編寫高中教案需要注意語言簡潔明了,重點突出,邏輯性強,為教師和學生提供清晰的教學指導。高中教案是教師為了有效組織教學過程,提高教學效果而編寫的教學計劃和教學材料。在教案中應該注重學生的學習特點和興趣,提供多樣化的教學活動,以提升學生的參與度。以下是一些經(jīng)過實際教學驗證的高中教案范文,希望能夠?qū)Υ蠹业慕虒W有所啟發(fā)。
高中數(shù)學冪函數(shù)教案(匯總18篇)篇一
地位及重要性。
函數(shù)的單調(diào)性一節(jié)屬高中數(shù)學第一冊(上)的必修內(nèi)容,在高考的重要考查范圍之內(nèi),函數(shù)的單調(diào)性是函數(shù)的一個重要性質(zhì),也是在研究函數(shù)時經(jīng)常要注意的一個性質(zhì),并且在比較幾個數(shù)的大小、對函數(shù)的定性分析以及與其他知識的綜合應用上都有廣泛的應用。通過對這一節(jié)課的學習,既可以讓學生掌握函數(shù)單調(diào)性的概念和證明函數(shù)單調(diào)性的步驟,又可加深對函數(shù)的本質(zhì)認識。也為今后研究具體函數(shù)的性質(zhì)作了充分準備,起到承上啟下的作用。
教學目標。
(1)了解能用文字語言和符號語言正確表述增函數(shù)、減函數(shù)、單調(diào)性、單調(diào)區(qū)間的概念;。
(2)了解能用圖形語言正確表述具有單調(diào)性的函數(shù)的圖象特征;。
(4)培養(yǎng)學生嚴密的邏輯思維能力、用運動變化、數(shù)形結合、分類討論的方法去分析和處理問題,以提高學生的思維品質(zhì);同時讓學生體驗數(shù)學的藝術美,養(yǎng)成用辨證唯物主義的觀點看問題。
教學重難點。
重點是對函數(shù)單調(diào)性的有關概念的本質(zhì)理解,
二.說教法。
根據(jù)本節(jié)課的內(nèi)容及學生的實際水平,我嘗試運用“問題解決”與“多媒體輔助教學”的.模式。力圖通過提出問題、思考問題、解決問題的過程,讓學生主動參與以達到對知識的“發(fā)現(xiàn)”與接受,進而完成對知識的內(nèi)化,使書本知識成為自己知識;同時也培養(yǎng)學生的探索精神。
三.說學法。
在教學過程中,教師設置問題情景讓學生想辦法解決;通過教師的啟發(fā)點撥,學生的不斷探索,最終把解決問題的核心歸結到判斷函數(shù)的單調(diào)性。然后通過對函數(shù)單調(diào)性的概念的學習理解,最終把問題解決。整個過程學生學生主動參與、積極思考、探索嘗試的動態(tài)活動之中;同時讓學生體驗到了學習數(shù)學的快樂,培養(yǎng)了學生自主學習的能力和以嚴謹?shù)目茖W態(tài)度研究問題的習慣。
四.說過程。
通過設置問題情景、課堂導入、新課講授及終結階段的教學中,我力求培養(yǎng)學生的自主學習的能力,以點撥、啟發(fā)、引導為教師職責。
設置問題情景。
[引例]學校準備建造一個矩形花壇,面積設計為16平方米。由于周圍環(huán)境的限制,其中一邊的長度長不能超過10米,短不能少于4米。記花壇受限制的一邊長為x米,半周長為y米。
寫出y與x的函數(shù)表達式;。
(用多媒體出示問題,并讓學生思考)。
高中數(shù)學冪函數(shù)教案(匯總18篇)篇二
教材分析:
冪函數(shù)作為一類重要的函數(shù)模型,是學生在系統(tǒng)地學習了指數(shù)函數(shù)、對數(shù)函數(shù)之后研究的又一類基本的初等函數(shù)。?冪函數(shù)模型在生活中是比較常見的,學習時結合生活中的具體實例來引出常見的冪函數(shù)?.組織學生畫出他們的圖象,根據(jù)圖象觀察、總結這幾個常見冪函數(shù)的性質(zhì)。對于冪函數(shù),只需重點掌握?這五個函數(shù)的圖象和性質(zhì)。學習中學生容易將冪函數(shù)和指數(shù)函數(shù)混淆,因此在引出冪函數(shù)的概念之后,可以組織學生對兩類不同函數(shù)的表達式進行辨析。學生已經(jīng)有了學習冪函數(shù)和對象函數(shù)的學習經(jīng)歷,這為學習冪函數(shù)做好了方法上的準備。因此,學習過程中,引入冪函數(shù)的概念之后,嘗試放手讓學生自己進行合作探究學習。
課時分配1課時。
教學目標。
重點:從五個具體的冪函數(shù)中認識的概念和性質(zhì)。
難點:從冪函數(shù)的圖象中概括其性質(zhì),據(jù)冪函數(shù)的單調(diào)性比較兩個同指數(shù)的指數(shù)式的大小。
知識點:冪函數(shù)的定義、五個冪函數(shù)圖象特征。
能力點:通過具體實例了解冪函數(shù)的圖象和性質(zhì),并能進行簡單的應用。
自主探究點:通過作圖歸納總結冪函數(shù)的相關性質(zhì)。
考試點:了解冪函數(shù)的概念,
結合函數(shù)的圖象了解它們的變化情況。
易錯易混點:學生容易將冪函數(shù)和指數(shù)函數(shù)混淆。
拓展點:通過指數(shù)函數(shù)的圖象性質(zhì)研究冪函數(shù)指數(shù)的變化。
教具準備:多媒體輔助教學。
課堂模式:導學案。
一、引入新課。
(一)回顧引入。
【師生互動】師:數(shù)學的內(nèi)在美常常讓我感動,下面我們共同來欣賞運算的完美性,
思考:由8、2、3、這四個數(shù),運用數(shù)學符號可組成哪些等式?
生:探討,交流。
師生共同分析:
師:我們知道對于等式。
1.如果一定,隨著的變化而變化,我們建立了指數(shù)函數(shù)。
2.如果一定,隨著的變化而變化,我們建立了對數(shù)函數(shù)。
設想:如果一定,隨著的變化而變化,是不是也可以確定一個函數(shù)呢?
【設計說明】使學生回憶所學兩個基本初等函數(shù),為所要學習的冪函數(shù)作鋪墊。
(二)觀察下列對象:
問題(1):如果張紅購買了每千克1元的蔬菜千克,那么她需要付的錢數(shù)=元,
問題(2):如果正方形的邊長為,那么正方形的面是=。
問題3):如果正方體的邊長為,那么正方體的體積是=。
問題(4):如果正方形場地面積為,那么正方形的邊長=。
問題(5):如果某人s內(nèi)騎車行進了1km,那么他騎車的平均速度=。
【師生互動】師:(1)它們的對應法則分別是什么?
(2)以上問題中的函數(shù)有什么共同特征?
