教學工作計劃可以幫助教師把握教學進度,合理分配學生的學習任務,實現有針對性的教學。需要教學工作計劃的同學不妨參考一下這些范文,或許能幫助你們更好地制定自己的計劃。
因數和倍數數學教案(通用22篇)篇一
尊敬的各位領導、老師大家上午好:我們團隊所執教的是《因數和倍數》。
一、說教材:
《因數和倍數》是小學人教版課程標準實驗教材五年級下冊第二單元的內容,也是小學階段“數與代數”部分最重要的知識之一。《因數和倍數》的學習,是在初步認識自然數的基礎上,探究其性質。其中涉及到的內容屬于初等數論的基本內容,相當抽象。在這一內容的編排上與以往教材不同,沒有數學化的語言給“整除”下定義,而是在本課時通過乘法算式借助整除的模式na=b直接給出因數與位數的概念。這節課是因數與倍數的概念的引入,為本單元最后的內容,以及第四單元的最大公因數,最小公倍數提供了必須且重要的鋪墊。
根據教材所處的地位和前后關系,確定了以下目標:
知識技能目標:
掌握因數倍數的概念,理解因數與倍數的意義,掌握找一個數因數與倍數的方法。
情感,價值目標:培養學生合作、觀察、分析和抽象概括能力,體會教學內容的奇妙、有趣,產生對數學的好奇心和求知欲。
教學重點和難點:理解倍數和因數的意義,掌握找出一個數因數和倍數的方法。
二、學情分析:
學生在平時學習中缺少主動性,一部分學生怕困難,缺乏獨立思考的習慣,同時考慮問題也不夠全面。在本堂課的教學中,主要調動學生學習的積極性,提高學生課堂學習的參與性,體驗成功的樂趣,通過學生的親自探索和合作交流,來達到學習知識,掌握所學知識的目的。同時感受數學中的奧妙。
三、教法與學法指導。
當今社會,人類的語言離不開素質教育,而實施素質教育必須“以學生為本”課堂教學要圍繞培養學生的探索精神、創新精神出發,為全面提高學生的綜合素質打下一定的基礎。本節課根據學生的認知能力與心理特征來進行教學策略和方法的設計。
1、遵循學生主體,老師主導,自主探究,合作交流為主線的理念,利用學生對乘法的運算理解概念。
2、小組合作討論法。以學生討論,交流,互相評價,促成學生對找一個數的因數和倍數的方法進行優化處理,提升。鞏固學生方法表達的完整性,有效性,避免學生只掌握方法的理解,而不能全面的正確的表達。
四,教學過程。
1、揭示主題。
老師直接揭示主題,大膽創新,打破了傳統的為了導入而導入的教學模式。為學生的自主合作學習提供了開放的空間。
2、合作交流,理解因數,倍數的概念及其意義。
教師出示前置性作業,小組內交流,匯報學習成果,教師適時點撥,真正把課堂還給學生,也充分體現了教師的主導作用和學生的主體地位。使學生在交流中培養了合作學習的意識,對因數和倍數的概念有了初步的認識,對它們之間的聯系也有了更好的理解。
一個數的因數和倍數是本節課中技能目標中很重要的一部分。使學生在已有的經驗基礎上,獨立的列舉一個數的因數,在小組合作交流中得出。找一個數的因數和倍數的方法。真正地把主動權交給學生,教師通過引導,使學生加深理解,化解難點。
4、引導學生分析,比較歸納尋找共性,找出不同,得出一個數的因數,使學生學會有序思考,從而形成基本技能與方法,做到即關注了過程,又關注了結果。教師的教學水到渠成,學生的學習則是山重水復疑無路,柳暗花明又一村。
5、引導學生置疑,集體交流,化解疑問。
便于學生對本課所學知識更好的消化理解。
三、練習。
練習題設計形式多樣,有梯度。既注重基礎,又有所提高,從而真正實現了課堂教學的有效性。
因數和倍數數學教案(通用22篇)篇二
這節課我在教學中充分體現以學生為主體,為學生的探究發現提供足夠的時空和適當的指導,同時,也為提高課堂教學的有效性,我在本課的教學中體現了自主化、活動化、合作化和情意化,具體做到了以下幾點:
教材中首先引導學生理解數與數之間的關系,進而用乘法算式把不同的列法表示出來,再根據乘法算式教學倍數和因數的意義。這部分內容學生初次接觸,對于學生來說是比較難掌握的內容。首先是名稱比較抽象,在現實生活中又不經常接觸,對這樣的概念教學,要想讓學生真正理解、掌握、判斷,需要一個長期的消化理解的過程。
倍數和因數的意義是本單元的重要知識,其他內容的教學都以此為基礎。在學生得出乘法算式后,首先引導學生觀察3×4=12這道算式,邊指著算式邊先介紹“12是3的倍數”,然后啟發學生“看著算式你還能想到什么?”很多學生已經領會12也是4的倍數,指名說后,再強化一下讓學生連起來說說誰是誰的倍數。接著教學“3是12的因數”,再啟發“這時你又能想到什么?”學生很容易聯想到“4也是12的因數”,而且學生的學習興趣濃厚、求知欲強。這時再讓學生完整的說一說誰是誰的倍數,誰是誰的因數,已經“水到渠成”。在初步感受倍數和因數的意義是與乘法有聯系的,表達的是自然數之間的關系之后,接著練一練讓學生根據2×6=12先同桌互相說說哪個數是哪個數的倍數(或因數),在全班交流。最后根據1×12=12先指名說一說哪個數是哪個數的倍數(或因數),再讓學生輕聲地說說有點特別的兩句。
整個過程處理細致、層次清晰、有扶有放,生生交流、師生交流充分,反饋及時、兼顧學困生,讓學生在遷移中理解倍數和因數的意義。
找一個數的倍數或因數,既能鞏固倍數和因數的意義,也為研究倍數的特征及意義作準備。探索找一個數的倍數或因數的方法時,重點是幫助學生建立相應的數學模型。
探索求一個數因數的方法是本課的難點,例題直接安排找24的因數更是困難。教學中我還是利用3×4=12做鋪墊,引導學生先找一找12的因數,初步感知了找因數的方法。然后層層推進,先讓學生想一道算式找24的因數,引出根據除法找因數的方法,再讓學生按除法通過自主探究找出24的所有因數,接著組織學生比較、討論、優化提升出找一個數的因數的方法。
教學4的倍數時,學生在4×4=16的鋪墊下,很容易找到一個或幾個4的倍數,但是想要“一個不漏且有序的找全,并體會出4的倍數的個數是無限的”卻很難。如何引導學生建構完整的倍數的數學模型呢?我遵循學生的認知規律,然后引導學生按從小到大的順序整理,接著向兩頭延伸:有比4更小的嗎?接著4×2=8,4×3=12,4×4=16,…像這樣說下去說得完嗎?4的倍數的特點逐步在學生的腦海中得以完善、合理建構。
這樣搭建了有效的平臺、形成了師生互動生成的過程,學生經歷了無序、不完整逐步由點及面向有序、完整的思維邁進,有效的建構了數學模型。
因數和倍數數學教案(通用22篇)篇三
人教版小學數學五年級下冊第23、24頁。
1.我能理解什么是質數和合數,掌握了判斷質數、合數的方法。
2.我知道100以內的質數,記住了20以內的質數。
3.我能在自主探究中獨立思考,合作探究時暢所欲言。
能理解質數、合數的意義,正確判斷一個數是質數還是合數。
用恰當的方法找出100以內的質數;會給自然數分類。
一、導入新課
二、檢查獨學
1.互動分享收獲。
2.質疑探討。
3.試試身手:第23頁做一做。
三、合作探究
1.小組合作,利用課本24頁的表格,用恰當的方法找出100以內的質數,做一個質數表。
2.展示、交流:你們是怎樣找出100以內質數的?
