教案的編寫需要考慮學生的接受能力和學習特點,因此要根據不同年級、不同教學內容進行合理的設計。請大家閱讀下面的這些六年級教案,相信會對教學工作有所啟發。
倒數的認識人教版六年級教案設計大全(13篇)篇一
1.認識圓錐,圓錐的高和側面,掌握圓錐的特征,會看圓錐的平面圖,會正確測量圓錐的高,能根據實驗材料正確制作圓錐。
2.通過動手制作圓錐和測量圓錐的高,培養學生的動手操作能力和一定的空間想象能力。
3.培養學生的自主探索意識,激發學生強烈的求知欲望。
導學重難點:
教學重點:掌握圓錐的特征。
教學難點:正確理解圓錐的組成。
導學準備:圓錐圖片圓錐學具。
導學過程:
預習學案:
1、圓柱體積的計算公式是什么?
2、圓柱的特征是什么?
導學案:
(一)小組交流匯報預習情況。
(二)共同探究。
1.圓錐的認識。
(1)觀察教科書第23頁圖片,它們有什么共同特點?
(2)讓學生拿著圓錐模型觀察,說出自己觀察的結果(圓錐有一個曲面,一個頂點和一個面是圓的)。
(3)圓錐有一個頂點,它的底面是一個圓、(在圖上標出頂點,底面及其圓心o)。
(4)圓錐有一個曲面,圓錐的這個曲面叫做側面。(在圖上標出側面)。
(5)讓學生看著教具,指出:從圓錐的頂點到底面圓心的距離叫做高。
2.測量圓錐的高。
小組合作:(1)先把圓錐的底面放平;
(2)用一塊平板水平地放在圓錐的頂點上面;
(3)豎直地量出平板和底面之間的距離。
3.
(1)學生猜想圓錐的側面展開后會是什么圖形呢?
(2)學生實驗:得出圓錐的側面展開后是一個扇形。
4.虛擬的圓錐。
(2)通過操作,使學生發現轉動出來的是圓錐,并從旋轉的角度認識圓錐。
5.課堂小結。新課標第一網。
課堂檢測:
1.用附頁2的圖樣,做一個圓錐,量出它的底面直徑和高。
2.練習四:第1、2題。
板書設計:
圓錐的認識。
圓錐的特征:底面是圓,側面是一個曲面,展開是一個扇形。
一個頂點一條高。
導學反思:
倒數的認識人教版六年級教案設計大全(13篇)篇二
一、教學內容:
九年義務教育六年制第九冊第二單元《倒數的認識》。
二、教材分析:
“倒數的認識”是在學生掌握了整數乘法、分數加法和減法計算、分數乘法的意義和計算法則、分數乘法應用題等知識的基礎上進行教學的,數學教案-倒數的認識。“倒數的認識”是分數的基本知識,學好倒數不僅可以解決有關實際問題,而且還是后面學習分數除法、分數四則混合運算和應用題的重要基礎。
三、教學目標:
1.理解倒數的意義,掌握求倒數的方法。
2.能熟練地寫出一個數的倒數。
3.結合教學實際培養學生的抽象概括能力。
四、教學重點:
理解倒數的意義,掌握求倒數的方法。
五、教學難點:
熟練寫出一個數的倒數。
六、教學過程:
(一)、談話。
1.交流。
師:我們的黑板是什么顏色?
生:黑色。
師:教室的墻面又是什么顏色?
生:黑色。
師:黑與白在語文上是什么關系?
生:黑是白的反義詞。
生:白是黑的反義詞。
師:能說黑是反義詞或白是反義詞嗎?
生:不能,因為黑與白是相互依存的關系。必須說清楚誰是誰的反義詞。
師:那么,數學上有沒有相互依存關系的現象呢?
生:約數和倍數。
師:你能舉例說明約數和倍數的相互依存關系嗎?
生:例如8是4的倍數,4是8的約數。不能說成8是倍數或4是約數。因為8和4是相互依存的。
2.導入今天,我們繼續來研究數學中具有相互依存關系的現象的有關知識。
(二)、學習新知。
對數游戲。
1.學習倒數的意義。
師:4是3的4/3,
生:3是4的3/4。
師:7是15的7/15;生:15是7的15/7。
提問;看我們做游戲的結果,你們有沒有發現什么?
生1:第一個分數的分子就是第二個分數的分母,第一個分數的分母就是第二個分數的分子。
生2:兩個分數的分子、分母相互調換了位置。
生2:兩個分數的乘積是1。
提問:那么怎樣的兩個數才是互為倒數呢?指導看書。
思考:
(1)什么是倒數?滿足什么條件的兩個數互為倒數?
(2)你能找出互為倒數的兩個數嗎。請舉例。
評析:回答問題。
理解“互為”的意義。怎樣的兩個數互為倒數。
找朋友游戲(課前每位同學發一張數字卡片)。
練習。
(1)出示卡片(六位同學舉著卡片依次站在黑板前)。
7/911/41/5086/599。
(2)規則:如果下面的同學拿到的數是以上這些數字的倒數就到相應的同學前面排隊。
提問:下面的同學你們找到自己的朋友了嗎?那么你們能找到自己的朋友嗎?