讓學生獨立思考后交流,引導學生概括出結論。
生:(1)乘以1(2)求平方(3)求立方。
(4)求算術平方根(5)求-1次方。
師:上述的問題涉及到的函數(shù),都是形如:,其中是自變量,是常數(shù)。
師生:共同辨析這種新函數(shù)與指數(shù)函數(shù)的異同。
二、探究新知。
組織探究。
1.冪函數(shù)的定義。
一般地,形如(r)的函數(shù)稱為冪函數(shù),其中是自變量,是常數(shù)。
如等都是冪函數(shù),冪函數(shù)與指數(shù)函數(shù),對數(shù)函數(shù)一樣,都是基本初等函數(shù)。
【師生互動】師:1.冪函數(shù)的定義來自于實踐,它同指數(shù)函數(shù)、對數(shù)函數(shù)一樣,也是基本初等函數(shù),同樣也是一種“形式定義”的函數(shù),引導學生注意辨析。
2.研究函數(shù)的圖像。
(1)(2)(3)。
(4)(5)。
生:利用所學知識和方法嘗試作出五個具體冪函數(shù)的圖象,觀察所作圖象,體會冪函數(shù)的變化規(guī)律。
師:引導學生應用函數(shù)的性質(zhì)畫圖象,如:定義域、奇偶性。
師生共同分析:強調(diào)畫圖象易犯的錯誤。
【設計意圖】(1)通過具體作圖,可使學生加深對圖象的直觀印象,記憶比較牢固;同時也提高了學生數(shù)形結合的思維能力;(2)符合學生的認知規(guī)律,由特殊到一般,從具體到抽象;(3)充分發(fā)揮學生學習的能動性,以學生為主體,展開課堂教學。
【師生互動】師:引導學生觀察圖象,歸納概括冪函數(shù)的的性質(zhì)及圖象變化規(guī)律。
生:觀察圖象,分組討論,探究冪函數(shù)的性質(zhì)和圖象的變化規(guī)律,并展示各自的結論進行交流評析,并填表。
定義域值域奇偶性單調(diào)性定點。
師生共同分析冪函數(shù)性質(zhì):
(1)所有的冪函數(shù)在(0,+∞)都有定義,并且圖象都過點(1,1);。
高中數(shù)學冪函數(shù)教案(匯總18篇)篇三
熟練掌握三角函數(shù)式的求值。
教學重難點。
熟練掌握三角函數(shù)式的求值。
教學過程。
【知識點精講】。
三角函數(shù)式的求值的關鍵是熟練掌握公式及應用,掌握公式的逆用和變形。
三角函數(shù)式的求值的類型一般可分為:。
(3)“給值求角”:轉(zhuǎn)化為給值求值,由所得函數(shù)值結合角的范圍求出角。
三角函數(shù)式常用化簡方法:切割化弦、高次化低次。
注意點:靈活角的變形和公式的變形。
重視角的范圍對三角函數(shù)值的影響,對角的范圍要討論。
【例題選講】。
課堂小結】。
三角函數(shù)式的求值的關鍵是熟練掌握公式及應用,掌握公式的逆用和變形。
三角函數(shù)式的求值的類型一般可分為:。
(3)“給值求角”:轉(zhuǎn)化為給值求值,由所得函數(shù)值結合角的范圍求出角。
三角函數(shù)式常用化簡方法:切割化弦、高次化低次。
注意點:靈活角的變形和公式的變形。
重視角的范圍對三角函數(shù)值的影響,對角的范圍要討論。
【作業(yè)布置】。
p172能力提高5,6,7,8高考預測。
高中數(shù)學冪函數(shù)教案(匯總18篇)篇四
通過學生的討論,使學生更清楚以下事實:
(1)分解因式與整式的乘法是一種互逆關系;。
(2)分解因式的結果要以積的形式表示;。
(3)每個因式必須是整式,且每個因式的次數(shù)都必須低于原來的多項式的次數(shù);。
(4)必須分解到每個多項式不能再分解為止。
活動5:應用新知。
例題學習:
p166例1、例2(略)。
在教師的引導下,學生應用提公因式法共同完成例題。
讓學生進一步理解提公因式法進行因式分解。
活動6:課堂練習。
1.p167練習;。
2.看誰連得準。
x2-y2(x+1)2。
9-25x2y(x-y)。
x2+2x+1(3-5x)(3+5x)。
xy-y2(x+y)(x-y)。
3.下列哪些變形是因式分解,為什么?
(1)(a+3)(a-3)=a2-9。
(2)a2-4=(a+2)(a-2)。
(3)a2-b2+1=(a+b)(a-b)+1。
(4)2πr+2πr=2π(r+r)。
學生自主完成練習。
通過學生的反饋練習,使教師能全面了解學生對因式分解意義的理解是否到位,以便教師能及時地進行查缺補漏。
活動7:課堂小結。
從今天的課程中,你學到了哪些知識?掌握了哪些方法?明白了哪些道理?
學生發(fā)言。
通過學生的回顧與反思,強化學生對因式分解意義的理解,進一步清楚地了解分解因式與整式的乘法的互逆關系,加深對類比的數(shù)學思想的理解。
活動8:課后作業(yè)。
課本p170習題的第1、4大題。
學生自主完成。
通過作業(yè)的鞏固對因式分解,特別是提公因式法理解并學會應用。
板書設計(需要一直留在黑板上主板書)。
15.4.1提公因式法例題。
1.因式分解的定義。
2.提公因式法。
高中數(shù)學冪函數(shù)教案(匯總18篇)篇五
1、先做簡單題,后做難題。
2、遇到較難的大題,把所有跟該題有關的知識點都寫出來,要知道數(shù)學講究步驟分。
3、若是證明題,萬一不會,可以先寫出已知條件,再寫出要證明的最后一步,再一步一步往上推,中間步驟隨便寫點。(使用于粗心的教師,但我們不提倡,重點是要平時學好)。
一、整體把握、抓大放小。
拿到試卷后可以先快速瀏覽一下所有題目,根據(jù)積累的考試經(jīng)驗,大致估計一下每部分應該分配的時間。對于能夠很快做出來的.題目,一定要拿到應得的分數(shù)。
二、確定每部分的答題時間。
1、考試時占用了很多時間卻一點也沒有做出來的題目。對于這類題目,你以后考試時就應該盡量減少時間,或者放棄,等以后學習進階了再嘗試著做。
2、考試時花了過多的時間才做出來的題目。對于這類題目,你以后平時做題時要盡量加快速度,或者通過“反復訓練”等提高反應速度,這樣,你下次考試時能用較少的時間做出來。
三、碰到難題時。
1、你可以先用“直覺”最快的找到解題思路;。
2、如果“直覺”不管用,你可以聯(lián)想以前做過的類似的題目,從而找到解題思路;。
3、如果這樣也不行,你可以猜測一下這道題目可能涉及到的知識點和解題技巧。
4、對于花了一定時間仍然不能做出來的題目,要勇于放棄。
四、卷面整潔、字跡清楚、注意小節(jié)。
做到卷面整潔、字跡清楚,把標點、符號、解題步驟等小的地方盡量做好,不要丟掉應得的每一分。
高中數(shù)學冪函數(shù)教案(匯總18篇)篇六
一、教材分析:
《34.4二次函數(shù)的應用》選自義務教育課程標準試驗教科書《數(shù)學》(冀教版)九年級上冊第三十四章第四節(jié),這節(jié)課是在學生學習了二次函數(shù)的概念、圖象及性質(zhì)的基礎上,讓學生繼續(xù)探索二次函數(shù)與一元二次方程的關系,教材通過小球飛行這樣的實際情境,創(chuàng)設三個問題,這三個問題對應了一元二次方程有兩個不等實根、有兩個相等實根、沒有實根的三種情況。這樣,學生結合問題實際意義就能對二次函數(shù)與一元二次方程的關系有很好的體會;從而得出用二次函數(shù)的圖象求一元二次方程的方法。這也突出了課標的要求:注重知識與實際問題的聯(lián)系。
本節(jié)教學時間安排1課時。
二、教學目標:
知識技能:
1.經(jīng)歷探索二次函數(shù)與一元二次方程的關系的過程,體會方程與函數(shù)之間的聯(lián)系.