我的想法________________________________
4.我能很快熟記20以內的質數。
5.獨立思考:
(1)是不是所有的質數都是奇數?(2)是不是所有的奇數都是質數?
(3)是不是所有的合數都是偶數?(4)是不是所有的偶數都是合數?
6.組內交流。
因數和倍數數學教案(通用22篇)篇四
認識自然數和整數,倍數和因數。
1、結合具體情境,認識自然數和整數,聯系乘法認識倍數和因數。初步探索找一個數的倍數的方法,能在1——100的自然數中,找出10以內某數的所有倍數。
2、學生經歷探索認識倍數和因數的含義,能對生活中有關的數字作出合理的解釋。在教師幫助下,初步學會選擇有用的信息進行簡單地歸納與類比,發展合情推理能力。
3、在老師、同學的幫助下,對身邊與數學有關的某些事物有好奇心,參與數學活動,體驗數學與日常生活密切聯系。
探究倍數和因數。
倍數和因數的關系的理解。
一、結合“水果店”情境圖,認識自然數和整數。
1、談話引入。
2、出示水果店情境圖。
(1)學生活動:找一找。仔細觀察圖中有哪些數?我能找到幾個?全班進行交流。
(2)教師提示:還有要補充的嗎?(目的是讓學生找出圖中隱含的數字,比如0,1/2等。
(3)學生活動:分一分。你能把它們分分類嗎?學生單獨活動,教師幫助有困難的學生。全班再進行交流。交流時讓學生說出分類的標準和分類的結果。教師要適當地進行引導,為下面教學自然數和整數做準備。
(4)根據學生的分類情況,加上教師的適當引導,揭示什么樣的數是自然數,什么樣的數是整數?并讓學生舉出例子來進一步說明和鞏固。
二、利用整數乘法認識倍數和因數。
1、解決:買5千克梨需要多少錢?
5×4=20(元)。
2、利用算式說明倍數和因數的含義。
(1)說明含義。20是4和5的倍數;4和5是20的因數(需進一步使學生明確,20是4的倍數也是5的倍數;4是20的因數,5也是20的因數)關于倍數和因數這種相互依存的關系,學生第一次接觸,教師要讓學生多說一說,并通過一定的例證進一步說明。
(2)舉例說明。舉出一個乘法算式,說出其中的因數和倍數關系。
(3)練習:說一說。第3頁“說一說”先自己試說,同桌之間交流后,再進行全班交流。
3、說明研究倍數和因數的范圍。教師根據課堂生成,相機給出“只在自然數(零除外)的范圍內研究倍數和因數”這個規定。
三、練習鞏固,加深理解。
1、第3頁:找一找。學生獨立理解題意后,先自己找出7的倍數,小組內交流自己找的方法。全班交流時讓學生在比較后得出用乘法算式的方法來找一個數的倍數比較方便快捷。同時使學生領悟到:這個數是7的倍數,那么7同時也是這個數的因數。通過試一試:你還能找出7的其它倍數嗎?使學生體會到一個數的倍數是無限的。
2、同桌練習:你寫我說。在學生弄懂題目意思后,再開展活動。活動后讓中后生進行全班交流。
3、比一比:看誰找的快。
(1)自己找,比比誰找的快。要求作出各自的符號。
(2)組織交流,比比誰的方法好,比比誰找的對。
(3)歸納。說說哪幾個數既是4的倍數,又是6的倍數。為學習公倍數作準備。
4、獨立練習。寫出100以內全部6的倍數。交流時,體會怎樣做到不重復,不遺漏,進一步明確方法。
5、討論:根據除法算式如何說倍數和因數。例如:15÷3=5.
四、全課小結。
因數和倍數數學教案(通用22篇)篇五
《因數和倍數》是一節數學概念課,通過這個乘法算式直接給出因數和倍數的概念。這部分內容學生初次接觸,對于學生來說是比較難掌握的內容。
數學課程標準“以人為本”的理念決定著數學教學目標的指向:適應并促進學生的發展。根據本節課知識的特點和學生的認知規律,我采用了角色轉換、數形結合、合作學習等發展性教學手段進行教學,在教學中我注重體現以學生為主體的新理念,努力為學生的探究發現提供足夠的空間。在課堂中,我主要圍繞以下幾方面來進行教學:
(1)捕捉生活與數學之間的聯系,幫助學生理解因數倍數相互依存的關系。
因數和倍數是揭示兩個整數之間的一種相互依存關系,在課前談話中我利用一個腦筋急轉彎,滲透相互依存的關系。?通過生活中人與人之間的關系,遷移到數學中的數和數之間的關系,這樣設計自然又貼切,既讓學生感受到了數學與生活的聯系,初步學會從數學的角度去觀察事物、思考問題,激發了對數學的興趣,又潛移默化地幫助學生理解了因數倍數之間的相互依存關系。在教學中,也達到了預期的效果,學生對因數和倍數相互依存的關系理解的比較深刻。
(2)角色轉換,讓學生親身體驗數和數之間的聯系。
因數和倍數這節課研究的是數和數之間的關系,知識內容比較抽象。因而,我采用了“擬人化”的教學手段,每人一張數字卡片,學生和老師都變成了數學王國里的一名成員。當學生想回答問題時都會高高地舉起自己的號碼,整節課學生都沉浸在自己的角色體驗中,學生都把自己當成了一個數。通過對自己一個數的認識,舉一反三,從而理解了數與數之間的因數和倍數關系,既充分激發了學生的學習興趣,又十分有效地突破了教學難點。
(3)數形結合,讓學生帶著已有知識走進數學課堂。
“數形結合”是一種重要的數學思想。對教師來說則是一種教學策略,是一種發展性課堂教學手段;對學生來說又是一種學習方法。如果長期滲透,運用恰當,則使學生形成良好的數學意識和思想,長期穩固地作用于學生的數學學習生涯中。開課教師引導學生進行空間想象。
(4)重組教材,根據學生的實際情況,多種形式探究找因數倍數的方法。
教材上,探究因數這部分的例題比較少,只有一個:找18的因數。根據學生的實際情況,我進行了重組教材,先讓學生根據乘法算式“一對對”地找出15的因數,在此基礎上再讓學生探究18的因數。通過“質疑”:有什么辦法能保證既找全又不遺漏呢?讓學生思考并發現:按照一定的順序一對對的找因數,能既找全又不遺漏。進而又借助體態語言——打手勢,讓學生說出20和24的因數,達到了鞏固練習的目的。這樣設計由易到難,由淺入深,符合了學生的認知規律。而在探究倍數時,我則大膽的放手,讓學生自主探索找一個數倍數的方法,給學生提供了廣闊的思維空間。這樣通過多種形式的教學,既激發了學生的學習興趣,又極大地提高了課堂教學的實效性。
(5)趣味活動,擴大學生思維的空間,培養學生發散思維的能力。
只有讓學生親身感受到數學知識內在的智取因素,數學學習的無窮魅力才能深深地打動學生。這節課的練習設計緊緊把握概念的內涵與外延,設計有效練習,拓展知識空間。譬如:讓學生用所學知識介紹自己,通過數字卡片找自己的因數和倍數朋友等等。學生拿著自己的數字卡片上臺找自己的朋友,讓臺下學生判斷自己的學號是不是這個數的因數或倍數,如果臺下學生的學號是這個數的因數或倍數就站到前面。由于答案不唯一,學生思考問題的空間很大,這樣既培養了學生的發散思維能力,又使學生享受到了數學思維的快樂。但由于我缺乏時間觀念,這部分時間太倉促,沒有展開練習,學生沒有盡興,也沒有達到充分地練習效果。
因數和倍數教學反思。
《倍數和因數》這一內容與原來教材比有了很大的不同,老教材中是先建立整除的概念,再在此基礎上認識因數倍數,而現在是在未認識整除的情況下直接認識倍數和因數的。數學中的“起始概念”一般比較難教,這部分內容學生初次接觸,對于學生來說是比較難掌握的內容。首先是名稱比較抽象,在現實生活中又不經常接觸,對這樣的概念教學,要想讓學生真正理解、掌握、判斷,需要一個長期的消化理解的過程。