3教學求一個數倒數的方法。
出示例題:找出下列各數的倒數。
2/37/41/591/7/80.4。
小組討論指名板演。
提問:1.你是怎么找出2/3的倒數的?
生1:因為2/3與3/2乘積是1,所以2/3的倒數是2/3。
生2:因為互為倒數的兩個數的分子與分母正好調換位置,小學數學教案《數學教案-倒數的認識》。2/3的分子與分母調換位置后是3/2,所以2/3的倒數是3/2。
2.你是怎么找出7/4的倒數的?
提問:我們怎樣才能很快地找到一個數的倒數?為什么?
4.練習請剩下的沒有找到朋友的同學繼續找倒數。
5.討論:1的倒數是誰?0的倒數呢?
生:1的倒數是1。
師:能說明一下理由嗎?
生1:因為1與1的乘積還是1。
生2:因為1可以化成1/1,1/2的分子與分母調換位置后還是1/1,即1,所以1的'倒數是1。
師:0的倒數呢?
生1:0的倒數是0。因為1的倒數是1,所以0的倒數是0。
生2:因為0與任何數相乘都得0,所以0的倒數是任何數。
生3:0的倒數是沒有的。因為乘積是1的兩個數才互為倒數,而0乘任何數都得0,說明0乘任何數都不得1,所以0沒有倒數。
生4:0可以寫成0/1,0/1的倒數是1/0。
生5:不對,1/0分母是0,沒有意義,所以0是沒有倒數的。
6.完善求一個數的倒數的方法。
三、鞏固練習。
(一)填空。
1.因為5/3*3/5=1,所以和()互為();
2.因為15*1/15=1,所以()和()互為();
3.4/7與()互為倒數;
4.()的倒數是6/11。
5.()的倒數是2。
6.1/8的倒數是()。
7.1/2/7的倒數是()。
8.0.3的倒數是()。
(二)判斷。
1.得數是1的兩個數互為倒數。()。
2.互為倒數的兩個數乘積一定是1。()。
3.1的倒數是1,所以0的倒數是0。()。
4.分數的倒數都大于1。()。
(四)思考。
4/5*()=()*8。
四、總結:
今天我們學習了什么知識?你有什么收獲?還有什么問題嗎?
五、布置作業。
簡評:
一、自主學習中讓學生勇于創新。
新課程標準指出:“學生是學習的主人。”“有效的數學學習活動不能單純地依賴模仿與記憶。動手實踐,自主探索,合作交流是學生學習數學的重要方式。”因此,教師在課堂上應相信學生、大膽放手,引導學生主動地進行自學、思考、討論、合作交流等活動,發現規律,掌握知識,提高能力。讓學生在討論交流中力圖創新,學習創新。本案里例中“你有沒有發現什么?”“怎樣求一個數的倒數”“1的倒數是幾,0的倒數呢?”等處的交流促進了學生對知識的感悟與理解。特別是對“0的倒數呢?”一問的回答,學生各抒幾見,有的用推理的方法解釋0的倒數是誰;有的用舊知識來解決新問題;也有的用反證法來闡述理由。雖然有對也有錯,但用不同的方式或不同的角度來思考問題,無疑體現了學生學習方法上的創新,進而實現知識上的統一。
二、在游戲活動中實現新知的推進。
游戲是小學生喜聞樂見的活動方式。游戲可以使學生的注意力更持久,積極性更高。可以讓學生在輕松愉快的氣氛中學到知識。這節課設計的兩個游戲貫穿了新授內容的始終。第一個對數游戲讓學生通過聽一聽,想一想,說一說來感受倒數的特征,即互為倒數的兩個數分子與分母調換了位置。為后面學習“求一個數的倒數的方法“打下基礎。第二個找朋友游戲,首先,讓學生通過找朋友鞏固了怎樣的兩個數互為倒數這一知識點;其次,在剩下的數中選取典型讓學生通過討論想辦法找到朋友。并概括出求一個數的倒數的一般方法。這樣使學生在不知不覺中接受新知;再次,在剩下的數中繼續找朋友,起到了“做一做”的效果;最后,想辦法找1和0的朋友,完善找一個數的倒數的方法。本節課上設計的游戲不僅在教學上實現了合理、自然的過度,而且讓學生學到了知識,還使學生品嘗到游戲帶來的快樂。
倒數的認識人教版六年級教案設計大全(13篇)篇三
教學目標:
1.知道倒數的意義。
2.經歷倒數的意義這一概念的形成過程。
3.會求一個數的倒數。
4.培養學生合作學習,激發學習興趣,讓學生體驗學習數學的快樂。
教學重點:
知道倒數的意義,會求一個數的倒數。
教學難點:
1和0倒數的問題。
教學關鍵:
掌握倒數的意義。
教學過程。
一、談話導入。
師:同學們,聽說我們文城中心小學要舉行計算比賽,你們想參加嗎?
生:想。
生:分數乘法。
師:我們來算一算怎么樣?(出示口算卡算一算。)。
生:好。
師:你們的口算不錯,今天要研究的這幾道題肯定難不倒你們,但要想發現它們的秘密,必須得有一雙火眼金睛才行哦!
二、揭示倒數的意義。
1、出示例1:先計算,再觀察,看看有什么規律。
3/8×8/37/15×15/75×1/51/12×12。
師:上面這幾道算式你能很快地算出結果嗎?
