中,我給學生創設了生活情景(裝在杯子中的水的體積你會求嗎?圓柱形橡皮泥的體積你會求嗎?)學生經過思考、討論、交流,找到了解決的方法。而且此環節還自然滲透了圓柱體(新問題)和長方體(已知)的知識聯系。在此基礎上教師又進一步從實際需要提出問題:如果要求某些建筑物中圓柱形柱子的體積,或是求壓路機滾筒的體積,能用剛才同學們想出來的辦法嗎?這一問題情境的創設,激發學生從問題中思考尋求一種更廣泛的方法來解決圓柱體體積的欲望。
體與圓柱的關系,使圓柱體體積的計算公式推導過程完全展示在學生面前。使學生感悟到轉化的思想在幾何學習中的妙用。從而產生一種自我嘗試、主動探究、樂于發現的需要、動機和能力。
學生進行數學探究時,由于條件的限制,沒有更多的學具提供給學生,只一個教具。為了讓學生充分體會,我把操作的機會給了學生。接著再結合多媒體演示讓學生感受“把圓柱的底面分的份數越多,切開后,拼起來的圖形就越接近長方體;接著教師指導學生悟出這個長方體的長相當于圓柱的哪一部分的長度,寬是圓柱哪一部分的長度,高是圓柱的哪一部分的長度,圓柱的體積怎樣計算的道理,從而推導出圓柱體積的計算公式。學生基本沒有親身參與操作,很遺憾。
圓柱的體積教學反思圓錐的體積教學反思篇三
《圓柱的體積》不僅要讓學生掌握圓柱體積的計算方法,最重要的是掌握學習的思想方法(轉化),因此,教學新課前,復習了圓的面積公式的推導過程,以及長方體正方體的體積計算公式。為轉化做好了鋪墊。課上,出示課件:等底等高的長方體、正方體、圓柱,學生通過觀察,作出猜測:(1)圓柱的體積等于長方體和正方體的體積。(2)圓柱的體積也等于底面積乘高。猜測是否準確呢?點燃學生的學習欲望。讓學生根據圓的面積公式的推導過程,讓學生遷移想:圓柱體能轉化成什么幾何形體,然后讓學生用教具驗證圓柱轉化成長方體過程,并討論思考:這個圓柱體與轉化后的長方體相比什么變了,什么沒變?從而得出結論圓柱的體積等于底面積乘以高。有一種推導過程是我沒有預設到的:一學生回答,長方體的長是圓柱的底面周長的一半,寬是底面半徑,高不變。所以圓柱體積=底面周長的一半×底面半徑×高。我沒有否定她的回答,接著又讓學生動手實踐操作,讓學生發現長方體與圓柱之間的聯系,利用圓的周長和面積把圓柱體積的也轉化成底面積乘以高。這樣有學生的積極主動的參與,不僅創造性的.建立了數學模型而且發現圓柱體的轉換成長方體的規律,掌握了一種重要的學習方法,轉化。
為了培養學生解題的靈活性,進行分層練習,拓展知識,發散思維。如:已知圓柱底面積和高,怎樣求圓柱體積;已知圓柱底面半徑和高,怎樣求圓柱體積;已知圓柱底面直徑和高,怎樣求圓柱體積;已知圓柱底面周長和高,怎樣求圓柱體積;已知圓柱側面積和高,怎樣求圓柱體積;已知圓柱底面積和體積,怎樣求高;已知圓柱體積和高,怎樣求底面積等。
在本節課的教學過程中還存在諸多的問題。
1、演示圓柱的體積的時候,因為學生手中沒有學具,教師教具的局限性,演示時后面的學生看不清楚。
2、在圓柱體經過切割、拼接之后轉化為近似長方體
的時候,應多給后進生留有觀察、討論的時間,他們的思維反應能力比其他學生較慢,應給于他們一定的空間和時間,讓后進生也積極參與到課堂的學習中,使全班同學共同進步。
3、在解決實際問題的時候,不僅要注重公式的應用,還要注意計算能力的培養。
圓柱的體積教學反思圓錐的體積教學反思篇四
學生通過實踐、探索、發現,得到的知識是“活”的,這樣的知識對學生自身智力和創造力發展會起到積極的推動作用。所有的答案也不是老師告訴的,而是、學生在自己艱苦的學習中發現并從學生的口里說出來的這樣的知識具有個人意義,理解更深刻。