這節課我在教學中充分體現以學生為主體,為學生的探究發現提供足夠的時空和適當的指導,同時,也為提高課堂教學的有效性,我在本課的教學中體現了自主化、活動化、合作化和情意化,具體做到了以下幾點:
(一)?操作實踐,舉例內化,認識倍數和因數。
(二)自主探究,意義建構,找倍數和因數。
整個教學過程中力求體現學生是學習的主體,教師只是教學活動的組織者、指導者、參與者。整節課中,教師始終為學生創造寬松的學習氛圍,讓學生自主探索,學習理解倍數和因數的意義,探索并掌握找一個數的倍數和因數的方法,引導學生在充分的動口、動手、動腦中自主獲取知識。
新課程提出了合作學習的學習方式,教學中的多次合作不僅能讓學生在合作中發表意見,參與討論,獲得知識,發現特征,而且還很好地培養了學生的合作學習能力,初步形成合作與競爭的意識。
(三)變式拓展,實踐應用---—促進智能內化。
練習的設計不僅緊緊圍繞教學重點,而且注意到了練習的層次性,趣味性。在游戲中,師生互動,激活了學生的情感,學生的思維不斷活躍起來,學生不僅參與率高,而且還較好地鞏固了新知。課上,我能注重自始至終關注學生學習興趣、學習熱情、學習自信等情感因素的培養,并及時讓學生感受到學習成功的喜悅,享受數學,感悟文化魅力。
由于這節是概念課,因此有不少東西是由老師告知的,但并不意味著學生完全被動地接受。教學之前我知道這節課時間會很緊,所以在備課的時候,我認真鉆研了教材,仔細分析了教案,看哪些地方時間安排的可以少一些,所以我在第一部分認識因數和倍數這一環節里縮短出示時間,直接出示,,實際效果我認為是比較理想的。課上還應該及時運用多媒體將學生找的因數呈現出來,引導學生歸納總結自己的發現:最小的因數是1,最大的因數是它本身。教師應該及時跟上個性化的語言評價,激活學生的情感,將學生的思維不斷活躍起來。
因數和倍數數學教案(通用22篇)篇六
4、培養學生的觀察能力。
掌握找一個數的因數和倍數的方法。
能熟練地找一個數的因數和倍數。
一、引入新課。
1、出示主題圖,讓學生各列一道乘法算式。
2、師:看你能不能讀懂下面的算式?
出示:因為2×6=12。
所以2是12的因數,6也是12的因數;
12是2的倍數,12也是6的倍數。
3、師:你能不能用同樣的方法說說另一道算式?
(指名生說一說)。
師:你有沒有明白因數和倍數的關系了?
那你還能找出12的其他因數嗎?
4、你能不能寫一個算式來考考同桌?學生寫算式。
師:誰來出一個算式考考全班同學?
5、師:今天我們就來學習因數和倍數。(出示課題:因數倍數)。
齊讀p12的注意。
二、新授:
(一)找因數:
1、出示例1:18的因數有哪幾個?
學生嘗試完成:匯報。
(18的因數有:1,2,3,6,9,18)。
師:說說看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一對一對找,如1×18=18,2×9=18…)。
師:18的因數中,最小的是幾?最大的是幾?我們在寫的時候一般都是從小到大排列的。
2、用這樣的方法,請你再找一找36的因數有那些?
匯報36的因數有:1,2,3,4,6,9,12,18,36。
師:你是怎么找的?
舉錯例(1,2,3,4,6,6,9,12,18,36)。
師:這樣寫可以嗎?為什么?(不可以,因為重復的因數只要寫一個就可以了,所以不需要寫兩個6)。
仔細看看,36的因數中,最小的是幾,最大的是幾?
看來,任何一個數的因數,最小的一定是(),而最大的一定是()。
3、你還想找哪個數的因數?(18、5、42……)請你選擇其中的一個在自練本上寫一寫,然后匯報。
4、其實寫一個數的因數除了這樣寫以外,還可以用集合表示:如。
18的因數。
小結:我們找了這么多數的因數,你覺得怎樣找才不容易漏掉?
從最小的自然數1找起,也就是從最小的因數找起,一直找到它的本身,找的過程中一對一對找,寫的時候從小到大寫。
(二)找倍數:
1、我們一起找到了18的因數,那2的倍數你能找出來嗎?
匯報:2、4、6、8、10、16、……。
師:為什么找不完?
你是怎么找到這些倍數的?(生:只要用2去乘1、乘2、乘3、乘4、…)。
那么2的倍數最小是幾?最大的.你能找到嗎?
2、讓學生完成做一做1、2小題:找3和5的倍數。
匯報3的倍數有:3,6,9,12。
師:這樣寫可以嗎?為什么?應該怎么改呢?
改寫成:3的倍數有:3,6,9,12,……。
你是怎么找的?(用3分別乘以1,2,3,……倍)。
5的倍數有:5,10,15,20,……。
師:表示一個數的倍數情況,除了用這種文字敘述的方法外,還可以用集合來表示。
師:我們知道一個數的因數的個數是有限的,那么一個數的倍數個數是怎么樣的呢?
(一個數的倍數的個數是無限的,最小的倍數是它本身,沒有最大的倍數)。
三、課堂小結:
我們一起來回憶一下,這節課我們重點研究了一個什么問題?你有什么收獲呢?
四、獨立作業:
完成練習二1~4題。
因數和倍數數學教案(通用22篇)篇七
教學目標:
1、通過操作活動得出相應的乘除法算式,幫助學生理解倍數和因數的意義;探索求個數的倍數和因數的方法,發現一個數倍數和因數的某些特征。
2、在探索一個數的倍數和因數的過程中培養學生觀察、分析、概括能力,培養有序思考能力。
3、通過倍數和因數之間的互相依存關系使學生感受數學知識的內在聯系,體會到數學內容的奇妙、有趣。
教學重點:理解倍數和因數的意義。
教學難點:探索求一個數的倍數和因數的方法。
教學準備:每桌準各12個一樣大小的正方形,每人準備一張自己學號的卡片。
設計理念:通過竟猜、操作、比一比誰寫得多,找朋友等形式多樣的活動激發學生持續的學習興趣;學生通過獨立思考、合作文流進行自主探索;教師引導學生掌握數學思考的方法。
教學過程:
1、讓學生進行智力競猜春暖花香的季節,公園里許多人在劃船,一條船上有兩個父親兩個兒子,但總共只有3個人,這是怎么回事呢?(部分學生能猜出三個人分別是孫子、爸爸、和爺爺)
2、孫子、爸爸、爺爺的名字分別是韓韓,韓有才、韓廣發。請學生以韓有才為中心介紹下三個人的關系。學生可能會說出韓有才.是爸爸,韓有才是兒子的語句,這時引導學生說出誰是誰的爸爸誰是準的兒子。
3、上述父子關系是一種互相依存的關系,在表述時一定要完整。并向學生說明自然數中某兩個數之間也有這種類似的依存關系倍數和因數。
設計說明:智力競猜走學生喜歡的形式,因為每個學生都有爭強好勝之心,競猜有兩個作用,一是激發學生的學習興趣,二是以此引出相互依存的關系,為理解倍數和因數的相互依存關系作鋪墊。
1、師:智慧從手指問流出,通過操作我們能發現許多的知識。請同桌同學拿出課前準備的12個同樣大小的正方形,試一試能擺出幾個不同的長方形,并思考一下其中蘊涵著哪些不同的乘除法算式。
2、請學生匯報不同的擺法,以及相應的乘除法算式。(乘法算式和除法算式分開寫)再向學生說明:如果一個圖形經過旋轉后和另一個圖形一樣,我們就認為這兩個圖形是一樣的,讓學生特重復的圖形和算式去掉。(板書三十乘法算式,和幾十相應的除法算式)