生:能。(指名上去寫結果)。
師:你們算得真快!認真觀察一下算式,有什么發現嗎?先把你的發現與同桌交流一下。
(交流完后請個別學生說一說)。
生:乘積都是1。(師板書:乘積是1)。
師:還有別的發現嗎?(相乘的兩個數有什么特征?)。
生:相乘的兩個數的分子、分母正好顛倒了位置。
師:你們能寫出這樣的兩個數嗎?
生:(齊)能。
2、讓學生自由寫后再歸納倒數的意義。
師:你們寫的算式乘積都是多少?
生:乘積都是1。
師:像這樣乘積是1的兩個數,我們把它們叫做互為倒數。(師又接著板書:的兩個數叫做互為倒數。)這也就是這節課我們要學習的內容。(板題:倒數的認識)。
(讓生齊讀課題和倒數的意義)。
3、理解“互為倒數”的含義。
師:“乘積是1的兩個數互為倒數.”你有不理解的地方嗎?
生生交流后歸納:因為倒數是表示兩個數之間的關系,這兩個數是相互依存的,不能單獨存在。(舉例說明:如3/8和8/3,可以說3/8和8/3互為倒數,也可以說3/8是8/3的倒數,但不能說3/8是倒數)。
師:好像以前也學過有這樣關系的兩個數,還記得嗎?
生:記得,是因數和倍數。
三、探索求倒數的方法。
1、出示例2:下面哪兩個數互為倒數?
3/567/25/31/612/70。
讓學生說,師板書:3/5――→5/3。
6――→1/6。
師:你是怎樣找一個數的倒數的?
生:把分子、分母交換位置。(師板書在箭頭上面)。
師:那6的倒數怎么找?
生:把6看作6/1,然后再交換分子、分母的位置。
2、師再次引導學生觀察以上的數,哪兩個數互為倒數?哪些數沒有找到倒數?引發學生質疑。
生:1和0有倒數嗎?那它們的倒數是什么呢?為什么?
同桌之間再次交流得出:1的倒數是1,0沒有倒數。(師相機板書)。
3、總結求一個數的倒數的方法:求真分數和假分數的倒數只要交換分數的分子、分母的位置,而求整數的倒數要把整數看作分母是1的分數,再交換分子、分母的位置。
4、引導學生打開課本學習。
四、鞏固練習。
1、課本24頁做一做。
2、互說倒數。(25頁練習六第2題,同桌合作,師生合作)。
3、25頁第3題:下面的說法對不對?為什么?
(1)7/12與12/7的乘積為1。所以7/12和12/7互為倒數。()。
(2)1/2×4/3×3/2=1,所以1/2、4/3、3/2互為倒數。()。
(3)0的倒數還是0。()。
(4)一個數的倒數一定比這個數小。()。
4、第4題。
五、課堂小結。
這節課我們學習了什么?你學到了什么知識?能說一說嗎?
板書設計:
(1)3/8×8/3=17/15×15/7=15×1/5=11/12×12=1。
乘積是1的兩個數互為倒數。
(2)3/567/25/31/612/70。
分子、分母交換位置。
3/5――――――――――――→5/33/5的倒數是5/3。
分子、分母交換位置。
6=6/1―――――――――――→1/66的倒數是1/6。
1的倒數是1,0沒有倒數。
將本文的word文檔下載到電腦,方便收藏和打印。
倒數的認識人教版六年級教案設計大全(13篇)篇四
師:前面我們學習了分數乘法,請同學們拿出聽算本,我們聽算幾道題。
生:笑……。
師:有些同學在下面偷偷地笑了!你們笑什么呀?
生:(齊)太簡單了!乘積都是1!……。
師:對,今天我們要研究的就是乘積是1的兩個數。你們還能寫出乘積是1的兩個數嗎?
生:(齊)能!
師:那好,我們就進行一個小小的比賽。請大家準備好課堂練習本,我給大家一分鐘的時間,請你寫出乘積是1的任意兩個數,看誰寫得多,而且能寫出不同的類型。
準備好了嗎?開始……。
師:一分鐘到,停!誰愿意把你寫的念出來,和大家共同分享?
師有選擇的板書在黑板上。
師:這么短的時間內就能寫出這么多乘積是1的兩個數,還是幾種不同的類型,不錯。
生:(搶著說)我還有更多的……。
1/5×5=1,1/6×6=1,1/7×7=1,1/8×8=1,1/9×9=1。
師:太厲害了!如果給你們充足的時間,你們還能寫多少個這樣的乘法算式?(無數個)。
學生在下面竊竊私語。有說我也會的,也有說不信的……。
師:你要能猜出來,也可以來試一試呀。
生1:老師,我請你猜。
師:好。
生1:我寫的第一個數是4。
師:那你寫的第二個數是1/4。
生1:不對,我寫的是0.25。
師:是嗎,1/4和0.25相等呀。
生2:老師,我也請你猜。
師:都來為難我了!
生2:我寫的第一個數是10/8。
師:那你寫的第二個數是8/10或是0.8。
生2:老師,你沒化成最簡分數呀!
師:你的也不是最簡分數呀。
師:你們也能猜嗎?