2.理解拋物線交x軸的點的個數(shù)與一元二次方程的根的個數(shù)之間的關系,理解何時方程有兩個不等的實根、兩個相等的實數(shù)和沒有實根.
3.能夠利用二次函數(shù)的圖象求一元二次方程的近似根。
數(shù)學思考:
1.經(jīng)歷探索二次函數(shù)與一元二次方程的關系的過程,培養(yǎng)學生的探索能力和創(chuàng)新精神.
2.經(jīng)歷用圖象法求一元二次方程的近似根的過程,獲得用圖象法求方程近似根的體驗.
3.通過觀察二次函數(shù)圖象與x軸的交點個數(shù),討論一元二次方程的根的情況,進一步培養(yǎng)學生的數(shù)形結合思想。
解決問題:
1.經(jīng)歷探索二次函數(shù)與一元二次方程的關系的過程,體驗數(shù)學活動充滿著探索與創(chuàng)造,感受數(shù)學的嚴謹性以及數(shù)學結論的確定性。
2.通過利用二次函數(shù)的圖象估計一元二次方程的根,進一步掌握二次函數(shù)圖象與x軸的交點坐標和一元二次方程的根的關系,提高估算能力。
情感態(tài)度:
1.從學生感興趣的問題入手,讓學生親自體會學習數(shù)學的價值,從而提高學生學習數(shù)學的好奇心和求知欲。
2.通過學生共同觀察和討論,培養(yǎng)大家的合作交流意識。
三、教學重點、難點:
教學重點:
1.體會方程與函數(shù)之間的聯(lián)系。
2.能夠利用二次函數(shù)的圖象求一元二次方程的近似根。
教學難點:
1.探索方程與函數(shù)之間關系的過程。
2.理解二次函數(shù)與x軸交點的個數(shù)與一元二次方程的根的個數(shù)之間的關系。
四、教學方法:啟發(fā)引導合作交流。
五:教具、學具:課件。
六、教學過程:
[活動1]檢查預習引出課題。
預習作業(yè):
1.解方程:(1)x2+x-2=0;(2)x2-6x+9=0;(3)x2-x+1=0;(4)x2-2x-2=0.
2.回顧一次函數(shù)與一元一次方程的關系,利用函數(shù)的圖象求方程3x-4=0的解.
師生行為:教師展示預習作業(yè)的內(nèi)容,指名回答,師生共同回顧舊知,教師做出適當總結和評價。
教師重點關注:學生回答問題結論準確性,能否把前后知識聯(lián)系起來,2題的格式要規(guī)范。
設計意圖:這兩道預習題目是對舊知識的回顧,為本課的教學起到鋪墊的作用,1題中的三個方程是課本中觀察欄目中的三個函數(shù)式的變式,這三個方程把二次方程的根的三種情況體現(xiàn)出來,讓學生回顧二次方程的相關知識;2題是一次函數(shù)與一元一次方程的關系的問題,這題的設計是讓學生用學過的熟悉的知識類比探究本課新知識。
[活動2]創(chuàng)設情境探究新知。
問題。
1.課本p94問題.
3.結合預習題1,完成課本p94觀察中的題目。
師生行為:教師提出問題1,給學生獨立思考的時間,教師可適當引導,對學生的解題思路和格式進行梳理和規(guī)范;問題2學生獨立思考指名回答,注重數(shù)形結合思想的滲透;問題3是由學生分組探究的,這個問題的探究稍有難度,活動中教師要深入到各個小組中進行點撥,引導學生總結歸納出正確結論。
教師重點關注:
1.學生能否把實際問題準確地轉(zhuǎn)化為數(shù)學問題;。
2.學生在思考問題時能否注重數(shù)形結合思想的應用;。
3.學生在探究問題的過程中,能否經(jīng)歷獨立思考、認真傾聽、獲得信息、梳理歸納的過程,使解決問題的方法更準確。
設計意圖:由現(xiàn)實中的實際問題入手給學生創(chuàng)設熟悉的問題情境,促使學生能積極地參與到數(shù)學活動中去,體會二次函數(shù)與實際問題的關系;學生通過小組合作分析、交流,探求二次函數(shù)與一元二次方程的關系,培養(yǎng)學生的合作精神,積累學習經(jīng)驗。
[活動3]例題學習鞏固提高。
問題。
例利用函數(shù)圖象求方程x2-2x-2=0的實數(shù)根(精確到0.1).
師生行為:教師提出問題,引導學生根據(jù)預習題2獨立完成,師生互相訂正。
教師關注:(1)學生在解題過程中格式是否規(guī)范;(2)學生所畫圖象是否準確,估算方法是否得當。
設計意圖:通過預習題2的鋪墊,同學們已經(jīng)從舊知識中尋找到新知識的生長點,很容易明確例題的解題思路和方法,這樣既降低難點且突出重點。
[活動4]練習反饋鞏固新知。
高中數(shù)學冪函數(shù)教案(匯總18篇)篇七
一、教學目標:
1、知識與技能:
(1)結合實例,了解正整數(shù)指數(shù)函數(shù)的概念.
(2)能夠求出正整數(shù)指數(shù)函數(shù)的解析式,進一步研究其性質(zhì).
2、過程與方法:
(1)讓學生借助實例,了解正整數(shù)指數(shù)函數(shù),體會從具體到一般,從個別到整體的研究過程和研究方法.
(2)從圖像上觀察體會正整數(shù)指數(shù)函數(shù)的性質(zhì),為這一章的學習作好鋪墊.
3、情感.態(tài)度與價值觀:使學生通過學習正整數(shù)指數(shù)函數(shù)體會學習指數(shù)函數(shù)的重要意義,增強學習研究函數(shù)的積極性和自信心.
二、教學重點:正整數(shù)指數(shù)函數(shù)的定義.教學難點:正整數(shù)指數(shù)函數(shù)的解析式的確定.
