工作學習中一定要善始善終,只有總結才標志工作階段性完成或者徹底的終止。通過總結對工作學習進行回顧和分析,從中找出經驗和教訓,引出規律性認識,以指導今后工作和實踐活動。什么樣的總結才是有效的呢?以下是小編收集整理的工作總結書范文,僅供參考,希望能夠幫助到大家。
高中數學必修四的知識點總結篇一
當命題“若p則q”為真時,可表示為p=>q,則我們稱p為q的充分條件,q是p的必要條件。這里由p=>q,得出p為q的充分條件是容易理解的。
但為什么說q是p的必要條件呢?
事實上,與“p=>q”等價的逆否命題是“非q=>非p”。它的意思是:若q不成立,則p一定不成立。這就是說,q對于p是必不可少的,因而是必要的。
(2)再看“充要條件”
若有p=>q,同時q=>p,則p既是q的充分條件,又是必要條件。簡稱為p是q的充要條件。記作p<=>q
回憶一下初中學過的“等價于”這一概念;如果從命題a成立可以推出命題b成立,反過來,從命題b成立也可以推出命題a成立,那么稱a等價于b,記作a<=>b。“充要條件”的含義,實際上與“等價于”的含義完全相同。也就是說,如果命題a等價于命題b,那么我們說命題a成立的充要條件是命題b成立;同時有命題b成立的充要條件是命題a成立。
(3)定義與充要條件
數學中,只有a是b的充要條件時,才用a去定義b,因此每個定義中都包含一個充要條件。如“兩組對邊分別平行的四邊形叫做平行四邊形”這一定義就是說,一個四邊形為平行四邊形的充要條件是它的兩組對邊分別平行。
顯然,一個定理如果有逆定理,那么定理、逆定理合在一起,可以用一個含有充要條件的語句來表示。
“充要條件”有時還可以改用“當且僅當”來表示,其中“當”表示“充分”?!皟H當”表示“必要”。
(4)一般地,定義中的條件都是充要條件,判定定理中的條件都是充分條件,性質定理中的“結論”都可作為必要條件。
<
高中數學必修四的知識點總結篇二
復數的概念:
形如a+bi(a,b∈r)的數叫復數,其中i叫做虛數單位。全體復數所成的集合叫做復數集,用字母c表示。
復數的表示:
復數通常用字母z表示,即z=a+bi(a,b∈r),這一表示形式叫做復數的代數形式,其中a叫復數的實部,b叫復數的虛部。
復數的幾何意義:
(1)復平面、實軸、虛軸:
點z的橫坐標是a,縱坐標是b,復數z=a+bi(a、b∈r)可用點z(a,b)表示,這個建立了直角坐標系來表示復數的平面叫做復平面,x軸叫做實軸,y軸叫做虛軸。顯然,實軸上的點都表示實數,除原點外,虛軸上的點都表示純虛數
(2)復數的幾何意義:復數集c和復平面內所有的點所成的集合是一一對應關系,即
這是因為,每一個復數有復平面內惟一的一個點和它對應;反過來,復平面內的每一個點,有惟一的一個復數和它對應。
這就是復數的一種幾何意義,也就是復數的另一種表示方法,即幾何表示方法。
復數的模:
復數z=a+bi(a、b∈r)在復平面上對應的點z(a,b)到原點的距離叫復數的模,記為|z|,即|z|=
虛數單位i:
(1)它的平方等于-1,即i2=-1;
(2)實數可以與它進行四則運算,進行四則運算時,原有加、乘運算律仍然成立
(3)i與-1的關系:i就是-1的一個平方根,即方程x2=-1的一個根,方程x2=-1的另一個根是-i。
(4)i的周期性:i4n+1=i,i4n+2=-1,i4n+3=-i,i4n=1。
復數模的性質:
復數與實數、虛數、純虛數及0的關系:
對于復數a+bi(a、b∈r),當且僅當b=0時,復數a+bi(a、b∈r)是實數a;當b≠0時,復數z=a+bi叫做虛數;當a=0且b≠0時,z=bi叫做純虛數;當且僅當a=b=0時,z就是實數0。
高中數學必修四的知識點總結篇三
1.滿足二元一次不等式(組)的x和y的取值構成有序數對(x,y),稱為二元一次不等式(組)的一個解,所有這樣的有序數對(x,y)構成的集合稱為二元一次不等式(組)的解集。
2.二元一次不等式(組)的每一個解(x,y)作為點的坐標對應平面上的一個點,二元一次不等式(組)的解集對應平面直角坐標系中的一個半平面(平面區域)。
3.直線l:ax+by+c=0(a、b不全為零)把坐標平面劃分成兩部分,其中一部分(半個平面)對應二元一次不等式ax+by+c>0(或≥0),另一部分對應二元一次不等式ax+by+c<0(或≤0)。
4.已知平面區域,用不等式(組)表示它,其方法是:在所有直線外任取一點(如本題的原點(0,0)),將其坐標代入ax+by+c,判斷正負就可以確定相應不等式。
5.一個二元一次不等式表示的平面區域是相應直線劃分開的半個平面,一般用特殊點代入二元一次不等式檢驗就可以判定,當直線不過原點時常選原點檢驗,當直線過原點時,常選(1,0)或(0,1)代入檢驗,二元一次不等式組表示的平面區域是它的各個不等式所表示的平面區域的公共部分,注意邊界是實線還是虛線的含義。“線定界,點定域”。
6.滿足二元一次不等式(組)的整數x和y的取值構成的有序數對(x,y),稱為這個二元一次不等式(組)的一個解。所有整數解對應的點稱為整點(也叫格點),它們都在這個二元一次不等式(組)表示的平面區域內。
7.畫二元一次不等式ax+by+c≥0所表示的平面區域時,應把邊界畫成實線,畫二元一次不等式ax+by+c>0所表示的平面區域時,應把邊界畫成虛線。
8.若點p(x0,y0)與點p1(x1,y1)在直線l:ax+by+c=0的同側,則ax0+by0+c與ax1+byl+c符號相同;若點p(x0,y0)與點p1(x1,y1)在直線l:ax+by+c=0的兩側,則ax0+by0+c與ax1+byl+c符號相反。
9.從實際問題中抽象出二元一次不等式(組)的步驟是:
(1)根據題意,設出變量;
(2)分析問題中的變量,并根據各個不等關系列出常量與變量x,y之間的不等式;
(3)把各個不等式連同變量x,y有意義的實際范圍合在一起,組成不等式組。