生(齊說):能。
師:為什么能猜到?
生:因為這兩個數的乘積是1。
師:對,你們所寫的這兩個數的乘積都是1。像這樣的乘積是1的兩個數,我們把它稱之為互為倒數。
教師板書:乘積是1的兩個數叫做互為倒數。生齊讀。
師:黑板上所寫的兩個數的積都是1,所以他們互為倒數。比如2/9和9/2和乘積是1,我們就說2/9和9/2互為倒數。(師板書2/9和9/2互為倒數)。
生1:“互為”是指兩個數的關系。
生2:“互為”說明這兩個數的關系是相互依存的。
生3:我舉個例子來說,比如“2/9和9/2互為倒數”就是說2/9是9/2的倒數,9/2是2/9的倒數。
生:學過,約數和倍數。比如:15是3的倍數,3是15的約數。
師:對,我們今天學習的倒數與約數、倍數一樣都是表示兩個數之間的關系,必須是相互依存,而不能獨立地存在。
師:5和1/5的積是1,我們就說……(生齊說)。
師:0.25×4=1,這兩個數的關系可以怎么說?
生1:0.25的倒數是4,4的倒數是0.25。
生2:這兩個數不是分數,好像不可以說它們互為倒數?
師:可以嗎?
生:可以,因為乘積是1的兩個數叫做互為倒數,這兩個數的乘積也是1。
師強調只要是乘積是1的兩個數都是互為倒數。
師:看來同學們學得不錯。現在老師要考考大家,是不是真正理解了倒數的意義。
1、判斷:
(1)得數是1的兩個數叫做互為倒數。
(2)因為10×1/10=1,所以10是倒數,1/10是倒數。
(3)因為1/4+3/4=1,所以1/4是3/4的倒數。
2、展臺出示練習十t1、t2,口答。
(t1:3/4×()=17×()=1。
t2:下面哪兩個數互為倒數?
4/37/686/73/41/8)。
倒數的認識人教版六年級教案設計大全(13篇)篇五
教學目標:
1、通過觀察、比較、概括、抽象,從本質上理解倒數的意義,并能正確地求一個數的倒數。
2、培養學生的數學思維。
教學重點:理解倒數的意義,求一個數的倒數。
教學難點:從本質上理解倒數的意義。
教學過程:
一、呈現數據,先計算,再觀察發現。
1、出示:3/8×8/37/15×15/75×1/50。25×42、
計算后,這些數據你發現有什么規律?(學生先獨立思考,然后組內交流)。
二、交流思辨,抽象概念。
1、匯報。乘積都是1。
2、你能根據上面的觀察寫出乘積是1的另一個數嗎?
3/4×()=1()×9/7=1。
說說你是怎樣寫得,有什么竅門?
如0。5、1。73、抽象概念,乘積是1的兩個數,互為倒數。可以說誰和誰是互為倒數,也可以說誰是誰的'倒數。
4、讓學生說說上面的數(用兩種說法)。
5、是互為倒數的它們的積是1,這兩個數有特點嗎?仔細觀察這些數。
學生討論:分數的分子分母調了一下位置;
師:那么5×1/50。2×5乘積也是1喲!怎么?把整數和小數也化成分數。
6、溝通:分子分母倒一下跟乘積是1有聯系嗎?
7、現在你對倒數有了怎樣的認識?
三、求一個數的倒數。
1、找一個數的倒數。
5/11的倒數是(),()的倒數是4/7,()和15是互為倒數。
你是怎樣找一個數的倒數的?說說你的方法。(從倒數的意義和現象)。
2、會找了嗎?你能找到下列數的倒數嗎?
3/54/967/211.251。20。
學生獨立完成,然后交流。
倒數的認識人教版六年級教案設計大全(13篇)篇六
教學目標1.通過一些實例的探究,讓學生理解和掌握倒數的意義。在合作探究中掌握求倒數的方法,會求一個數的倒數。
2.使學生經歷倒數意義的概括過程,提高觀察、比較、概括和歸納的能力以及靈活運用知識解決問題的能力。
3.通過學生親身參與探究活動,體驗數學學習的樂趣,激發他們積極的學習情感,養成合作探究問題的習慣。
教學重難點。
教學重點:理解倒數的意義,學會求倒數的方法。
教學難點:發現倒數的一些特征。
教具準備課件。
設計意圖。
教學過程。
特色設計。
通過觀察,使學生發現一個分數的倒數就是把它的分子與分母的位置顛倒,進而使學生體會到“倒數”這一概念中“倒”的含義,很自然的得出求一個分數的倒數的方法。
一、猜字游戲引入新課。
找找下面文字的構成規律。
呆―――杏土―――干吞―――吳。
按照上面的規律填數。
――()――()――()。
能根據分之和分母的位置關系,給這三組數取個名嗎?揭示課題:倒數。
二、新知探究。
(一)探究討論,理解倒數的意義。
1.課件出示算式。
開展小組活動:算一算,找一找,這組算式有什么特點?
小組匯報交流。
我發現了每組算式兩個分數的分子與分母正好顛倒了位置,所以我們把這樣的兩個分數叫做“倒數”。
2.出示倒數的意義:乘積是1的兩個數互為倒數。
3.你是怎樣理解互為倒數的呢?能舉例嗎?