三、學法指導:學生觀察、思考、探究.教學方法:探究交流,講練結合。
四、教學過程。
(一)新課導入。
[互動過程1]:
(2)請你用圖像表示1個細胞分裂的次數(shù)n()與得到的細胞個數(shù)y之間的關系;。
(3)請你寫出得到的細胞個數(shù)y與分裂次數(shù)n之間的關系式,試用科學計算器計算細胞分裂15次、20次得到的細胞個數(shù).
解:
分裂次數(shù)12345678。
細胞個數(shù)248163264128256。
(3)細胞個數(shù)與分裂次數(shù)之間的關系式為,用科學計算器算得,所以細胞分裂15次、20次得到的細胞個數(shù)分別為32768和1048576.
小結:從本題中可以看出我們得到的細胞分裂個數(shù)都是底數(shù)為2的指數(shù),而且指數(shù)是變量,取值為正整數(shù).細胞個數(shù)與分裂次數(shù)之間的關系式為.細胞個數(shù)隨著分裂次數(shù)的增多而逐漸增多.
[互動過程2]:問題2.電冰箱使用的氟化物的釋放破壞了大氣上層的臭氧層,臭氧含量q近似滿足關系式q=q00.9975t,其中q0是臭氧的初始量,t是時間(年),這里設q0=1.
(1)計算經(jīng)過20,40,60,80,1,臭氧含量q;。
(2)用圖像表示每隔臭氧含量q的變化;。
(3)試分析隨著時間的增加,臭氧含量q是增加還是減少.
(2)用圖像表示每隔20年臭氧含量q的變化,它的圖像是由一些孤立的點組成.
(3)通過計算和觀察圖形可以知道,隨著時間的增加,臭氧含量q在逐漸減少.
小結:從本題中可以看出我們得到的臭氧含量q都是底數(shù)為0.9975的指數(shù),而且指數(shù)是變量,取值為正整數(shù).臭氧含量q近似滿足關系式q=0.9975t,隨著時間的增加,臭氧含量q在逐漸減少.
正整數(shù)指數(shù)函數(shù)的定義:一般地,函數(shù)叫作正整數(shù)指數(shù)函數(shù),其中是自變量,定義域是正整數(shù)集.
說明:1.正整數(shù)指數(shù)函數(shù)的圖像是一些孤立的點,這是因為函數(shù)的定義域是正整數(shù)集.2.在研究增長問題、復利問題、質(zhì)量濃度問題中常見這類函數(shù).
(二)、例題:某地現(xiàn)有森林面積為1000,每年增長5%,經(jīng)過年,森林面積為.寫出,間的函數(shù)關系式,并求出經(jīng)過5年,森林的面積.
分析:要得到,間的函數(shù)關系式,可以先一年一年的增長變化,找出規(guī)律,再寫出,間的函數(shù)關系式.
解:根據(jù)題意,經(jīng)過一年,森林面積為1000(1+5%);經(jīng)過兩年,森林面積為1000(1+5%)2;經(jīng)過三年,森林面積為1000(1+5%)3;所以與之間的函數(shù)關系式為,經(jīng)過5年,森林的面積為1000(1+5%)5=1276.28(hm2).
練習:課本練習1,2。
解:一個月后他應取回的錢數(shù)為y=2000(1+2.38%),二個月后他應取回的錢數(shù)為y=2000(1+2.38%)2;,三個月后他應取回的錢數(shù)為y=2000(1+2.38%)3,,n個月后他應取回的錢數(shù)為y=2000(1+2.38%)n;所以n與y之間的關系為y=2000(1+2.38%)n(nn+),一年后他全部取回,他能取回的錢數(shù)為y=2000(1+2.38%)12.
(三)、小結:1.正整數(shù)指數(shù)函數(shù)的圖像是一些孤立的點,這是因為函數(shù)的定義域是正整數(shù)集.2.在研究增長問題、復利問題、質(zhì)量濃度問題中常見這類函數(shù)。
高中數(shù)學冪函數(shù)教案(匯總18篇)篇八
2、把已知條件(自變量與函數(shù)對應值)代入解析式,得到關于待定系數(shù)的方程(組);。
3、解方程(組),求出待定系數(shù);。
4、將求得的待定系數(shù)的值代回所設的函數(shù)解析式,從而得到所求函數(shù)解析式。
例、已知:一次函數(shù)的圖象經(jīng)過點(2,--1)和點(1,-2).
(1)求此一次函數(shù)的解析式;(2)求此一次函數(shù)與x軸、y軸的交點坐標。
分析:一般一次函數(shù)有兩個待定字母k、b.要求解析式,只須將兩個獨立條件代入,再解方程組即可.凡涉及求兩個函數(shù)圖象的交點坐標時,一般方法是將兩個函數(shù)的解析式組成方程組,求出方程組的解就求出了交點坐標.
解:(1)設函數(shù)解析式為y=kx+b.
(2)當y=0時x=3,當x=0時y=-3。可得直線與x軸交點(3,0)、與y軸交點(0,-3)。
評析:用待定系數(shù)法求函數(shù)解析式,求直線的交點均與解方程(組)有關,因此必須重視函數(shù)與方程之間的關系.
高中數(shù)學冪函數(shù)教案(匯總18篇)篇九
對數(shù)函數(shù)的一般形式為,它實際上就是指數(shù)函數(shù)的反函數(shù)。因此指數(shù)函數(shù)里對于a的規(guī)定,同樣適用于對數(shù)函數(shù)。
右圖給出對于不同大小a所表示的函數(shù)圖形:
可以看到對數(shù)函數(shù)的圖形只不過的指數(shù)函數(shù)的圖形的關于直線y=x的對稱圖形,因為它們互為反函數(shù)。
(1)對數(shù)函數(shù)的定義域為大于0的實數(shù)集合。
(2)對數(shù)函數(shù)的值域為全部實數(shù)集合。
(3)函數(shù)總是通過(1,0)這點。
(4)a大于1時,為單調(diào)遞增函數(shù),并且上凸;a小于1大于0時,函數(shù)為單調(diào)遞減函數(shù),并且下凹。
高中數(shù)學冪函數(shù)教案(匯總18篇)篇十
1.使學生了解反函數(shù)的概念,初步掌握求反函數(shù)的方法.
2.通過反函數(shù)概念的學習,培養(yǎng)學生分析問題,解決問題的能力及抽象概括的能力.
3.通過反函數(shù)的學習,幫助學生樹立辨證唯物主義的世界觀.
重點是反函數(shù)概念的形成與認識.
難點是掌握求反函數(shù)的方法.
投影儀。
自主學習與啟發(fā)結合法。
一.揭示課題。
今天我們將學習函數(shù)中一個重要的概念----反函數(shù).
(一)反函數(shù)的概念(板書)。
二.講解新課。
教師首先提出這樣一個問題:在函數(shù)中,如果把當作因變量,把當作自變量,能否構成一個函數(shù)呢?(讓學生思考后回答,要講明理由)可以根據(jù)函數(shù)的定義在的允許取值范圍內(nèi)的任一值,按照法則都有唯一的與之相對應.(還可以讓學生畫出函數(shù)的圖象,從形的角度解釋“任一對唯一”)。
學生很快會意識到是的反函數(shù),教師可再引申為與是互為反函數(shù)的.然后利用問題再引申:是不是所有的函數(shù)都有反函數(shù)呢?如果有,請舉出例子.在教師啟發(fā)下學生可以舉出象這樣的函數(shù),若將當自變量,當作因變量,在允許取值范圍內(nèi)一個可能對兩個(可畫圖輔助說明,當時,對應),不能構成函數(shù),說明此函數(shù)沒有反函數(shù).