新課程改革明確提出要“強調讓學生通過實踐增強探究和創新意識,學習科學研究的方法,培養科學態度和科學精神”。學生動手實踐、觀察得出結論的過程,就是科學研究的過程。
傳統的教學只關注教給學生多少知識,把學生當成知識的“容器”。學生的學習只是被動地接受、記憶、模仿,往往學生只知其然而不知其所以然,其思維根本得不到發展。而這里創設了豐富的教學情景,學生在興趣盎然中經歷了自主探究、獨立思考、分析整理、合作交流等過程,發現了教學問題的存在,經歷了知識產生的過程,理解和掌握了數學基本知識,從而促進了學生的思維發展。
本節課采用新的教學方法,取得了較好的教學效果,不足之處是:由于學生自由討論、實踐和思考的時間較多,練習的時間較少。
圓柱的體積一課,重點是體積公式的推導。公式導出后,如何進行計算應用。
1、學生對推導過程理解有困難,不深入;
2、在計算的過程中,單位名稱用錯,體積單位用面積單位。
3、對于書中所給的立體圖形,認識不到位,不能正確分辨直徑、半徑以及圓柱的高,做題出錯。圓柱的高也可以叫做圓柱的長(個別學生不清楚)
1、為了避免單位名稱的錯誤,可在課前復習中設計單位換算的填空題,辨析題等。例如:1平方米=()平方分米=()平方厘米100平方厘米=1立方分米。
2、在學生利用學具理解公式的推導過程時,應放手讓學動手動腦自己解決,但動手之前一定要把任務布置清楚,讓孩子們自己發現圓柱與長方體各部分之間的關系,從而推導出圓柱的體積公式。
3、注意引導學生參與到探索知識的發生發展過程中,突破以往數學學習單一、被動的學習方式,關注學生的實踐活動和直接經驗,“通過自己的活動”獲得情感、能力、智力的全面發展。小學階段,操作活動是數學活動的重要組成部分,也是學生學習活動的重要方式。
圓柱的體積教學反思圓錐的體積教學反思篇五
本課主要內容是圓柱的體積公式的推導及其應用。因為公式的推導過程是個難點,因此在教學設計時,我采用新的教學理念,讓學生自己動手實踐、自主探索與合作交流,在實踐中體驗,幫助學生理解公式的來源,從而獲得知識。下面我從教學過程、教學策略、教學技能等方面談談自己的一些反思。
1、導入時,力求突破教材,有所創新
流暢,便于學生的思維走向正確的方向,這時教師的引導才是行之有效的。不過應該注意時間的控制,不能花費太多的時間。
2、新課時,要實現人人參與,主動學習
學生進行數學探究時,應給予充分的思考空間,創設實踐操作的條件,營造出思考的環境氛圍。在推導圓柱體積公式過程時,我讓學生經歷先想—觀察—動手操作的過程。把圓柱的底面分成若干份(例如,分成16等份),然后把圓柱切開,照課本上的圖拼起來,圓柱體就轉化成一個近似的長方體;接著讓學生小組交流長方體的長和寬與圓柱的各部分有什么關系?圓柱的體積怎樣計算的道理,從而推導出圓柱體積的計算公式。這樣學生親身參與操作,有了空間感覺的體驗,,也有了充分的思考空間。這樣設計我覺得能突破難點,課堂效果很好。
3、練習時,形式多樣,層層遞進
例題“練一練”中的題目都比較淺顯,學生還能容易掌握,但遇到多轉幾個彎的題目就束手無策了。所以,為了讓學生能熟練地掌握計算圓柱的體積,我在設計練習時動了一番腦,花心思去考慮怎樣才能讓學生用最短的時間完成不同類型的題目。通過反思,我概括出五種類型。
a.已知圓柱底面積(s)和高(h),計算圓柱體積可以應用這一公式:v=sh。
b.已知圓柱底面半徑(r)和高(h),計算圓柱體積可以應用這一公式:v=πr2h。
c.已知圓柱底面直徑(d)和高(h),計算圓柱體積可以應用這一公式:v=π(d/2)2h。