設計說明;讓學生寫出蘊涵的乘除法算式符合學生的知識基礎,學生有的可能用乘法表示,也有的可能用除法表示;讓學生將旋轉后相同的去掉,這是一次簡化,很多學生并不知道,需要指導,這樣可以使學生認識到事物的本質。
3、讓學生一起看乘法算式43=12,向學生指出:12是4的倍數,12也是3的倍數,4是12的因數,3也是12的因數。
4、先請一個學生站起來說一說.然后同桌的同學再互相說一說。
5、讓學生仿照說出62=12和121=12中哪個數是哪個數的倍數,哪個數是哪個數的因數。
6、學生相互出一道乘法算式,并說一說誰是誰的倍數,誰是誰的因數。學生可能會出現0( )=0的情況,借此向學生說明我們研究因敷和倍數一般指不是0的自然數。
設計說明:倍數和因數是全新的概念,需要教師的傳授、講解,需要學生的適當記憶重復、仿照。當然,要使學生真正理解還必須舉一反三,通過互相舉例可以逐步完善學生對倍數和因數的認識,同時使學生明確倍數和因數的研究范圍。
7、以43=12與123=4為例,向學生說明后面的除法算式是由前面的乘法算式得到的,根據這個除法算式可以說誰是誰的倍數,誰是誰的因數,說好后再讓學生試一試其他幾個除法算式中的關系。
8、練習:根據下面的算式,說說哪個數是哪個數的因數,哪個數是哪個數的倍數
54=20 357=5 3+4=7
(1)學生回答后引發學生思考:能不能說20是倍數,4是因數。使學生進一步理解倍數是兩個數之間的一種相互依存的關系,必須說哪個是哪個的倍數,因數也同樣如此。
(2)通過3+4=7使學生進一步理解倍數和因數都是建立在乘法或除法的基礎之上的。
設計說明:乘法和除法是一種互逆的關系,在學習中應該溝通它們之間的聯系;通過三道練習可以鞏固剛剛獲得的對倍數和因數的認識,將融會貫通落到實處。
1、找一個數的因數。
(1)聯系板書的乘除法算式觀察思考12的因數有哪些,井想辦法找出15的所有因數。
(2)學生獨立思考,明白根據一個乘法(除法)算式可以找出15的兩個因數,在學生充分交流的基礎上引導學生有條理的一對一對說出15的因數。
(3)用一對一對的方法找出36的所有因數。可能有的學生根據乘法算式找的,也有的學生是根據除法算式找的,都應該給予肯定。
(4)引導學生觀察12、15、36的因數,說一說有什么發現。一個數的因數個數是有限的,其中最小的因數都是1,最大的都是它本身。
設計說明:先安排學生找一個數的因數可以使學生利用操作得到的算式進行,觀察,這樣比較自然,而且為于找一個數的因數指明了方向。學生交流時突出了方法的多樣性,既可以根據乘法算式想,也可以根據除法算式想,交流后引導學生一對一對的找是必要的,它可以培養學生的有序思考。最后引導學生觀察。使學生自主發現、歸納出一個數的因數的某些特征。
2、找一個數的倍數。
(1)讓學生找3的倍數,比一比誰找得多。
(2)學生匯報后,引導學生有序思考,并得出3的倍數可以用3乘連續的自然數1、2、3,3的倍數的個數是無限的,所以寫3的`倍數時要借助省略號表示結果。
(3)找出2的倍數和5的倍數,并引導學生觀察3、2、5的倍數情況,說一說有什么發現。一個數的倍數個數是無限的,其中最小的倍數是它本身,沒有最大的倍數。
設計說明:讓學生比一比誰找的倍數多,可以使學生產生認知沖突,認識到一個數的倍數個數是無限的,在學生匯報后同樣需要引導學生的有序思考,需要引導學生自主發現、歸納一個數倍數的特征。
1、想想做做的第l題。學生表述后強調哪個是哪個的倍數(或因數)。
設計說明:第l題是基礎練習.可以鞏固對倍數和因數的認識,2、3兩題聯系實際,使學生感悟到其中蘊藏著求一個數倍數和因數的方法,以及倍數和因數的某些特征。第4題通過游戲活動進一步激發學生持續的學習熱情,而且可以綜合應用求倍數和因數的方法,再次認識到倍數和因數的某些特征。
1、通過這節課的學習你有什么收獲?向你的同伴介紹一下。
2、生活中許多現象與我們學習的倍數和因數的知識有關,課后同學們可以利用今天所學的知識探索一下1小時等于60分的好處。通過探索使學生明白由于60的因數是兩位數中最多的,可以方便計算。
設計說明:向同伴介紹自己的收獲可以將課堂中學到的知識進行自我梳理,同時通過探索1小時等于60分的好處,可以鞏固倍數和因數的相關知識,溝通知識間的聯系,拓展學生的知識面,使學生認識到數學知識的應用價值。
因數和倍數數學教案(通用22篇)篇八
1.操作交流。
引導:你能用12個小正方形拼成一個長方形嗎?請同桌兩人合作拼一拼,看看每排擺幾個,擺了幾排,想想有幾種拼法,用算式把你的拼法表示出來。學生操作,用算式表示,教師巡視。
交流:你有哪些拼法?請你說一說,并交流你表示的算式。
結合學生交流,呈現不同拼法,分別板書出積是12的三道乘法算式(包括可以板書除法算式)。
2.認識意義。
(2)啟發:現在讓你看另外兩個算式,你能說一說哪個是哪個的因數,哪個是哪個的倍數嗎?同桌互相說說看。
(3)小結:從上面可以看出,在整數乘法算式里,兩個乘數都是積的因數,積是兩個乘數的倍數。它們之間的關系是相互依存的。這就是我們今天學習的新內容:因數和倍數。(板書課題)在研究因數和倍數時,所說的數一般指不是o的自然數。
因數和倍數數學教案(通用22篇)篇九
教學內容:
教材分析:
本節教學是在學生學習掌握了因數和倍數兩個概念的基礎上,在教師的引導下,讓學生運用乘法算式及除法中的整除自主嘗試、探究“求一個數的因數”的方法。同時,通過多種形式的訓練,使學生能熟練找全一個數的因數。另外,通過引導學生用集合的形式表示一個數的因數,一方面給學生滲透集合思想,更重要的是為后面教學求兩個數的公因數做準備。
教學目標:
2、逐步培養學生從個別到全體、從具體到一般的抽象歸納的思想方法。
教學重點:
探究求一個數的因數的方法及規律特點。
教學難點:
用求一個數的因數的方法熟練找全一個數的因數。
教具準備:
投影儀、小黑板、卡片。
教學課時:一課時。
教學設想:
運用嘗試教學法,從學生已有的知識經驗出發,通過教師引導、學生自學例1,自主嘗試、探究求一個數的因數的方法方法,并能運用所獲得的方法、經驗找全一個數的因數。
教學過程:
一、復習舊知。
師:同學們,前面學習了因數和倍數的概念,老師很想考考你們學得怎么樣,可以嗎?
生:(預設)可以!
師:出示小黑板。
1、利用因數和倍數的相互依存關系說一說下面各組數的相互關系。
21和72×7=1430÷6=5。
2、判斷。
(1)12是倍數,2是因數。()。
(2)1是14的因數,14是1的倍數。()。
(3)因為6×0.5=3,所以,6和0.5是3的因數,3是6和0.5的倍數。()。
教師根據學生完成練習的情況對學生進行恰當的表揚激勵,同時進入新課教學:……。
二、新課教學。
過程一:嘗試訓練。
(一)出示問題。
師:同學們,老師有一個新問題,想請大家幫助解決,行嗎?
生:行!(預設)。
嘗試題:14的因數有哪幾個?
(二)學生解決問題,教師巡視并根據實際適時輔導學困生。
(三)信息反饋。
板書:
1×14。
14 2×7。
14÷2。
14的因數有:1,2,7,14。
過程二:自學課本(p13例1)。
(一)學生自學例1。
教師提出自學要求(投影):
1、18有哪些因數?