(二)深化理解。
1.乘積是1的兩個數存在著怎樣的倒數關系呢?
2.互為倒數的兩個數有什么特點?
3.想一想:1的倒數是多少?0有倒數嗎?為什么?怎么理解?
因為1×1=1,根據“乘積是1的兩個數互為倒數”,所以1的倒數是1。
又因為0與任何數相乘都不等于1,所以0沒有倒數。)。
(三)運用概念。
1.討論求一個數的倒數的方法。
出示例2:寫出其中3/5、7/2兩個分數的倒數。
學生試做討論后,教師將過程。
小結:求一個數(0除外)的倒數,只要把這個數的分子、分母調換位置。)。
2.怎樣求整數(除外)的倒數?請求示6的倒數是幾?(出示課件)。
三、鞏固練習。
(一)完成教材第28頁的“做一做”
(二)完成教材第29頁練習六的第1-5題。
四、課堂小結。
今天我們學習了有關倒數的哪些新知識?板書設計。
倒數的認識人教版六年級教案設計大全(13篇)篇七
教學要求:
使學生進一步理解自然數、整數、分數、小數等有關概念,理解掌握它們之間的關系,能運用這些概念來解決有關的問題。
理解掌握整數、分數、小數的讀寫方法,能正確熟練地讀寫這些數。
教學過程:
從今天開始,我們學習第四單元---(整理和復習)。本單元內容不僅是本冊教材的一個重點,也是小學階段數學知識的重要組成部分,這部分內容是對小學階段數學知識的總結和概括,同時又是中學數學知識的重要基礎。為此,必須認真地學好本單元,要積極主動地搞好整理和復習,使學過的知識條理化、系統化、形成比較完整的知識結構。
復習數的意義。
舉例說說,小學階段學習了哪些數?
教師板書:自然數、整數、分數、小數。
理解整數、自然數、0之間的關系。
自然數:用來表示物體個數的0、1、2、3……。
整數自然數0:一個物體也沒有,用0表示。
比0小的數(以后學習的內容)。
練習73頁“做一做”
理解小數與分數之間的關系。
提出問題:
小數與分數之間有什么聯系?
小數分幾種情況,劃分的根據是什么?當學生總結后,可歸納如下:
有限小數:小數部分的位數是有限的。
小數無限小數(循環小數):小數部分的位數是無限的。
整數和小數位順序表,理解整數與小數之間的聯系。
讓學生填寫教材74頁整數和小數數位順序表。
請學生觀察數位順序表,回答問題:
什么叫數位?
整數與小數之間有什么聯系?
練習教材75頁上的“做一做”。
理解百分數的意義及有關術語。
舉例說說什么叫百分數。
練習教材75頁下的“做一做”
3.復習數的讀法和寫法。
請同學們總結整數的寫法。
請同學們想一想:小數和分數應怎樣讀?怎樣寫?
練習教材76頁上的“做一做”
鞏固練習。
做78頁練習十五中第1題、第2題中的(1)。
全課小結。
倒數的認識人教版六年級教案設計大全(13篇)篇八
1.通過一些實例的探究,讓學生理解和掌握倒數的意義。在合作探究中掌握求倒數的方法,會求一個數的倒數。
2.使學生經歷倒數意義的概括過程,提高衙門觀察、比較、概括和歸納的能力以及靈活運用知識解決問題的能力。
3.通過學生親身參與探究活動,體驗數學學習的樂趣,激發他們積極的學習情感,養成合作探究問題的習慣。
認識倒數并掌握求倒數的方法。
小數與整數求倒數的方法。
ppt課件,卡片。
一、情境導入,引出問題。
1、列舉數學中兩個數乘積是1的算式。
(設計意圖)問題是數學的心臟,是學生探究的起點和動力,在談話、游戲情境中引導學生發現問題,提出問題。
二、合作探究、解決問題。
1.探究倒數的意義。
(1)觀察剛才列舉的例子,找出特點。
(2)出示倒數的意義:乘積是1的兩個數互為倒數。
(3)小組討論,什么是倒數?
學生獨立思考后,組內交流。
全班匯報,教師根據學生的匯報點撥引導。
師生共同歸納倒數的意義:乘積是1的兩個數叫做互為倒數。(教師板書)。
(4)舉例子:3/8×8/3=1,3/8和8/3互為倒數,3/8的倒數是8/3,8/3的倒數是3/8.
(5)口答練習:
2.探究求一個數(分數)的倒數的方法。
(1)小組合作,自學例1。
(2)小組派代表交流例1。
師:互為倒數的兩個數相等嗎?怎么樣表示它的結果?也可用—(破折號)表示。
(4)教師引導質疑:0有沒有倒數?為什么?學生討論釋疑。
1×()=1,所以1的倒數是1。而0×()=1呢?