d.已知圓柱底面周長(c)和高(h),計算圓柱體積可以應用這一公式:v=π(c÷π÷2)2h。
e.已知圓柱側面積(s側)和高(h),計算圓柱體積可以應用這一公式:v=π(s側÷h÷π÷2)2h。
因為是第一課時所以在鞏固練習中,只要從前四種類型去考慮,做到面面俱到,逐層深入,由易到難,使學生真正掌握好計算圓柱體積的方法另外,還設計了解決生活中的問題,讓學生能學以致用解決生活中的問題。
我采用多媒體的直觀教具相結合的手段,在圓柱體積公式推導過程中指導學生充分利用手中的學具、教具,學生在興趣盎然中經歷了自主探究、獨立思考、分析整理、合作交流、總結歸納等過程,發現了教學問題的存在,經歷了知識產生的過程,理解和掌握了數學基本知識,從而促進了學生的思維發展。而在鞏固練習這一環節,我用多媒體發揮它大容量、節省時間的優點。
學生通過實踐、探索、發現,得到的知識是“活”的,這樣的知識對學生自身智力和創造力發展會起到積極的推動作用。所有的答案也不是老師告訴的,而是學生在自己艱苦的學習過程中發現并從學生的口里說出來的,這樣的知識具有個人意義,理解更深刻。但是我覺得這個引導的過程需要教師有認真準備,隨時能解決課堂上可能出現的一些問題。傳統的教學只關注教給學生多少知識,把學生當成知識的“容器”。學生的學習只是被動地接受、記憶、模仿,往往學生只知其然而不知其所以然,其思維根本得不到發展。而我在本課創設了豐富的教學情景。
不足之處是:由于這節課的設計是以學生為主、發揮學生的主體作用,要充分展示學生的思維過程,所以在學生動手實踐、交流討論和思考的時間上教師應合理把握,不能時間較多,否則會導致練習的時間較少。
另外,在練習設計上,題形雖然全,但覺得題量偏多,因為這部分練習涉及的計算多、難,這樣練習題還需精心設計。
圓柱的體積教學反思圓錐的體積教學反思篇六
圓柱的體積這部分知識是學生在有了圓柱、圓和長方體的相關知識基礎上進行教學的。在知識和技能上,通過對圓柱體積的具體研究,理解圓柱體的體積公式的推導過程,會計算圓柱的體積;在方法的選擇上,抓信新舊知識的聯系,通過想象、實際操作,從經歷和體驗中思考,培養學生科學的思維方法;貼近學生生活實際,創設情境,解決問題,體現數學知識“從生活中來到生活中去”的理念,激發學生的學習興趣和對科學知識的求知欲,使學生樂于探索,善于探究。
《課程標準》指出:要創設與學生生活環境、知識背景密切相關的、又是學生感興趣的學習情境,讓學生在觀察、操作、猜測、交流、反思等活動中體會數學知識的產生、形成與發展的過程,獲得積極的情感體驗,感受數學的力量,同時掌握必要的基礎知識與基本技能。在本節課中,我給學生創設了生活情景(裝在杯子中的水的體積你會求嗎?圓柱形橡皮泥的體積你會求嗎?)學生聽到教師提的問題訓在身邊的生活中,頗感興趣。學生經過思考、討論、交流,找到了解決的方法。而且此環節還自然滲透了圓柱體(新問題)和長方體(已知)的知識聯系。在此基礎上教師又進一步從實際需要提出問題:如果要求某些建筑物中圓柱形柱子的體積,或是求壓路機滾筒的體積,能用剛才同學們想出來的辦法嗎?這一問題情境的創設,激發學生從問題中思考尋求一種更廣泛的方法來解決圓柱體體積的欲望。