2、文中的小朋友是怎樣找出18的因數的?他們找完了嗎?如果沒有,請幫助他們完成。
3、你還有別的找法嗎?請試一試,并用自己喜歡的方式寫出18所有的因數。
(二)信息反饋。
1、反饋自學要求情況;
板書:
1×18。
182×9。
3×6。
18的因數有1,2,3,6,9,18。
還可以這樣表示:18的因數。
2、知識對比,探索發現規律。
(1)師:同學們,根據求14和18的因數時獲得的體驗,再思考下面問題:
投影出示問題:
思考一:你用什么方法找出?
(2)學生思考,教師適時引導。
(3)同桌交流思考結果。
(4)師生互動。總結方法、點出課題。
求一個數的因數的方法:用乘法計算或除法計算(整除)。
過程三:嘗試練習。
(一)用小黑板出示練習題。
1、找出30的因數有哪些?36的因數有哪些?
(二)信息反饋:師生互動總結特點。
板書:
一個數的因數的個數是有限的。它的最小因數是1,的因數是它本身。
三、課堂作業。
練習二第2題和第4題前半部分。
四、課堂延伸。
猜一猜:(卡片)只有一個因數的數是誰?
五、課堂小結。
師:今天你學會了求一個數的因數的方法嗎?你知道一個數的因數特點嗎?
生:……。
板書設計:
求一個數的因數的方法。
1×14。
142×7 方法:用乘法計算或除法計算(整除)。
14÷2。
14的因數有:1,2,7,14。
1×18。
182×9。
3×6。
18的因數有:1,2,3,6,9,18特點:一個數的因數的個數是有限的。
還可以表示為:
它的最小因數是1,的因數是它本身。
因數和倍數數學教案(通用22篇)篇十
人教版小學數學五年級下冊第17、18頁。
1.我能掌握2、5的倍數的特征,并利用特征判斷一個數是不是2、5的倍數。
2.我知道什么是奇數和偶數。
了解2、5的倍數的特征及奇數和偶數的含義。
能正確地求出符合要求的數。
收集電影票。
一、導入新課。
二、檢查獨學。
1.互動,檢查獨學部分第1、2題完成情況。
2.質疑探討。
三、合作探究。
(一)2、5的倍數的特征。
1.小組合作。
仔細回顧獨學題2,再與同伴分享自己的收獲。
2.小組代表展示匯報。
3.小組合作交流,驗證規律。
我們的想法:
小組代表匯報、總結。
4.試試身手。
(1)獨立完成第18頁“做一做”。
(2)集體交流。我又發現了:
(二)奇數和偶數。
1.自主閱讀教材。根據自學內容,我知道:
根據是否是2的倍數,可把自然數分為和兩類。是2的倍數的數叫做,不是2的倍數的數叫做。
2.組內交流,并討論:0是不是2的倍數?為什么?
3.匯報總結。
4.我能說出身邊的奇數和偶數。
5.做一做(第17頁)。
因數和倍數數學教案(通用22篇)篇十一
1.我能理解什么是質數和合數,掌握了判斷質數、合數的方法。
2.我知道100以內的質數,記住了20以內的質數。
3.我能在自主探究中獨立思考,合作探究時暢所欲言。
能理解質數、合數的意義,正確判斷一個數是質數還是合數。
用恰當的方法找出100以內的質數;會給自然數分類。
一、導入新課。
二、檢查獨學。
1.互動分享收獲。
2.質疑探討。
3.試試身手:第23頁做一做。
三、合作探究。
1.小組合作,利用課本24頁的表格,用恰當的方法找出100以內的質數,做一個質數表。
2.展示、交流:你們是怎樣找出100以內質數的?
3.小組討論:
(1)有沒有最大的質數或合數?
(2)根據因數的個數,可把非零自然數分成哪幾類?
4.我能很快熟記20以內的質數。
5.獨立思考:
(1)是不是所有的`質數都是奇數?
(2)是不是所有的奇數都是質數?
(3)是不是所有的合數都是偶數?
(4)是不是所有的偶數都是合數?
6.組內交流。
因數和倍數數學教案(通用22篇)篇十二
:p70~72的例題及相應的試一試、想想做做中的1—3題。
1、使學生初步理解倍數和因數的含義,知道倍數和因數相互依存的關系。
2、使學生依據倍數和因數的含義以及已有乘除法知識,通過嘗試、交流等活動,探索并掌握找一個數倍數和因數的方法,能在1—100的自然數中找出10以內某個數的所有倍數,找出100以內某個數的所有因數。
3、使學生在認識倍數和因數以及找一個數的倍數和因數的過程中進一步感受數學知識的內在聯系,提高數學思考的水平。
:理解因數和倍數的含義,知道它們的關系是相互依存的。
探索并掌握找一個數的因數的方法。
:12個小正方形片、每個學生的學號紙。
1、操作活動。
(1)明確操作要求:用12個同樣大的正方形拼成一個長方形。每排擺幾個?擺了幾排?用乘法算式把自己的擺法記錄下來。
(2)整理、交流,分別板書4×3=1212×1=126×2=12。
2、通過剛才的學習,我們發現用12個同樣的小正方形可以擺出3種不同的長方形,由此,還得出3道不一樣的乘法算式。4×3=12可以說12是4的倍數,12也是3的倍數;反過來,4和3都是12的因數。
(1)那其它兩道算式,你能說出誰是誰的倍數嗎?你能說出誰是誰的因數嗎?
指名回答后,教師追問:如果說12是倍數,2是因數,是否可以?為什么?
小結:倍數和因數是指兩個數之間的關系,他們是相互依存的。
指出:為了方便,我們在研究倍數和因數時,所說的數都是指不是0的自然數。
二、探索找一個數倍數的方法。
1、從4×3=12中,知道12是3的倍數。3的倍數還有哪些?從小到大,你能找到幾個?同桌交流自己的思考方法。
3、議一議:你發現找3的倍數有什么小竅門?
明確:可以按從小到大的順序,依次用1、2、3……與3相乘,乘得的積就是3的倍數。
4、試一試:你能用學會的竅門很快地寫出2和5的倍數嗎?
生獨立完成,集體交流。注意用……表示結果。
5、觀察上面的3個例子,你發現一個數的倍數有什么特點?
根據學生的交流歸納:一個數的倍數中,最小的是它本身,沒有最大的倍數,一個數倍數的個數是無限的。
6、做“想想做做”第2題。
1、學會了找一個數倍數的方法,再來研究求一個數的因數。
你能找出36的所有因數嗎?
2、小組合作,把36的所有因數一個不漏的寫出來,看看哪個組挑戰成功。并盡可能把找的方法寫出來。教師巡視,發現不同的找法。
3、出示一份作業:對照自己找出的36的因數,你想對他說點什么?
4、交流整理找36因數的方法,明確:哪兩個數相乘的積等于36,那么這兩個數就是36的因數。(一對一對地找,又要按次序排列)。
板書:(有序、全面)。正因為思考的有序,才會有答案的全面。
5、試一試:請你用有序的思考找一找15和16的因數。
指名寫在黑板上。
一個數的因數最小是1,最大是它本身,一個數因數的個數是有限的。
7、“想想做做”第3題。
生獨立填寫,交流。觀察表格,表中的排數和每排人數與24有怎樣的關系。
四、課堂總結:學到這兒,你有哪些收獲?