1的倒數是它本身,0沒有倒數。
(5)引導學生概括求倒數的方法。
求一個數(0除外)的倒數,只要把這個數的分子、分母互相交換位置就行了。
(6)練習:師生對口令,找倒數。
老師說一個數,學生快速搶答出它的倒數。
3、探究求整數、小數、帶分數的倒數方法。
師:同學們已經會求一個分數的倒數了。想一想,我們還學過哪些數?(整數、小數、帶分數),那么怎么樣求整數、小數、帶分數的倒數呢?選擇一種,在小組內探究。
a:學生選擇一種研究,教師巡視指導。
b:學生交流匯報,教師分別板書一例。
(設計意圖)充分調動學生的學習積極性,給學生提供充足的從事數學活動的機會,引導學生進行小組合作學習,在討論中探究知,理解并掌握倒數的意義和求法,培養學生的探究能力和探究意識。
三、鞏固聯系、拓展深化。
1.請你填一填。
2.我是小法官。
3.游戲:找朋友。
師:老師這里有一些卡片,上面寫了一些數字,哪兩個數是互為倒數關系,哪兩個數就是好朋友。請你把這樣的兩張卡片找出來。
(設計意圖)多層次的練習,幫助學生鞏固新知,活躍思維,伴隨著學生情感參與的游戲練習,調動了學生學習的積極性和主動性,再次激起思維高潮,讓學生獲得愉悅的情感體驗。
四、總結反思。
這節課你們有什么收獲?還有什么疑問?
(設計意圖)幫助學生梳理知識,反思自己的學習過程,領會學習方法,獲得數學學習的經驗。
乘積是1的兩個數互為倒數。
求一個數(0除外)倒數的方法:
把這個數分子、分母調換位置。
倒數的認識人教版六年級教案設計大全(13篇)篇九
1、引導學生通過觀察、研究、類推等數學活動,理解倒數的意義,總結出求倒數的方法。
2、通過互助活動,培養學生與人合作、與人交流的習慣。
3、通過自行設計方案,培養學生自主探索和創新的意識。
理解倒數的含義,掌握求倒數的方法。
掌握求倒數的方法。
一、導入
1、找一找下面文字的構成規律。學生分組交流,找出文字的構成規律。
2、按照上面的規律填數。
3、揭示課題。今天,我們就來研究這樣的數——倒數。
二、教學實施
1、師:關于倒數,你想知道什么?
2、學習倒數的含義。
(1)學生觀察教材第28頁主題圖。
(2)學生根據所舉的例子進行思考,還可以與老師共同探討。
(3)學生反饋,老師板書。
學生可能發現:
每組中的兩個數相乘的積是1。
每組中兩個數的分子和分母的位置互相顛倒。
每組中兩個數有相互依存的關系。
(4)舉例驗證。
(5)學生辯論:看誰說得對。
(6)歸納:乘積是1的兩個數會為倒數。
3、特殊數:0和1。板書:0沒有倒數,1的倒數是它本身。
4、求倒數的方法。
(1)出示例1.
(2)歸納方法:你是怎樣求一個數的倒數的?板書:分子和分母調換位置。
5、反饋練習。
(1)完成教材第28頁的“做一做”。學生獨立解答,老師巡視。
(2)完成教材第29頁練習六的第1-5題。
三、課堂作業設計
1、找一找下列各數中哪兩個數互為倒數。
2、填空。
(1)三分之四的倒數是( ),( )的倒數是六分之七。
(2)10的倒數是( ),( )的倒數是1。
(3)二分之一的倒數是( ),( )沒有倒數。
倒數的認識人教版六年級教案設計大全(13篇)篇十
學習目標:
1、理解倒數的意義,掌握求一個數倒數的方法,能準確熟練地寫出一個數的倒數。
2、通過獨立思考、小組合作、展示質疑,在探索活動中,培養觀察、歸納、推理和概括能力。
3、激情投入,挑戰自我。
教學重點:求一個數倒數的方法。
教學難點:1和0倒數的問題。
教學過程:
離上課還有一點時間,咱們先聊一會吧。同學們,我給你們代數學課多長時間了?(一年)一年時間雖然不是很長,但我覺得我們之間已經互相成為了朋友,你有這種感覺嗎?該怎樣表述我們之間的朋友關系呢?(你是我的朋友,我是你的朋友,互相應該是雙方面的。)就先聊到這兒吧?好,上課!
一、導入:
生:上下兩部分調換了位置,變成了另一個字。
師:對了,把其中任一個字上下兩部分倒過來,就變成了另一個字,這個現象很有趣很奇妙吧!
二、合作探究:
(一)揭示倒數的意義。
1.(出示例題課件)請看大屏幕,先計算,再觀察這些算式,同桌互相說一說它們有什么規律?(學生自學,經歷自主探索總結的過程,并獨立完成)。
請同學們按照要求逐一完成,看誰是認真仔細的人,既能準確的計算,又能發現其中的秘密。
師:同學們,在以前我們看來非常簡單的乘積是1的兩個數,研究起來有如此大的發現,那么,像符合這種規律的兩個數叫什么數呢?誰能給這種數取個名字?(生取名字)。
師:那么根據剛才的計算結果與發現的規律你能說出什么叫倒數嗎?(生答)。
師板書:乘積是1的兩個數互為倒數。
你認為哪些字或詞比較重要?你是如何理解“互為”的?你能用舉例子的方法來說明嗎?(生答)。
師小結:剛才我們認識了倒數的意義,知道乘積是1的兩個數互為倒數,而且倒數不能單獨存在,是相互依存的。就像課前我們聊得話題,老師和你互相成為了好朋友,就是說“老師是你的朋友”,“你是老師的朋友”,我們倆是雙方面的。
(二)小組探究求一個倒數的方法。
1.出示例題2課件:下面哪兩個數互為倒數?