數學學習過程充滿著觀察、實驗、模擬、推斷等探索性與挑戰性活動,因此,動手實踐、自主探究、合作交流是《課程標準》所倡導的數學學習的主要方式。在本節課提示課題后,我先引導學生獨立思考要解決圓柱的體積問題,可以怎么辦?學生通過思考很快確定打算把圓柱轉化成長方體。那么怎樣來切割呢?此時采用小組討論交流的形式。同愛們有了圓面積計算公式推導的經驗,經過討論得出:把圓柱的底面沿直徑分成若干等份。在此基礎上,小組拿出學具進行了動手操作,拼成了一個近似的長方體。同學們在操作、比較中,圍繞圓柱體和長方體之間的聯系,抽象出圓柱體的體積公式。這個過程,學生從形象具體的知識形成過程(想象、操作、演示)中,認識得以升華(較抽象的認識——公式)。
在探究的過程中,我不是安排了一整套指令讓學生進行程序操作,獲得一點基本技能,而是提供了相關知識背景、實驗素材,使用“對我們有幫助嗎?”“你有什么發現?”“你是怎么想的?”等這樣一些指向探索的話語鼓勵學生獨立思考、動手操作、合作探究,讓學生根據已有的知識經驗創造性地建構自己的數學。通過實驗、操作、自主探究,實現學生主體地位、學習方式的轉變,有效地培養學生的創新意識。教學中通過等分、切、拼將圓柱體拼成一個近似的長方體,再運用多媒體顯示由圓柱體到近似的長方體的變換過程,讓學生觀察、比較近似長方體與圓柱的關系,使圓柱體體積的計算公式推導過程完全展示在學生面前。使學生感悟到轉化的思想在幾何學習中的妙用。從而產生一種自我嘗試、主動探究、樂于發現的需要、動機和能力。
學生進行數學探究時,由于條件的限制,沒有更多的學具提供給學生,只一個教具。為了讓學生充分體會,我把操作的機會給了學生。接著再結合多媒體演示讓學生感受“把圓柱的底面分的份數越多,切開后,拼起來的圖形就越接近長方體;接著教師指導學生悟出這個長方體的長相當于圓柱的哪一部分的長度,寬是圓柱哪一部分的長度,高是圓柱的哪一部分的長度,圓柱的體積怎樣計算的道理,從而推導出圓柱體積的計算公式。學生基本沒有親身參與操作,非常遺憾。
本節課我采用新的教學方法,取得了較好的教學效果,不足之處是:由于學生自由討論、實踐和思考的時間較多,練習的時間較少。
圓柱的體積教學反思圓錐的體積教學反思篇七
“強調讓學生通過實踐增強探究和創新意識,學習科學研究的方法,培養科學態度和科學精神。”這是課改的明確要求。這里學生親身經歷提出問題、分析判斷、動手實踐、觀察記錄、收集整理、得出結論的過程,就是科學研究的過程,在這其中學生獲得了直接的實踐經驗,嘗試、經歷了基本科學方法和過程。數學課堂教學中應將教師的驗證性操作變成學生的探究性上活動,使學生在探究性活動中掌握知識,發展能力。
創設了豐富的情境和氛圍讓學生去經歷、體驗、領悟,在知識發生、發展的過程中,學生的學習興趣、熱情、動機、學習態度和責任,搜集信息和處理信息的能力,合作交流能力以及對個人價值、人類價值、科學價值等的認識都得到了發展。同時學生精神世界的發展從數學學習中獲得了多方面的滋養,在對數學知識的認識、感受、體驗、改變、創造的過程中,不斷豐富和完善了自己的生命世界,體驗了豐富的學習人生,滿足了生命的成長需要。
此外,本課也存在不足之處:如有的后進生參與活動的意識不強,還有待在以后教學中改進和提高。
圓柱的體積教學反思圓錐的體積教學反思篇八
教材是一種重要的課程資源,對于學校和教師來說,課程實施更多地應該是如何更好地“用教材”,而不是簡單地“教教材”。在實際教學中,如何落實這一理念?本人結合“圓柱的體積”一課談談自己的實踐與思考。
由于課前學生已進行了預習,多數學生是按照教材介紹的解法來解答:
1.5米=150厘米20×1150=3000(立方厘米)
①20平方厘米=0.002平方米 0。002×11.5=0.003(立方米)
②20平方厘米=0.2平方分米 1.5米=15分米 0.2×115=3(立方分米)
師:為什么會出現三種結果?