五、游戲:“看誰反應快”。
規則:學號符合下面要求的請站起來,并舉起學號紙。
(1、)學號是5的倍數的。
(2、)誰的學號是24的因數。
(4、)誰的學號是1的倍數。
2、在得出這些乘法算式以后,先根據4×3=12說明12是3和4的倍數,3和4都是12的因數,使學生初步體會倍數和因數的含義。在學生初步理解的基礎上,再讓他們舉一反三,結合另兩道乘法算式說一說。在這一個環節中,我設計了一個練習。即“根據下面的算式,同桌互相說說誰是誰的倍數,誰是誰的因數”第一個是20×3=60,根據學生回答后質疑“能不能說3是因數,60是倍數”,從而強調倍數和因數是相互依存的。第二個是36÷4=9,讓學生根據除法算式說出誰是誰的因數,誰是誰的倍數,并追問:你是怎么想的?使學生知道把它轉化為乘法算式去說。
在學生有了倍數、因數的初步感受后,再向學生說明:我們在研究倍數和因數時,所說的數一般指不是0的自然數,明確了因數和倍數的研究范圍。
3、p71例一:找3的倍數,先讓學生獨立思考,“你還能再寫出幾個3的倍數?你是怎樣想的?”在學生交流的基礎上,適時提出:什么樣的數就是3的倍數?你能按照從小到大的順序有條理地說出3的倍數嗎?使學生明確:找3的倍數時,可以按從到大的`順序,依次用1、2、3……與3相乘,而每次乘得的積都是3的倍數。在此基礎上,引導學生進一步思考:你能把3的倍數全都說完嗎?從而使學生學會規范地表示一個數的所有倍數,并初步體會到一個數的個數是無限的。隨后,讓學生試著找出2和5的倍數,并正確表達2和5的所有倍數。最后引導學生觀察寫出的3、2和5的所有倍數,發現一個數的倍數的特點,即:一個數的最小的倍數是它本身,沒有最大的倍數。一個數的倍數的個數是無限的。
4、例二:找36的所有因數,準備讓學生獨立嘗試,但這部分內容對學生來說是個難點,所以我采用了四人小組合作的方式讓學生試著找出36的所有因數。在找36的因數時,無論想乘法算式還是想除法算式,學生一般都從無序到有序,從有重復或遺漏到不重復不遺漏。所以,我在教學時允許他們經歷這樣的過程。先按自己的思路、用自己的方法寫36的因數,能寫幾個就寫幾個,是什么順序就什么順序。然后在交流中互相評價,讓他們知道一組一組地找比較方便,可以利用乘法算式,按一個因數從小到大的順序,同時又讓他們掌握按次序地書寫。此外,結合例題和試一試,通過比較和歸納,使學生明確:一個數的因數的個數是有限的,一個數的因數中最小的是1,最大的是它本身。
5、教材p72第2題讓學生解決實際問題在表里填數,把4依次乘1、2、3、……得出“應付元數”,然后思考下面的問題,可以使學生進一步認識把4依次乘1,2,3,……所得的積,就是4的倍數,進一步理解找倍數的方法。第3題也是解決實際問題填寫表里的數,并提出問題讓學生思考,使學生明確兩個相乘的數都是它們積的因數,求一個數的所有因數,可以想乘法一對一對地找出來,理解找一個數的因數的方法。
為了提高學生學習興趣,鞏固所學的知識。最后安排了一個游戲,讓學生在游戲中進一步練習找一個數倍數或因數的方法。
因數和倍數數學教案(通用22篇)篇十三
1、使學生理解質數和合數的概念,能正確地判斷一個數是質數還是合數。
2、培養學生觀察、比較、抽象、慨括的能力。
3、培養學生自主探究的精神和獨立思考的能力。教學重點:質數和合效的概念。
質數、臺數、濟數、偶數的區別
給教室里的人分類。體會:同樣的事物,依據不問的分類標準,可以有多種小_的分類方法。明確:分類的際準很重要。
說一說,在我們學習的空間,你可以得到那些數?(要求與同學說的盡也不重復)
給這些自然數分類。根據自然數能不能被2整除,可以分成新數和偶數兩類。
板書對應的集合圖。
自然數
(能不能被2整除)
把學生列舉的數填寫在對應的集合圈里。
問:看了集合圖,你想說什么么?(學生看圖說自己的想法,復習奇數和偶數的有關知識)
說明:這是一種有價值的分類方法,在以后的學習中很有用。
問:想不想學一種新的分類方法?關于新的分類方法,你想知道些什么?
今天我們就用找約數的方法來給自然數分類。
復習:什么叫約數?怎樣找一個數所有的約數?
同桌合作。找出列舉的各數的所有的約數。(同時板演)
引導學生觀察:觀察以上各數所含的數的個數,你能把它們分成幾種情況‘!
根據學生的回答板書。
自然數
(約數的個數)
(只有兩個約數)(有3個或3個以上的約數)
引導學生思考:只含有兩個約數的,這兩個約數有什么特點?引出約數的概念。
明確:這是一種新的分類方法。看廠集合圈,你想說什么?(學生看圖說自己的想法,鞏固寺數陽臺數的知識)
猜一猜:奇數有多少個?合數呢?
明確:因為自然數的個數是無限的,所以,新數陽偶數的個數也是無限的。運用新知,解決問題。
出示例1下面各數,哪些是質數?哪些是合數?
15 28 31 53 77 89 1ll
學生獨立完成。
問:你是怎么判斷的?
明確:可以找出每個數所有的約數,再根據質數和合數的意義來判斷;一個數,只有找到1和它本身以外的第三個約束,就能判斷這個數是合數還是質數。不必找出所有的約數來,這樣可以提高判斷的效率。
說明:判斷一個數是不是質數還可以查表。100以內的質數比較常用,看書本上的100以內的質數表。用質數表檢查對例子1的判斷是否正確。
完成練一練。
1、堅持下面各數的約數的個數,指出哪些是質數哪些是合數,再用質數表檢查。
22 29 35 49 51 79 83
2、出示2到50的數。先劃掉2的倍數,再依次劃掉3、5、7的倍數(但2、3、5、7本身不劃掉。)
學生操作后,提問:剩下的都是什么數?
告訴學生:古代的數學家就是用這樣的方法來找質數的。
學到這里,一種新的分類方法,你掌握了嗎?學生回答:相機揭示課題,質數和合數
討論:質數、合數、奇數、偶數之間是這樣的關系呢?
(略)。
因數和倍數數學教案(通用22篇)篇十四
教學內容:
蘇教版義務教育教科書《數學五年級下冊第47~48頁整理與練習“回顧與整理”和“練習與應用”第1~7題。
教學目標:
1.使學生加深認識因數和倍數,能找一個數的因數或倍數,進一步認識質數和合數;掌握2、5、3的倍數的特征,進一步認識偶數和奇數;加深理解質因數,能正確分解質因數。
2.使學生能整理因數和倍數的知識內容,感受知識之間的內在聯系;能應用相關概念進行分析、判斷、推理,進一步掌握思考、解決數學問題的方法,積累數學思維的初步經驗,提高分析、推理、判斷等思維能力;加深對數的認識,進一步發展數感。
3.使學生主動參與回顧、整理知識和分析、解決問題等活動,培養樂于思考的品質和與同伴互相交流、傾聽等合作意識和能力;感受數學方面的知識積累和進步,提高學好數學的自信心。
教學重點:
教學難點:
應用概念正確判斷、推理。
教學過程:
一、揭示課題。
談話:最近的數學課,我們學習了哪方面的內容?回憶一下,都學到了哪些知識?
揭題:我們已經學完了因數和倍數這一單元的內容,今天開始主要整理與練習這一單元內容。(板書課題)通過整理與練習,我們要進一多認識因數與倍數,2.5.3的倍數的特征,能熟練掌握找一個數的因數或倍數的方法;能判斷偶數和奇數、質數和合數,了解這些概念之間的聯系與區別,能正確分解質因數,提高對數的特征的認識,加深對數的認識。
二、回顧與整理。
1.回顧討論。
出示討論題:
(1)你是怎樣理解因數和倍數的?舉例說明你的認識。
(2)2、5、3的倍數有什么特征?我們是怎樣發現的?
(3)自然數可以怎樣分類,各能分成哪幾類?舉例說說什么是質因數和分解質因數。
(4)什么是兩個數的公因數和最大公因數,公倍數和最小公倍數?
