總結是把一定階段內的有關情況分析研究,做出有指導性的經驗方法以及結論的書面材料,它可以使我們更有效率,不妨坐下來好好寫寫總結吧。那么我們該如何寫一篇較為完美的總結呢?下面是我給大家整理的總結范文,歡迎大家閱讀分享借鑒,希望對大家能夠有所幫助。
高三數學常考知識點總結歸納篇一
log.a(mn)=logam+logn
loga(m/n)=logam-logan
logam^n=nlogam(n=r)
logbn=logan/logab(a>0,b>0,n>0 a、b均不等于1)
二、簡單幾何體的面積與體積
s直棱柱側=c_h(底面周長乘以高)
s正棱椎側=1/2_c_h′(底面的周長和斜高的一半)
設正棱臺上、下底面的周長分別為c′,c,斜高為h′,s=1/2_(c+c′)_h
s圓柱側=c_l
s圓臺側=1/2_(c+c′)_l=兀_(r+r′)_l
s圓錐側=1/2_c_l=兀_r_l
s球=4_兀_r^3
v柱體=s_h
v錐體=(1/3)_s_h
v球=(4/3)_兀_r^3
三、兩直線的位置關系及距離公式
(1)數軸上兩點間的距離公式|ab|=|x2-x1|
(2) 平面上兩點a(x1,y1),(x2,y2)間的距離公式
|ab|=sqr[(x2-x1)^2+(y2-y1)^2]
(3) 點p(x0,y0)到直線l:ax+by+c=0的距離公式 d=|ax0+by0+c|/sqr
(a^2+b^2)
(4) 兩平行直線l1:=ax+by+c=0,l2=ax+by+c2=0之間的距離d=|c1-
c2|/sqr(a^2+b^2)
同角三角函數的基本關系及誘導公式
sin(2_k_兀+a)=sin(a)
cos(2_k_兀+a)=cosa
tan(2_兀+a)=tana
sin(-a)=-sina,cos(-a)=cosa,tan(-a)=-tana
sin(2_兀-a)=-sina,cos(2_兀-a)=cosa,tan(2_兀-a)=-tana
sin(兀+a)=-sina
sin(兀-a)=sina
cos(兀+a)=-cosa
cos(兀-a)=-cosa
tan(兀+a)=tana
四、二倍角公式及其變形使用
1、二倍角公式
sin2a=2_sina_cosa
cos2a=(cosa)^2-(sina)^2=2_(cosa)^2-1=1-2_(sina)^2
tan2a=(2_tana)/[1-(tana)^2]
2、二倍角公式的變形
(cosa)^2=(1+cos2a)/2
(sina)^2=(1-cos2a)/2
tan(a/2)=sina/(1+cosa)=(1-cosa)/sina
五、正弦定理和余弦定理
正弦定理:
a/sina=b/sinb=c/sinc
余弦定理:
a^2=b^2+c^2-2bccosa
b^2=a^2+c^2-2accosb
c^2=a^2+b^2-2abcosc
cosa=(b^2+c^2-a^2)/2bc
cosb=(a^2+c^2-b^2)/2ac
cosc=(a^2+b^2-c^2)/2ab
tan(兀-a)=-tana
sin(兀/2+a)=cosa
sin(兀/2-a)=cosa
cos(兀/2+a)=-sina
cos(兀/2-a)=sina
tan(兀/2+a)=-cota
tan(兀/2-a)=cota
(sina)^2+(cosa)^2=1
sina/cosa=tana
兩角和與差的余弦公式
cos(a-b)=cosa_cosb+sina_sinb
cos(a-b)=cosa_cosb-sina_sinb
兩角和與差的正弦公式
sin(a+b)=sina_cosb+cosa_sinb
sin(a-b)=sina_cosb-cosa_sinb
兩角和與差的正切公式
tan(a+b)=(tana+tanb)/(1-tana_tanb)
tan(a-b)=(tana-tanb)/(1+tana_tanb)