經討論,學生才明白:從不同的角度去考慮問題,將得到不同的結果。
鞏固與應用階段,我將教材練習二中的一個填表題進行了加工組合呈現給學生這樣一個表格。
學生填表后,師:觀察前兩組數據,你想說什么?
生1:兩個圓柱的高相等,底面積是幾倍的關系,體積也是幾倍的關系。
生2:兩個圓柱的高相等,底面積越大,體積就越大。
師:觀察后兩組數據,你想說什么?
有了前面的基礎,學生很容易說出了后兩組的關系。
學生的表述盡管不是很準確完美,但已說出了其中的規律,而這個規律正是解答練習二第17、18題的基礎,又為下一單元“比例”的教學作了提前孕伏。
學生動手測量自備的圓柱形茶杯的有關數據并計算它的體積。
師:水的生命之源。人每天都要飲用一定量的水,請大家課后查閱相關資料,計算自己每天需要飲用幾杯水(自己的杯子)才能保證健康,并把自己對水的想法寫下來,下節課我們再交流。
精心研究教材是用好教材的基礎
教材作為教學的憑借與依據,只不過是編者對學科知識、國家要求與學生進行整和思考的結晶。但由于受時間與地域的影響,我們在執行教材時不能把它作為一種“枷鎖”,而應作為“跳板”——編者意圖與學生實際的“跳板”。因此,教學時,我們要精心研究教材,揣摩編者意圖、考慮學生實際,創造性地利用教材。
1、挖掘訓練空白,及時補白教材。編者在編寫教材時,也考慮了地域、學科、時間等因素,留下了諸多空白,我們使用教材時,要深入挖掘其中的訓練空白,及時補白教材。[片段一] 中的例題教學,就挖掘出了教材中的訓練空白,并沒有把教學簡單地停留在一種解答方法上,而是在學生預習的基礎上引導學生深入思考,在解決問題的過程中體會“從不同的角度去考慮問題,將得到不同的結果”的道理,從而學會多角度考慮問題,提高解決問題的能力。
2、找出知識聯系,大膽重組教材。數學知識具有一定的結構,知識間存在著密切的聯系,我們在教學時不能只著眼于本節課的教學,而應找出知識間的內在聯系,幫助學生建立一個較為完整知識系統。[片斷二]的表1僅幫助學生熟練掌握體積公式,此外無更多的教學價值,而重組后的表2不僅實現了編者的意圖,而且為“比例”的教學作了提前孕伏。走出了數學教學的“只見樹木,不見森林”的“點教學”的誤區。
落實課標理念是用好教材的關鍵
能否用好教材,關鍵在于我們的課堂教學是否落實了新課標的理念。關注人是新課程的核心理念。我們的數學教學不能再以學科為中心,而應以學生為出發點和歸宿。教材在編寫時不可能面面俱到,教師要心里裝著學生,使用教材前反復琢磨,怎樣的教學才能符合新理念。前兩個片段就突破了“學科中心”和“知識中心”,走向了“學生中心”。[片斷三]在教材關注學生的基礎上向深層發展——不僅讓學生動手測量,動腦計算,而且讓學生在課外展開調查研究;不僅關注知識技能,而且關注了態度、情感和價值觀(對生命之源——水的自我看法)這一片斷的教學,其價值就在于滲透了人文關愛。
學生獲得發展是用好教材的標準
有的教師在教學中常常脫離教材,片面追求新課程的形式,而忽略了實質——“一切為了每一位學生的發展”。每個學生在一節課的40分鐘里獲得最大發展應作為我們用好教材組織教學的追求。本節課緊扣教材,“以本為本”,著眼學生的發展,無論是知識技能、過程與方法、數學思考還是情感態度價值觀,學生都獲得了最大發展。
圓柱的體積教學反思圓錐的體積教學反思篇九
2、在探索圓柱體積的過程中,進一步體會轉化的數學思想,體驗數學問題的探索性和挑戰性,感受數學結論的確定性。
教學方法:我利用課件演示和實物演示來解決。讓學生學會轉化的數學思想。