讓學生在小組里討論,結合討論適當記錄自己的認識或例子。
2.交流整理。
圍繞討論題,引導學生展開交流,結合交流板書主要內容。
(1)提問:能說說什么是因數和倍數嗎?可以用例子說明。(結合交流板書一兩個乘法或除法算式)。
(指名學生說一說,再集體說一說)。
你能找出6的因數嗎?(板書因數)6的倍數呢?(板書倍數)。
能說說找一個數的因數或倍數的方法嗎?
說明:一個數的因數可以從小到大一對一對地找,到中間兩個因數之間沒有因數為止;一個數的倍數可以用依次乘1、2、3……這樣的方法找,注意一個數的倍數是無限的,寫一個數的倍數要注意用省略號。
(2)提問:2、5、3的倍數各有什么特征?我們是怎樣發現的?
自然數可以怎樣分類,各可以分成哪幾類?
你能舉出偶數和奇數、質數和合數的一些例子嗎?(學生舉出各類數的例子)。
說明:按是不是2的倍數可以把自然數分成偶數和奇數兩類,是2的倍數的是偶數,不是2的倍數的是奇數;按因數的個數可以把自然數分成1和質數、合數三類,只有兩個因數的是質數,有兩個以上因數的是合數,1既不是質數也不是合數。
什么是質因數和分解質因數?6有哪些質因數?怎樣把6分解質因數?(板書式子,并說明其中的質因數)。
(3)提問:什么是公因數和最大公因數,什么是公倍數和最小公倍數?
說明:兩個數公有的因數叫公因數,其中最大的叫最大公因數;兩個數公有的倍數叫公倍數,其中最小的叫最小公倍數。
結合交流內容,逐步板書成:
l
質數質因數。
合數分解質因數。
(互相依存)。
2、5、3的倍數的特征。
偶數。
奇數。
(4)引導:請同學們現在觀察我們整理的這一單元學過的內容,了解知識之間的聯系,同桌互相說說知識是怎樣發展的。
學生互相交流,教師巡視、傾聽。
交流:哪位同學能看黑板上整理的內容,說說我們怎樣逐步認識這些知識的,知識是怎樣發展起來的。
三、練習與應用。
1.做“練習與應用”第1題。
指名學生交流,說說每組里因數和倍數關系。
提問:3和7有沒有因數和倍數關系?為什么沒有?
2.做“練習與應用”第2題。
(1)讓學生獨立寫出前四個數的所有因數,指名兩人板演。
交流:你是怎樣找它們的因數的?(檢查板演題)。
(2)口答后三個數的因數。
引導:能說出后面每個數的全部因數嗎?(學生口答,教師板書)。
提問:一個數的因數有什么特點?
說明:一個數因數的個數是有限的,最小的是1.最大的是它本身。
3.分別說出下面各數的倍數。
581217。
分別指名學生說出各數的倍數,教師板書。
提問:為什么要寫省略號?一個數的倍數有什么特點?
說明:一個數倍數的個數是無限的,最小的是它本身,沒有最大的倍數。
4.做“練習與應用”第3題。
(1)讓學生獨立完成填數。
交流:題里各是怎樣填的?(呈現結果)填數時怎樣想的?
提問:哪些數既是3的倍數,又是5的倍數?你是怎樣想的?
哪些數既是2的倍數,又是5和3的倍數?說說你的判斷方法。
(2)這里哪些數是偶數?奇數呢?
你是怎樣判斷偶數和奇數的?
5.做“練習與應用”第4題。
要求學生獨立思考,自己選出兩張卡片,按各題的要求分別組成兩位數,把能組成的數記錄下來。
交流:同時是5和3的倍數的數有哪些?(板書:30)如果是三位數呢?
(板書:180810)。
組成的兩位數中最大的偶數是多少?(板書:80)最小的奇數呢?(板書:13)。
6.做“練習與應用”第5題。
讓學生把質數圈出來,在合數下面畫線。
交流:哪些是質數,哪些是合數?(板書成兩類)質數和合數是按什么分的?
說明:質數只有2個因數,合數至少有3個因數。
7.做“練習與應用’’第6題。
交流、呈現結果。
提問:觀察表里選出的質數和偶數,所有的質數都是奇數嗎?請舉出一個具體例子。
所有的合數都是偶數嗎?你能舉例子說明嗎?
指出:如果要說明一個結論是錯誤的,只要舉一個反例。比如,要判斷質數都是奇數的說法是錯的,只要舉出質數2是偶數這個例子。這里質數2是偶數就是一個反例。要判斷合數都是偶數是錯的,也只要舉一個反例,比如合數9就是奇數。
8.下面的說法正確嗎?
(1)大于0的自然數不是奇數就是偶數。
(2)大于0的自然數不是質數就是合數。
(3)奇數都是質數,偶數都是合數。
(4)自然數中最小的偶數是2,最小的合數是4。
(5)一個數本身既是它的因數,又是它的倍數。
9.做“練習與應用”第7題。
(1)讓學生填空,指名板演。交流并確認結果。
提問:這里填寫的質數都叫積的什么數?為什么稱它是積的質因數?
說明:這里把合數寫成這種質數相乘的形式,叫什么?
(2)把30、42分別分解質因數。
學生完成,交流板書,檢查訂正。
四、全課總結。
提問:這節課主要復習的哪些內容?你有哪些收獲?
將本文的word文檔下載到電腦,方便收藏和打印。
因數和倍數數學教案(通用22篇)篇十五
1、通過“活動建構”,使學生領會因數和倍數的意義;通過獨立思考、交流談論,初步掌握求一個數所有因數的方法。
2、在解決問題的過程中,培養學生思維的有序性、條理性,增強學生的探究意識和求索精神。
3、通過教學,讓學生從中感受到數學思考的魅力,體驗到數學學習的樂趣。
因數和倍數數學教案(通用22篇)篇十六
由于學生對辨析、理清除盡和整除的關系、整除的兩種讀法等易混淆的概念,使學生明確一個數是否是另一個數的倍數或因數時,必須是以整除為前提,因數和倍數是相互依存的概念,不能獨立存在。所以本節課的教學我把重點定位于理解因數和倍數的含義。
因數和倍數數學教案(通用22篇)篇十七
4、培養學生的觀察能力。
1、出示主題圖,讓學生各列一道乘法算式。
2、師:看你能不能讀懂下面的算式?
出示:因為2×6=12。
所以2是12的因數,6也是12的因數;
12是2的倍數,12也是6的倍數。
3、師:你能不能用同樣的方法說說另一道算式?
(指名生說一說)。
師:你有沒有明白因數和倍數的關系了?
那你還能找出12的其他因數嗎?
4、你能不能寫一個算式來考考同桌?學生寫算式。
師:誰來出一個算式考考全班同學?
5、師:今天我們就來學習因數和倍數。(出示課題:因數倍數)。
齊讀p12的注意。
(一)找因數:
1、出示例1:18的因數有哪幾個?
學生嘗試完成:匯報。
(18的因數有:1,2,3,6,9,18)。
師:說說看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一對一對找,如1×18=18,2×9=18…)。
師:18的因數中,最小的是幾?最大的是幾?我們在寫的時候一般都是從小到大排列的。
2、用這樣的方法,請你再找一找36的因數有那些?
匯報36的因數有:1,2,3,4,6,9,12,18,36。
師:你是怎么找的?
舉錯例(1,2,3,4,6,6,9,12,18,36)。
師:這樣寫可以嗎?為什么?(不可以,因為重復的因數只要寫一個就可以了,所以不需要寫兩個6)。
仔細看看,36的因數中,最小的'是幾,最大的是幾?
看來,任何一個數的因數,最小的一定是(),而最大的一定是()。
3、你還想找哪個數的因數?(18、5、42……)請你選擇其中的一個在自練本上寫一寫,然后匯報。
4、其實寫一個數的因數除了這樣寫以外,還可以用集合表示:如。
18的因數。
小結:我們找了這么多數的因數,你覺得怎樣找才不容易漏掉?