師:同學們知道了什么是倒數,那你能找出一個數的倒數嗎?那好,請完成這道題。
出示課件,請看這里,哪兩個數互為倒數?(生找)(生說教師演示)。
提問:你用什么好辦法這么快就找出了這三組數的倒數?(同桌互相說說看)(找幾名學生匯報)。
師板書:求倒數的方法:分數的分子、分母交換位置。
同學們想出了找倒數的好方法,那就是分數的分子、分母交換位置,你們把老師想說的都說出來了,太棒了!我們一起來看一看(出示課件)。在這三組數里哪一組不同于其它兩組?對,6是整數,像6這樣的整數找倒數的方法可以先把整數寫成分母是1的分數,再找倒數。
2.師提問:再次出示連線題的課件,本題中的還有哪些數據沒有找到倒數?它們有沒有倒數?如果有,又是多少呢?同桌討論說說你的發現。
3.出示課件想一想。
我的發現:1的倒數是(1),0(沒有)倒數。
師提問:(1)為什么1的倒數是1?
生答:(因為1×1=1“根據乘積是1的兩個數互為倒數”,所以1的倒數是1)。
(2)為什么0沒有倒數?
生答:(因為0與任何數相乘都等于0,而不等于1,所以0沒有倒數)。
4.探討帶分數、小數的倒數的求法。
師:看來像這樣的分數與整數它的倒數求法很簡單,可是我們學過的不僅僅是分數、整數,還有呢?這些數的倒數又該怎樣求呢?請同桌的同學討論一下,把你們討論的結果填在表格上。(課件出示)。
你們有結果了嗎?誰愿意到這里把你們組的討論結果說出來與大家共享(師切換實物投影),小組匯報討論結果,學生自己用投影展示討論結果并說明。
(師切換投影):老師也把求這一類數的倒數的方法寫出來了,一起看看我們想的是否一樣呢?(出示課件5)。
當你給帶分數、小于1的小數、大于1的小數找出倒數后你有沒有發現什么規律?請你對照大屏幕說說自己的發現:。
發現1:帶分數的倒數都(小于)本身;。
發現2:比1小的小數的倒數都(大于)本身,并且都(大于)1。
發現3:比1大的小數的倒數都(小于)本身,并且都(小于)1。
(三)學以致用:
師:探究到這里,大家肯定有了很大的收獲,現在請大家閉上眼睛休息一下,休息時想一想什么是倒數?再想一想求倒數的方法是什么?讓學生再次記憶找倒數的方法。
1.想不想檢驗一下自己學的怎么樣?
請打開課本24頁完成做一做和25頁練習六的第4題,(讓學生做在課本上,并找學生口答做一做的題。練習六的第4題連線用投影展示學生的作業)。
2.(課件出示)請你以打手勢的形式告訴老師你的答案。
(四)全課總結。
今天學習了什么?我們一起回顧總結出來好嗎?
什么叫倒數?怎樣找出一個數的倒數?
倒數的認識人教版六年級教案設計大全(13篇)篇十一
1、使學生感知倒數的意義,掌握求倒數的方法,學會對倒數的正確表述。
2、培養學生的觀察能力、數學語言表達能力、發現規律的能力等。
求一個數的倒數的方法。
理解倒數的意義,掌握求一個數的倒數的方法。
教學光盤
自學課本p50:
(1)什么是倒數?倒數的概念中哪幾個字比較重要?說一說你是怎么理解的。
(2)觀察互為倒數的兩個數,說說他們分子、分母的位置發生了什么變化?
(3)0有倒數嗎?為什么?
一、作業錯例分析。
二、學習分數的倒數:
1.出示例7
學生在自備本上完成,指名核對。
教師板書:×=1×=1×=1
2、你能模仿著再舉幾個例子嗎?
學生回答,教師板書。
3、觀察板書,揭示倒數意義:乘積是1的兩個數互為倒數。(板書)
和互為倒數,也可以說的倒數是,的倒數是。
讓學生模仿著說另外兩個算式,誰和誰互為倒數?誰是誰的倒數?
4、你能分別找出和的倒數嗎?
學生同桌討論找法,指名交流。
5、觀察上面互為倒數的兩個數,學生討論怎樣求一個分數的倒數?
指名交流方法:求一個分數的倒數時,只要把它的分子、分母調換位置就可以了。
6、合作練習:同桌兩位同學一位說出一個分數,請另一位同學說這個分數的倒數,并交換練習。
三、學習整數的倒數:
1、電腦出示:5的倒數是多少?1的倒數呢?