<
高三數學常考知識點總結歸納篇二
一、函數的定義域的常用求法:
1、分式的分母不等于零;
2、偶次方根的被開方數大于等于零;
3、對數的真數大于零;
4、指數函數和對數函數的底數大于零且不等于1;
5、三角函數正切函數y=tanx中x≠kπ+π/2;
6、如果函數是由實際意義確定的解析式,應依據自變量的實際意義確定其取值范圍。
二、函數的解析式的常用求法:
1、定義法;
2、換元法;
3、待定系數法;
4、函數方程法;
5、參數法;
6、配方法
三、函數的值域的常用求法:
1、換元法;
2、配方法;
3、判別式法;
4、幾何法;
5、不等式法;
6、單調性法;
7、直接法
四、函數的最值的常用求法:
1、配方法;
2、換元法;
3、不等式法;
4、幾何法;
5、單調性法
五、函數單調性的常用結論:
1、若f(x),g(x)均為某區間上的增(減)函數,則f(x)+g(x)在這個區間上也為增(減)函數。
2、若f(x)為增(減)函數,則—f(x)為減(增)函數。
3、若f(x)與g(x)的單調性相同,則f[g(x)]是增函數;若f(x)與g(x)的單調性不同,則f[g(x)]是減函數。
4、奇函數在對稱區間上的單調性相同,偶函數在對稱區間上的單調性相反。
5、常用函數的單調性解答:比較大小、求值域、求最值、解不等式、證不等式、作函數圖象。
六、函數奇偶性的常用結論:
1、如果一個奇函數在x=0處有定義,則f(0)=0,如果一個函數y=f(x)既是奇函數又是偶函數,則f(x)=0(反之不成立)。
2、兩個奇(偶)函數之和(差)為奇(偶)函數;之積(商)為偶函數。
3、一個奇函數與一個偶函數的積(商)為奇函數。
4、兩個函數y=f(u)和u=g(x)復合而成的函數,只要其中有一個是偶函數,那么該復合函數就是偶函數;當兩個函數都是奇函數時,該復合函數是奇函數。
5、若函數f(x)的定義域關于原點對稱,則f(x)可以表示為f(x)=1/2[f(x)+f(—x)]+1/2[f(x)+f(—x)],該式的特點是:右端為一個奇函數和一個偶函數的和。
高三數學常考知識點總結歸納篇三
數列
數列是高中數學的重要內容,又是學習高等數學的基礎。高考對本章的考查比較全面,等差數列,等比數列的考查每年都不會遺漏。有關數列的試題經常是綜合題,經常把數列知識和指數函數、對數函數和不等式的知識綜合起來,試題也常把等差數列、等比數列,求極限和數學歸納法綜合在一起。探索性問題是高考的熱點,常在數列解答題中出現。本章中還蘊含著豐富的數學思想,在主觀題中著重考查函數與方程、轉化與化歸、分類討論等重要思想,以及配方法、換元法、待定系數法等基本數學方法。
近幾年來,高考關于數列方面的命題主要有以下三個方面;(1)數列本身的有關知識,其中有等差數列與等比數列的概念、性質、通項公式及求和公式。(2)數列與其它知識的結合,其中有數列與函數、方程、不等式、三角、幾何的結合。(3)數列的應用問題,其中主要是以增長率問題為主。試題的難度有三個層次,小題大都以基礎題為主,解答題大都以基礎題和中檔題為主,只有個別地方用數列與幾何的綜合與函數、不等式的綜合作為最后一題難度較大。
知識整合
1、在掌握等差數列、等比數列的定義、性質、通項公式、前n項和公式的基礎上,系統掌握解等差數列與等比數列綜合題的規律,深化數學思想方法在解題實踐中的指導作用,靈活地運用數列知識和方法解決數學和實際生活中的有關問題;
2、在解決綜合題和探索性問題實踐中加深對基礎知識、基本技能和基本數學思想方法的認識,溝通各類知識的聯系,形成更完整的知識網絡,提高分析問題和解決問題的能力,
進一步培養學生閱讀理解和創新能力,綜合運用數學思想方法分析問題與解決問題的能力。
3、培養學生善于分析題意,富于聯想,以適應新的背景,新的設問方式,提高學生用函數的思想、方程的思想研究數列問題的自覺性、培養學生主動探索的精神和科學理性的思維方法。