通過剛才的例子,了解了什么是反函數(shù),把對的反函數(shù)的研究過程一般化,概括起來就可以得到反函數(shù)的定義,但這個數(shù)學的抽象概括,要求比較高,因此我們一起閱讀書上相關的內(nèi)容.
1.反函數(shù)的定義:(板書)(用投影儀打出反函數(shù)的定義)。
為了幫助學生理解,還可以把定義中的換成某個具體簡單的函數(shù)如解釋每一步驟,如得,再判斷它是個函數(shù),最后改寫為.給出定義后,再對概念作點深入研究.
2.對概念得理解(板書)。
教師先提出問題:反函數(shù)的“反”字應當是相對原來給出的函數(shù)而言,指的是兩者的關系你能否從函數(shù)三要素的角度解釋“反”的含義呢?(仍可以與為例來說)。
學生很容易先想到對應法則是“反”過來的,把與的位置換位了,教師再追問它們的互換還會帶來什么變化?啟發(fā)學生找出另兩個要素之間的關系.最后得出結論:的定義域和值域分別由的值域和定義域決定的.再把結論從特殊發(fā)展到一般,概括為:反函數(shù)的三要素是由原來函數(shù)的三要素決定的.給出的函數(shù)確定了,反函數(shù)的三要素就已經(jīng)確定了.簡記為“三定”.
(1)“三定”(板書)。
最后教師進一步明確“反”實際體現(xiàn)為“三反”,“三反”中起決定作用的是與的位置的反置,正是由于它的反置,才把它的范圍也帶走了,引起了另外兩“反”.
(2)“三反”(板書)。
此時教師可把問題再次引向深入,提出:如果一個函數(shù)存在反函數(shù),應怎樣求這個反函數(shù)呢?下面我給出兩個函數(shù),請同學們根據(jù)自己對概念的理解來求一下它們的反函數(shù).
例1.求的反函數(shù).(板書)。
(由學生說求解過程,有錯或不規(guī)范之處,暫時不追究,待例2解完之后再一起講評)。
解:由得,所求反函數(shù)為.(板書)。
例2.求,的反函數(shù).(板書)。
解:由得,又得,。
故所求反函數(shù)為.(板書)。
求完后教師請同學們作評價,學生之間可以討論,充分暴露表述中得問題,讓學生自行發(fā)現(xiàn),自行解決.最后找代表發(fā)表意見,指出例2中問題,結果應為,.
教師可先明知故問,與,有什么不同?讓學生明確指出兩個函數(shù)定義域分別是和,所以它們是不同的函數(shù).再追問從何而來呢?讓學生能從三定和三反中找出理由,是從原來函數(shù)的值域而來.
在此基礎上,教師最后明確要求,由于反函數(shù)的定義域必是原來函數(shù)的值域,而不是從自身解析式出發(fā)尋求滿足的條件,所以求反函數(shù),就必須先求出原來函數(shù)的值域.之后由學生調(diào)整剛才的求解過程.
解:由得,又得,。
又的值域是,。
故所求反函數(shù)為,.
(可能有的學生會提出例1中為什么不求原來函數(shù)的值域的問題,此時不妨讓學生去具體算一算,會發(fā)現(xiàn)原來函數(shù)的值域域求出的函數(shù)解析式中所求定義域時一致的,所以使得最后結果沒有出錯.但教師必須指出結論得一致性只是偶然,而不是必然,因此為規(guī)范求解過程要求大家一定先求原來函數(shù)的值域,并且在最后所求結果上注明反函數(shù)的定義域,同時讓學生調(diào)整例的表述,將過程補充完整)。
最后讓學生一起概括求反函數(shù)的步驟.
3.求反函數(shù)的步驟(板書)。
(1)反解:。
(2)互換。
(3)改寫:。
對以上環(huán)節(jié)教師可稍作解釋,然后提出再通過下面的練習來檢驗是否真正理解了.
三.鞏固練習。
練習:求下列函數(shù)的反函數(shù).
(1)(2).(由兩名學生上黑板寫)。
解答過程略.
教師可針對學生解答中出現(xiàn)的問題,進行講評.(如正負的選取,值域的計算,符號的使用)。
四.小結。
1.對反函數(shù)概念的認識:。
2.求反函數(shù)的基本步驟:。
五.作業(yè)。
課本第68頁習題2.4第1題中4,6,8,第2題.
六.板書設計。
2.4反函數(shù)例1.練習.
一.反函數(shù)的概念(1)(2)。
1.定義。
2.對概念的理解例2.
(1)三定(2)三反。
3.求反函數(shù)的步驟。
(1)反解(2)互換(3)改寫。
高中數(shù)學冪函數(shù)教案(匯總18篇)篇十一
(3)能正確使用“區(qū)間”及相關符號,能正確求解各類的定義域.。
2.通過概念的學習,使學生在符號表示,運算等方面的能力有所提高.。
(1)對記號有正確的理解,準確把握其含義,了解(為常數(shù))與的區(qū)別與聯(lián)系;
(2)在求定義域中注意運算的合理性與簡潔性.。
3.通過定義由變量觀點向映射觀點的過渡,是學生能從發(fā)展的角度看待數(shù)學的學習.。
1.教材分析。
(1)知識結構。
(2)重點難點分析。
是的定義和符號的認識與使用.。
2.教法建議。
高中數(shù)學冪函數(shù)教案(匯總18篇)篇十二
2.通過對抽象符號的認識與使用,使學生在符號表示方面的能力得以提高.。
難點:重點是在映射的基礎上理解的概念;
難點是對抽象符號的認識與使用.。
投影儀。
自學研究與啟發(fā)討論式.。
(要求學生盡量用自己的話描述初中的定義,并試舉出各類學過的例子)。
提問1.是嗎?
(由學生討論,發(fā)表各自的意見,有的認為它不是,理由是沒有兩個變量,也有的認為是,理由是可以可做.)。
現(xiàn)在請同學們打開書翻到第50頁,從這開始閱讀有關的內(nèi)容,再回答我的問題.(約2-3分鐘或開始提問)。
提問2.新的的定義是什么?能否用最簡單的語言來概括一下.。
(板書)2.2。
一、的概念。
問題3:映射與有何關系?(一定是映射嗎?映射一定是嗎?)。
引導學生發(fā)現(xiàn),是特殊的映射,特殊在集合a,b必是非空的數(shù)集.。
2.本質(zhì):是非空數(shù)集到非空數(shù)集的映射.(板書)。
然后讓學生試回答剛才關于是不是的問題,要求從映射的角度解釋.。
此時學生可以清楚的看到滿足映射觀點下的定義,故是一個,這樣解釋就很自然.。
教師繼續(xù)把問題引向深入,提出在映射的觀點下如何解釋是個?