學生跟自己的同桌說一說,再指名交流。
方法一:求5的倒數時,可以先把5看作,所以它的倒數是;
方法二:想5×()=1,再得出結果。
倒數的認識人教版六年級教案設計大全(13篇)篇十二
1。通過一些實例的探究,讓學生理解和掌握倒數的意義。在合作探究中掌握求倒數的方法,會求一個數的倒數。
2。使學生經歷倒數意義的概括過程,提高觀察、比較、概括和歸納的能力以及靈活運用知識解決問題的能力。
3。通過學生親身參與探究活動,體驗數學學習的樂趣,激發他們積極的學習情感,養成合作探究問題的習慣。
理解倒數的意義,學會求倒數的方法。
發現倒數的一些特征。
課件
通過觀察,使學生發現一個分數的倒數就是把它的分子與分母的位置顛倒,進而使學生體會到“倒數”這一概念中“倒”的含義,很自然的得出求一個分數的倒數的方法。
一、猜字游戲引入新課
找找下面文字的構成規律
呆———杏 土———干 吞———吳
按照上面的規律填數
——( ) ——( ) ——( )
能根據分之和分母的位置關系,給這三組數取個名嗎?揭示課題:倒數
二、新知探究
(一)探究討論,理解倒數的意義。
1.課件出示算式。
開展小組活動:算一算,找一找,這組算式有什么特點?
小組匯報交流。
我發現了每組算式兩個分數的分子與分母正好顛倒了位置,所以我們把這樣的兩個分數叫做“倒數”。
2.出示倒數的意義:乘積是1的兩個數互為倒數。
3.你是怎樣理解互為倒數的呢? 能舉例嗎?
(二)深化理解。
1.乘積是1的兩個數存在著怎樣的倒數關系呢?
2.互為倒數的兩個數有什么特點?
3.想一想:1的倒數是多少?0有倒數嗎?為什么?怎么理解?
因為1×1=1,根據“乘積是1的兩個數互為倒數”,所 以1的倒數是1。
又因為0與任何數相乘都不等于1,所以0沒有倒數。)
(三)運用概念。
1.討論求一個數的倒數的方法。
出示例2:寫出其中3/5 、7/2 兩個分數的倒數。
學生試做討論后,教師講過程 。
小結:求一個數(0除外)的倒數,只要把這個數的分子、分母調換位置。)
2。怎樣求整數(除外)的倒數?請求示6的倒數是幾?(出示課件)
三、鞏固練習
(一)完成教材第28頁的“做一做”
(二)完成教材第29頁練習六的第1—5題。
四、課堂小結
今天我們學習了有關倒數的哪些新知識?
倒數的認識人教版六年級教案設計大全(13篇)篇十三
1、使學生理解倒數的意義,掌握求倒數的方法,能正確的求出一個數的倒數。
2、培養學生舉例、觀察、比較、抽象概括能力。
3、通過自主探究、相互合作獲得成功的體驗,提高學習數學的興趣。
一、口算導入
師:今天,我們就一起來研究乘積是1的這一類算式。同學們,你能自己寫一些乘積是1的算式嗎?老師給你30秒時間,看看哪位同學寫得既對又多。
展示個別學生作品,大家寫的算式都有一個共同點:(乘積是1)。(板書)
師:乘積是1的兩個數到底存在什么樣的關系呢?請大家把書翻到第50頁,自學。
指名回答,(乘積是1的兩個數互為倒數。)(板書)相機揭示課題(認識倒數)(板書)
二、教學新課
師:你認為在這一句話中有哪些詞比較關鍵?師劃出,逐一解讀。先強調乘積及1。
(1)問:“互為”是什么意思?(互相)
一個人能說互相嗎?互相肯定是發生在(兩個人之間)。所以,“互為”二字充分說明了倒數應該是(兩個數)之間的關系。
(2)(結合學生的算式:)比如()乘()等于1,所以()和()互為倒數,也可以說(a)是(b)的倒數或者(b)是(a)的倒數。
(3)觀察互為倒數的兩個數,看看它們的分子、分母有什么特點?指名回答。
(4)指名學生結合另外的算式說說誰是誰的倒數。問:我們能單獨說()是倒數嗎?對啊,倒數相互依存的,這種存在相互依存關系的數,我們在五年級時就學習過,大家還記得嗎?(倍數、因數)
(5)選擇一個算式,跟你的同桌說說誰是誰的倒數。
三、求一個數的倒數
1、剛才,你們在短時間內寫出了很多乘積是1的算式,在設計這些乘法算式時有什么竅門嗎?指名回答(先寫一個分數,再把這個分數的分子和分母倒一下,就是另一個因數了。)
為什么要把分子分母倒一下呢?(倒了之后,分子和分母就可以互相約分,使得數是1)
討論到這里,你知道怎樣求一個數的倒數了嗎?指名回答。大家同意嗎?
2、師:同學們已經學會了求真分數、假分數的倒數,想一想,我們還學過哪些數?(整數、小數、帶分數)那么,怎樣求整數、小數、帶分數的倒數呢?列出幾個數:
自主探究
a四人為一小組,選擇一種情況研究
b生交流匯報,師板書例子
c引導概括求倒數的方法
3、同學們真棒,通過自己的探索,學會了求一個數的倒數。那么有沒有同學知道1的倒數呢?為什么?(1可以看成1/1,所以倒數仍是1,或者1×1=1)(板書)
那0的倒數呢?為什么?指名回答(0乘任何數都得0,即0乘任何數都不可能等于1。)(板書)
4、歸納如何求一個數的倒數
求一個數的倒數(0除外),只要把它的分子、分母交換位置。
5、師:學了那么多,下面就讓我們一起來練一練吧(書本50頁,練一練)
展示,核對,強調互為倒數的兩個數之間不能用“=”連接。