成功之處:
1、利用遷移規律引入新課,為學生創設良好的學習情境;
3、正確處理"兩主"關系,充分發揮學生的主體作用,注意學生學習的參與過程及知識的獲取過程,學生積極性高,學習效果好。達到預期效果。
不足之處:
1、個別學生還是對公式不會靈活應用。
2、練習題有些多,應選擇一些有代表性的題,這樣小測驗就能有充足的`時間了。
3、關注學生的有些少,尤其是應關注做錯的學生,應知道為什么錯,及時在課堂評價出結果會更好。
4、老師講得多,應放手讓學生自己觀察自己處理自己總結,會更好。
圓柱的體積教學反思圓錐的體積教學反思篇十
《數學課程標準》指出:動手實踐、自主探索、合作交流是學生學習數學的重要方式。組織學生在實踐操作中探究發現規律,可以充分調動學生的各種感官,從感性到理性,從實踐到認識,從具體到抽象,引導學生積極動手動腦、概括分析、抽象推理等,這不僅有利于學生思維的發展,而且也可以加深學生對數學知識的理解和掌握。尤其是對于幾何知識的學習,課堂教學中的動手操作就顯得更加重要。
在探索圓柱體積計算方法的時候,教師試圖讓學生結合圓面積計算的探索方法,能聯想到可以把,圓柱的體積轉化成已知的立體圖形的體積。但這種方法似乎在學生的印象中并不深刻,因此學生在探索的一開始,學生就遇到了思考的困惑,對他后面的探索造成了很大的影響。在教師的印象中圓面積的計算公式推導應該是我們花了很多時間去讓學生操作的,但是操作的效果卻如此之差。我們不妨反問自己一下,究竟自己在教學的時候是否用好了學生的操作,讓學生對操作的過程有深刻的體會與認識,在操作中是否激起了學生的思考。
當學生想到了探索方法后,卻因為一些客觀的原因,沒有能夠讓學生親自去套作一番,光是看課件、看其他同學的操作,對于大部分學生來說,印象是不夠深刻的,體會也是不到位的。畢竟這部分內容的學習對與學生來說也是有一定困難的,雖然是六年級的同學,但他們的空間想象能力還是不夠的,需要實打實的操作,讓他們有個直觀的認識。
所以我認為我們的課堂上應放手讓學生去操作,用直觀的操作,留下自己思考的痕跡,為進一步探索知識做好準備。
數學觀察力,是新課標中對提出學生應必備的一種重要數學能力。學生在操作的基礎上要學會觀察,挖掘知識之間的聯系,真正體現操作的價值。
在圓柱的體積的教學中,教師讓學生去發現圓柱體與通過切割后形成的長方體之間的聯系時,不少學生都一時摸不著頭腦。這時,教師不妨給孩子一些觀察的提示,如:“拼成的長方體的底面積與原來圓柱的底面積有什么關系?為什么是相等的?”“拼成的長方體的高與原來圓柱的高有什么關系?為什么是相等的?”通過學生直觀的觀察,讓學生去挖掘數學本質上的一些聯系,讓學生在知識的探索過程中有一個完成的體驗過程,也對所學的知識有一個更好的理解。
觀察是智慧的源泉,讓學生學會從變化的角度去觀察,發現知識之間的聯系,這也是一種令學生終身受益的學習方法。
通過操作與觀察,可以說學生積累了一定的認知經驗,這種經驗我想不應該只停留在一節課、一個內容的學習中,可以延伸到很多知識的學習中去,從而形成一定的學習方法。就如在圓柱的體積的學習中,圓柱體轉化成已經學過的長方體的體積來探究的這種方法在之前學生已經接觸過,如:圓面積的計算方法、平行四邊形的面積計算方法,我們都是通過將未知的圖形轉化成已知圖形來探索面積計算的方法。如果我們在教學的過程中能夠很好地重視學生的操作經驗積累,并形成一定的方法,相信學生在溝通新知和舊知之間的聯系時會更加的自然而然,也能順利的實現知識的正遷移。