從映射角度看可以是其中定義域是,值域是.。
3.的三要素及其作用(板書)。
例1以下關系式表示嗎?為什么?
(1);(2).。
解:(1)由有意義得,解得.由于定義域是空集,故它不能表示.。
(2)由有意義得,解得.定義域為,值域為.。
由以上兩題可以看出三要素的作用。
(1)判斷一個關系是否存在.(板書)。
例2下列各中,哪一個與是同一個.。
(1);(2)(3);(4).。
解:先認清,它是(定義域)到(值域)的映射,其中。
.
再看(1)定義域為且,是不同的;(2)定義域為,是不同的;
(4),法則是不同的;
而(3)定義域是,值域是,法則是乘2減1,與完全相同.。
(2)判斷兩個是否相同.(板書)。
4.對符號的理解(板書)。
例3已知試求(板書)。
分析:首先讓學生認清的含義,要求學生能從變量觀點和映射觀點解釋,再進行計算.。
含義1:當自變量取3時,對應的值即;
含義2:定義域中原象3的象,根據(jù)求象的方法知.而應表示原象的象,即.。
計算之后,要求學生了解與的區(qū)別,是常量,而是變量,只是中一個特殊值.。
1.的定義。
2.對三要素的認識。
3.對符號的認識。
五、
2.2例1.例3.。
一.的概念。
1.定義。
2.本質(zhì)例2.小結:
3.三要素的認識及作用。
4.對符號的理解。
探究活動。
答案:
高中數(shù)學冪函數(shù)教案(匯總18篇)篇十三
數(shù)學是一門培養(yǎng)人的思維,發(fā)展人的思維的重要學科。因此,在教學中,不僅要使學生“知其然”而且要使學生“知其所以然”。所以在學生為主體,教師為主導的原則下,要充分揭示獲取知識和方法的思維過程。因此本節(jié)課我以建構主義的“創(chuàng)設問題情境——提出數(shù)學問題——嘗試解決問題——驗證解決方法”為主,主要采用觀察、啟發(fā)、類比、引導、探索相結合的教學方法。在教學手段上,則采用多媒體輔助教學,將抽象問題形象化,使教學目標體現(xiàn)的更加完美。
三角函數(shù)的誘導公式是普通高中課程標準實驗教科書(人教a版)數(shù)學必修四,第一章第三節(jié)的內(nèi)容,其主要內(nèi)容是三角函數(shù)誘導公式中的公式(二)至公式(六).本節(jié)是第一課時,教學內(nèi)容為公式(二)、(三)、(四).教材要求通過學生在已經(jīng)掌握的任意角的三角函數(shù)的定義和誘導公式(一)的基礎上,利用對稱思想發(fā)現(xiàn)任意角與終邊的對稱關系,發(fā)現(xiàn)他們與單位圓的交點坐標之間關系,進而發(fā)現(xiàn)他們的三角函數(shù)值的關系,即發(fā)現(xiàn)、掌握、應用三角函數(shù)的誘導公式公式(二)、(三)、(四).同時教材滲透了轉(zhuǎn)化與化歸等數(shù)學思想方法,為培養(yǎng)學生養(yǎng)成良好的學習習慣提出了要求.為此本節(jié)內(nèi)容在三角函數(shù)中占有非常重要的地位.
本節(jié)課的授課對象是本校高一(1)班全體同學,本班學生水平處于中等偏下,但本班學生具有善于動手的良好學習習慣,所以采用發(fā)現(xiàn)的教學方法應該能輕松的完成本節(jié)課的教學內(nèi)容.
(1).基礎知識目標:理解誘導公式的發(fā)現(xiàn)過程,掌握正弦、余弦、正切的誘導公式;。
(4).個性品質(zhì)目標:通過誘導公式的學習和應用,感受事物之間的普通聯(lián)系規(guī)律,運用化歸等數(shù)學思想方法,揭示事物的本質(zhì)屬性,培養(yǎng)學生的唯物史觀.
理解并掌握誘導公式.
正確運用誘導公式,求三角函數(shù)值,化簡三角函數(shù)式.
“授人以魚不如授之以魚”,作為一名老師,我們不僅要傳授給學生數(shù)學知識,更重要的是傳授給學生數(shù)學思想方法,如何實現(xiàn)這一目的,要求我們每一位教者苦心鉆研、認真探究.下面我從教法、學法、預期效果等三個方面做如下分析.
數(shù)學教學是數(shù)學思維活動的教學,而不僅僅是數(shù)學活動的結果,數(shù)學學習的目的不僅僅是為了獲得數(shù)學知識,更主要作用是為了訓練人的思維技能,提高人的思維品質(zhì).
在本節(jié)課的教學過程中,本人以學生為主題,以發(fā)現(xiàn)為主線,盡力滲透類比、化歸、數(shù)形結合等數(shù)學思想方法,采用提出問題、啟發(fā)引導、共同探究、綜合應用等教學模式,還給學生“時間”、“空間”,由易到難,由特殊到一般,盡力營造輕松的學習環(huán)境,讓學生體味學習的快樂和成功的喜悅.
“現(xiàn)代的文盲不是不識字的人,而是沒有掌握學習方法的人”,很多課堂教學常常以高起點、大容量、快推進的做法,以便教給學生更多的知識點,卻忽略了學生接受知識需要時間消化,進而泯滅了學生學習的興趣與熱情.如何能讓學生最大程度的消化知識,提高學習熱情是教者必須思考的問題.
在本節(jié)課的教學過程中,本人引導學生的學法為思考問題共同探討解決問題簡單應用重現(xiàn)探索過程練習鞏固.讓學生參與探索的全部過程,讓學生在獲取新知識及解決問題的方法后,合作交流、共同探索,使之由被動學習轉(zhuǎn)化為主動的自主學習.
1.復習銳角300,450,600的三角函數(shù)值;。
2.復習任意角的三角函數(shù)定義;。
3.問題:由,你能否知道sin2100的值嗎?引如新課.
自信的鼓勵是增強學生學習數(shù)學的自信,簡單易做的題加強了每個學生學習的熱情,具體數(shù)據(jù)問題的出現(xiàn),讓學生既有好像會做的心理但又有迷惑的茫然,去發(fā)掘潛力期待尋找機會證明我能行,從而思考解決的辦法.
1.讓學生發(fā)現(xiàn)300角的終邊與2100角的終邊之間有什么關系;。
2100與sin300之間有什么關系.
由特殊問題的引入,使學生容易了解,實現(xiàn)教學過程的平淡過度,為同學們探究發(fā)現(xiàn)任意角與的三角函數(shù)值的關系做好鋪墊.
高中數(shù)學冪函數(shù)教案(匯總18篇)篇十四
(要求學生盡量用自己的話描述初中函數(shù)的定義,并試舉出各類學過的函數(shù)例子)
提問1.是函數(shù)嗎?
(由學生討論,發(fā)表各自的意見,有的認為它不是函數(shù),理由是沒有兩個變量,也有的認為是函數(shù),理由是可以可做.)
二、新課
現(xiàn)在請同學們打開書翻到第50頁,從這開始閱讀有關的內(nèi)容,再回答我的問題.(約2-3分鐘或開始提問)
提問2.新的函數(shù)的定義是什么?能否用最簡單的語言來概括一下.
(板書)2.2函數(shù)
一、函數(shù)的概念
問題3:映射與函數(shù)有何關系?(函數(shù)一定是映射嗎?映射一定是函數(shù)嗎?)
引導學生發(fā)現(xiàn),函數(shù)是特殊的映射,特殊在集合a,b必是非空的數(shù)集.
2.本質(zhì):函數(shù)是非空數(shù)集到非空數(shù)集的映射.(板書)
然后讓學生試回答剛才關于是不是函數(shù)的問題,要求從映射的角度解釋.
此時學生可以清楚的看到滿足映射觀點下的函數(shù)定義,故是一個函數(shù),這樣解釋就很自然.
教師繼續(xù)把問題引向深入,提出在映射的觀點下如何解釋是個函數(shù)?
從映射角度看可以是其中定義域是,值域是.
3.函數(shù)的三要素及其作用(板書)
以下關系式表示函數(shù)嗎?為什么?
(1);(2).
解:(1)由有意義得,解得.由于定義域是空集,故它不能表示函數(shù).
(2)由有意義得,解得.定義域為,值域為.
由以上兩題可以看出三要素的作用
(1)判斷一個函數(shù)關系是否存在.(板書)
(1);(2) (3);(4).
解:先認清,它是(定義域)到(值域)的映射,其中
.
再看(1)定義域為且,是不同的;(2)定義域為,是不同的;
(4),法則是不同的;
而(3)定義域是,值域是,法則是乘2減1,與完全相同.
(2)判斷兩個函數(shù)是否相同.(板書)
4.對函數(shù)符號的理解(板書)
已知函數(shù)試求(板書)
分析:首先讓學生認清的含義,要求學生能從變量觀點和映射觀點解釋,再進行計算.
含義1:當自變量取3時,對應的函數(shù)值即;
含義2:定義域中原象3的象,根據(jù)求象的方法知.而應表示原象的象,即.
計算之后,要求學生了解與的區(qū)別,是常量,而是變量,只是中一個特殊值.
三、小結
1.函數(shù)的定義
2.對函數(shù)三要素的認識
3.對函數(shù)符號的認識
四、作業(yè):略
五、
2.2函數(shù)例1.例3.
一.函數(shù)的概念
1.定義
2.本質(zhì)例2.小結:
3.函數(shù)三要素的認識及作用
4.對函數(shù)符號的理解
答案:
高中數(shù)學冪函數(shù)教案(匯總18篇)篇十五
3.探究發(fā)現(xiàn)任意角 與 的三角函數(shù)值的關系.
利用誘導公式(二),口答下列三角函數(shù)值.
(1). ;(2). ;(3). .
喜悅之后讓我們重新啟航,接受新的挑戰(zhàn),引入新的問題.
由sin300= 出發(fā),用三角的定義引導學生求出 sin(-300),sin1500值,讓學生聯(lián)想若已知sin = ,能否求出sin( ),sin( )的值.
1.探究任意角 與 的三角函數(shù)又有什么關系;
2.探究任意角 與 的三角函數(shù)之間又有什么關系.
遺忘的規(guī)律是先快后慢,過程的再現(xiàn)是深刻記憶的重要途徑,在經(jīng)歷思考問題-觀察發(fā)現(xiàn)-到一般化結論的探索過程,從特殊到一般,數(shù)形結合,學生對知識的理解與掌握以深入腦中,此時以類同問題的提出,大膽的放手讓學生分組討論,重現(xiàn)了探索的整個過程,加深了知識的深刻記憶,對學生無形中鼓舞了氣勢,增強了自信,加大了挑戰(zhàn).而新知識點的自主探討,對教師駕馭課堂的能力也充滿了極大的挑戰(zhàn).彼此相信,彼此信任,產(chǎn)生了師生的默契,師生共同進步.
誘導公式(三)、(四)
給出本節(jié)課的課題
三角函數(shù)誘導公式
標題的后出,讓學生在經(jīng)歷整個探索過程后,還回味在探索,發(fā)現(xiàn)的成功喜悅中,猛然回頭,哦,原來知識點已經(jīng)輕松掌握,同時也是對本節(jié)課內(nèi)容的小結.
的三角函數(shù)值,等于 的同名函數(shù)值,前面加上一個把 看成銳角時原函數(shù)值的符合.(即:函數(shù)名不變,符號看象限.)
設計意圖
簡便記憶公式.
求下列三角函數(shù)的值:(1).sin( ); (2). co.
設計意圖
本練習的設置重點體現(xiàn)一題多解,讓學生不僅學會靈活運用應用三角函數(shù)的誘導公式,還能養(yǎng)成靈活處理問題的良好習慣.這里還要給學生指出課本中的“負角”化為“正角”是針對具體負角而言的.
學生練習
化簡: .
設計意圖
重點加強對三角函數(shù)的誘導公式的綜合應用.
1.小結使用誘導公式化簡任意角的三角函數(shù)為銳角的步驟.
2.體會數(shù)形結合、對稱、化歸的思想.
3.“學會”學習的習慣.
1.課本p-27,第1,2,3小題;
2.附加課外題 略.
設計意圖
加強學生對三角函數(shù)的誘導公式的記憶及靈活應用,附加題的設置有利于有能力的同學“更上一樓”.
八.課后反思
對本節(jié)內(nèi)容在進行教學設計之前,本人反復閱讀了課程標準和教材,針對教材的內(nèi)容,編排了一系列問題,讓學生親歷知識發(fā)生、發(fā)展的過程,積極投入到思維活動中來,通過與學生的互動交流,關注學生的思維發(fā)展,在逐漸展開中,引導學生用已學的知識、方法予以解決,并獲得知識體系的更新與拓展,收到了一定的預期效果,尤其是練習的處理,讓學生通過個人、小組、集體等多種解難釋疑的嘗試活動,感受“觀察——歸納——概括——應用”等環(huán)節(jié),在知識的形成、發(fā)展過程中展開思維,逐步培養(yǎng)學生發(fā)現(xiàn)問題、探索問題、解決問題的能力和創(chuàng)造性思維的能力,充分發(fā)揮了學生的主體作用,也提高了學生主體的合作意識,達到了設計中所預想的目標。
然而還有一些缺憾:對本節(jié)內(nèi)容,難度不高,本人認為,教師的干預(講解)還是太多。
在以后的教學中,對于一些較簡單的內(nèi)容,應放手讓學生多一些探究與合作。隨著教育改革的深化,教學理念、教學模式、教學內(nèi)容等教學因素,都在不斷更新,作為數(shù)學教師要更新教學觀念,從學生的全面發(fā)展來設計課堂教學,關注學生個性和潛能的發(fā)展,使教學過程更加切合《課程標準》的要求。用全新的理論來武裝自己,讓自己的課堂更有效。
高中數(shù)學冪函數(shù)教案(匯總18篇)篇十六
指數(shù)函數(shù)的一般形式為,從上面我們對于冪函數(shù)的討論就可以知道,要想使得x能夠取整個實數(shù)集合為定義域,則只有使得如圖所示為a的不同大小影響函數(shù)圖形的情況。
可以看到:
(1)指數(shù)函數(shù)的定義域為所有實數(shù)的集合,這里的前提是a大于0,對于a不大于0的情況,則必然使得函數(shù)的定義域不存在連續(xù)的區(qū)間,因此我們不予考慮。
(2)指數(shù)函數(shù)的值域為大于0的實數(shù)集合。
(3)函數(shù)圖形都是下凹的。
(4)a大于1,則指數(shù)函數(shù)單調(diào)遞增;a小于1大于0,則為單調(diào)遞減的。
(5)可以看到一個顯然的規(guī)律,就是當a從0趨向于無窮大的過程中(當然不能等于0),函數(shù)的曲線從分別接近于y軸與x軸的正半軸的單調(diào)遞減函數(shù)的位置,趨向分別接近于y軸的正半軸與x軸的負半軸的單調(diào)遞增函數(shù)的位置。其中水平直線y=1是從遞減到遞增的一個過渡位置。
(6)函數(shù)總是在某一個方向上無限趨向于x軸,永不相交。
(7)函數(shù)總是通過(0,1)這點。
高中數(shù)學冪函數(shù)教案(匯總18篇)篇十七
在函數(shù)教學中,我們不僅要在教會函數(shù)知識上下功夫,而且還應該追求解決問題的“常規(guī)方法”——基本函數(shù)知識中所蘊含的思想方法,要從數(shù)學思想方法的高度進行函數(shù)教學。在函數(shù)的教學中,應突出“類比”的思想和“數(shù)形結合”的思想。
2.注重“數(shù)學結合”的教學。
數(shù)形結合的思想方法是初中數(shù)學中一種重要的思想方法。數(shù)學是研究現(xiàn)實世界數(shù)量關系和空間形式的科學。而數(shù)形結合就是通過數(shù)與形之間的對應和轉(zhuǎn)化來解決數(shù)學問題。它包含以形助數(shù)和以數(shù)解形兩個方面,利用它可使復雜問題簡單化,抽象問題具體化,它兼有數(shù)的嚴謹與形的直觀之長。
(1)讓學生經(jīng)歷繪制函數(shù)圖象的具體過程。
(2)切莫急于呈現(xiàn)畫函數(shù)圖象的簡單畫法。
(3)注意讓學生體會研究具體函數(shù)圖象規(guī)律的方法。
目標。
1、理解直線y=kx+b與y=kx之間的位置關系;。
2、會選擇兩個合適的點畫出一次函數(shù)的圖象;
3、掌握一次函數(shù)的性質(zhì).
過程與方法目標。
2、通過一次函數(shù)的圖象總結函數(shù)的性質(zhì),體驗數(shù)形結合法的應用,培養(yǎng)推理及抽象思維能力。
2、在探究一次函數(shù)的圖象和性質(zhì)的活動中,通過一系列富有探究性的問題,滲透與他人交流、合作的意識和探究精神。
一次函數(shù)的圖象和性質(zhì)。
由一次函數(shù)的圖像歸納得出一次函數(shù)的性質(zhì)及對性質(zhì)的理解。
高中數(shù)學冪函數(shù)教案(匯總18篇)篇十八
1.掌握對數(shù)函數(shù)的概念,圖象和性質(zhì),且在掌握性質(zhì)的基礎上能進行初步的應用。
(1)能在指數(shù)函數(shù)及反函數(shù)的概念的基礎上理解對數(shù)函數(shù)的定義,了解對底數(shù)的要求,及對定義域的要求,能利用互為反函數(shù)的兩個函數(shù)圖象間的關系正確描繪對數(shù)函數(shù)的圖象。
(2)能把握指數(shù)函數(shù)與對數(shù)函數(shù)的實質(zhì)去研究認識對數(shù)函數(shù)的性質(zhì),初步學會用對數(shù)函數(shù)的性質(zhì)解決簡單的問題。
2.通過對數(shù)函數(shù)概念的學習,樹立相互聯(lián)系相互轉(zhuǎn)化的觀點,通過對數(shù)函數(shù)圖象和性質(zhì)的學習,滲透數(shù)形結合,分類討論等思想,注重培養(yǎng)學生的觀察,分析,歸納等邏輯思維能力。
3.通過指數(shù)函數(shù)與對數(shù)函數(shù)在圖象與性質(zhì)上的對比,對學生進行對稱美,簡潔美等審美教育,調(diào)動學生學習數(shù)學的積極性。
(1)對數(shù)函數(shù)又是函數(shù)中一類重要的基本初等函數(shù),它是在學生已經(jīng)學過對數(shù)與常用對數(shù),反函數(shù)以及指數(shù)函數(shù)的基礎上引入的。故是對上述知識的應用,也是對函數(shù)這一重要數(shù)學思想的進一步認識與理解。對數(shù)函數(shù)的概念,圖象與性質(zhì)的學習使學生的知識體系更加完整,系統(tǒng),同時又是對數(shù)和函數(shù)知識的拓展與延伸。它是解決有關自然科學領域中實際問題的重要工具,是學生今后學習對數(shù)方程,對數(shù)不等式的基礎。
(2)本節(jié)的教學重點是理解對數(shù)函數(shù)的定義,掌握對數(shù)函數(shù)的圖象性質(zhì)。難點是利用指數(shù)函數(shù)的圖象和性質(zhì)得到對數(shù)函數(shù)的圖象和性質(zhì)。由于對數(shù)函數(shù)的概念是一個抽象的形式,學生不易理解,而且又是建立在指數(shù)與對數(shù)關系和反函數(shù)概念的基礎上,故應成為教學的重點。
(3)本節(jié)課的主線是對數(shù)函數(shù)是指數(shù)函數(shù)的反函數(shù),所有的問題都應圍繞著這條主線展開。而通過互為反函數(shù)的兩個函數(shù)的關系由已知函數(shù)研究未知函數(shù)的性質(zhì),這種方法是第一次使用,學生不適應,把握不住關鍵,所以應是本節(jié)課的難點。
(1)對數(shù)函數(shù)在引入時,就應從學生熟悉的指數(shù)問題出發(fā),通過對指數(shù)函數(shù)的認識逐步轉(zhuǎn)化為對對數(shù)函數(shù)的認識,而且畫對數(shù)函數(shù)圖象時,既要考慮到對底數(shù)的分類討論而且對每一類問題也可以多選幾個不同的底,畫在同一個坐標系內(nèi),便于觀察圖象的特征,找出共性,歸納性質(zhì)。
(2)在本節(jié)課中結合對數(shù)函數(shù)教學的特點,一定要讓學生動手做,動腦想,大膽猜,要以學生的研究為主,教師只是不斷地反函數(shù)這條主線引導學生思考的方向。這樣既增強了學生的參與意識又教給他們思考問題的方法,獲取知識的途徑,使學生學有所思,思有所得,練有所獲,,從而提高學習興趣。