從最小的自然數1找起,也就是從最小的因數找起,一直找到它的本身,找的過程中一對一對找,寫的時候從小到大寫。
(二)找倍數:
1、我們一起找到了18的因數,那2的倍數你能找出來嗎?
匯報:2、4、6、8、10、16、……。
師:為什么找不完?
你是怎么找到這些倍數的?(生:只要用2去乘1、乘2、乘3、乘4、…)。
那么2的倍數最小是幾?最大的你能找到嗎?
2、讓學生完成做一做1、2小題:找3和5的倍數。
匯報3的倍數有:3,6,9,12。
師:這樣寫可以嗎?為什么?應該怎么改呢?
改寫成:3的倍數有:3,6,9,12,……。
你是怎么找的?(用3分別乘以1,2,3,……倍)。
5的倍數有:5,10,15,20,……。
師:表示一個數的倍數情況,除了用這種文字敘述的方法外,還可以用集合來表示。
2的倍數3的倍數5的倍數。
師:我們知道一個數的因數的個數是有限的,那么一個數的倍數個數是怎么樣的呢?
(一個數的倍數的個數是無限的,最小的倍數是它本身,沒有最大的倍數)。
我們一起來回憶一下,這節課我們重點研究了一個什么問題?你有什么收獲呢?
完成練習二1~4題。
因數和倍數數學教案(通用22篇)篇十八
教科書第25頁,練習四第5~8題。
1、通過練習與對比,使學生發現和掌握求兩個數最小公倍數的一些簡捷方法,進行有條理的思考。
2、通過練習,使學生建立合理的認識結構,形成解決問題的多樣策略。
3、在學生探索與交流的合作過程中,進一步發展學生與同伴合作交流的意識和能力,感受數學與生活的聯系。
1、我們已經掌握了找兩個數的公倍數和最小公倍數的方法,這節課我們繼續鞏固這方面的知識,并能夠利用這些知識解決一些實際問題。
(板書課題:公倍數和最小公倍數練習)
2、填空。
5的倍數有:()
7的'倍數有:()
5和7的公倍數有:()
5和7的最小公倍數是:()
3、完成練習四第5題。
(1)理解題意,獨立找出每組數的最小公倍數。
(2)匯報結果,集體評講。
(3)觀察第一組中兩個數的最小公倍數,看看有什么發現?
每題中的兩個數有什么特征呢?(倍數關系)可以得出什么結論?
(4)第二組中兩個數的最小公倍數有什么特征?(是這兩個數的乘積)
在有些情況下,兩個數的最小公倍數是這兩個數的乘積。
4、完成練習四第6題。
你能運用上一題的規律直接寫出每題中兩個數的最小公倍數嗎?
交流,匯報。
說說你是怎么想的?
1、完成練習四第7題。
(1)理解題意,獨立完成填表。
(2)你是怎樣找到這兩路車第二次同時發車的時間的?
你還有其他方法解決這個問題嗎?(7和8的最小公倍數是56)
2、完成練習四第8題。
(1)理解題意。
你能說說,他們下次相遇,是在幾月幾日嗎?(8月24日)
你是怎樣知道的?
要知道他們下次相遇的日期,其實就是求什么?(6和8的最小公倍數)
通過練習,同學們又掌握了一些比較快的求兩個數最小公倍數的方法,并能運用這些方法解決一些實際問題。
在小組中互相說說自己本節課的收獲。
因數和倍數數學教案(通用22篇)篇十九
蘇教版義務教育教科書《數學五年級下冊第47~48頁整理與練習“回顧與整理”和“練習與應用”第1~7題。
1.使學生加深認識因數和倍數,能找一個數的因數或倍數,進一步認識質數和合數;掌握2、5、3的倍數的特征,進一步認識偶數和奇數;加深理解質因數,能正確分解質因數。
2.使學生能整理因數和倍數的知識內容,感受知識之間的內在聯系;能應用相關概念進行分析、判斷、推理,進一步掌握思考、解決數學問題的方法,積累數學思維的初步經驗,提高分析、推理、判斷等思維能力;加深對數的認識,進一步發展數感。
3.使學生主動參與回顧、整理知識和分析、解決問題等活動,培養樂于思考的品質和與同伴互相交流、傾聽等合作意識和能力;感受數學方面的知識積累和進步,提高學好數學的自信心。
整理、應用因數和倍數的知識。
應用概念正確判斷、推理。
一、揭示課題
談話:最近的數學課,我們學習了哪方面的內容?回憶一下,都學到了哪些知識?
揭題:我們已經學完了因數和倍數這一單元的內容,今天開始主要整理與練習這一單元內容。(板書課題)通過整理與練習,我們要進一多認識因數與倍數,2.5.3的倍數的特征,能熟練掌握找一個數的因數或倍數的方法;能判斷偶數和奇數、質數和合數,了解這些概念之間的聯系與區別,能正確分解質因數,提高對數的特征的認識,加深對數的認識。
二、回顧與整理
1.回顧討論。
出示討論題:
(1)你是怎樣理解因數和倍數的?舉例說明你的認識。
(2)2、5、3的倍數有什么特征?我們是怎樣發現的?
(3)自然數可以怎樣分類,各能分成哪幾類?舉例說說什么是質因數和分解質因數。
(4)什么是兩個數的公因數和最大公因數,公倍數和最小公倍數?
讓學生在小組里討論,結合討論適當記錄自己的認識或例子。
2.交流整理。
圍繞討論題,引導學生展開交流,結合交流板書主要內容。
(1)提問:能說說什么是因數和倍數嗎?可以用例子說明。(結合交流板書一兩個乘法或除法算式)
(指名學生說一說,再集體說一說)
你能找出6的因數嗎?(板書因數)6的倍數呢?(板書倍數)
能說說找一個數的因數或倍數的方法嗎?
說明:一個數的因數可以從小到大一對一對地找,到中間兩個因數之間沒有因數為止;一個數的倍數可以用依次乘1、2、3……這樣的方法找,注意一個數的倍數是無限的,寫一個數的倍數要注意用省略號。
(2)提問:2、5、3的倍數各有什么特征?我們是怎樣發現的?
自然數可以怎樣分類,各可以分成哪幾類?
你能舉出偶數和奇數、質數和合數的一些例子嗎?(學生舉出各類數的例子)
說明:按是不是2的倍數可以把自然數分成偶數和奇數兩類,是2的倍數的是偶數,不是2的倍數的是奇數;按因數的個數可以把自然數分成1和質數、合數三類,只有兩個因數的是質數,有兩個以上因數的是合數,1既不是質數也不是合數。
什么是質因數和分解質因數?6有哪些質因數?怎樣把6分解質因數?(板書式子,并說明其中的質因數)
(3)提問:什么是公因數和最大公因數,什么是公倍數和最小公倍數?
說明:兩個數公有的因數叫公因數,其中最大的叫最大公因數;兩個數公有的倍數叫公倍數,其中最小的叫最小公倍數。
結合交流內容,逐步板書成:
l
質數質因數
合數分解質因數
因數公因數最大公因數
(互相依存)
倍數公倍數最小公倍數
2、5、3的倍數的特征
偶數
奇數
(4)引導:請同學們現在觀察我們整理的這一單元學過的內容,了解知識之間的聯系,同桌互相說說知識是怎樣發展的。
學生互相交流,教師巡視、傾聽。
交流:哪位同學能看黑板上整理的內容,說說我們怎樣逐步認識這些知識的,知識是怎樣發展起來的。
三、練習與應用
1.做“練習與應用”第1題。
指名學生交流,說說每組里因數和倍數關系。
提問:3和7有沒有因數和倍數關系?為什么沒有?
2.做“練習與應用”第2題。
(1)讓學生獨立寫出前四個數的所有因數,指名兩人板演。
交流:你是怎樣找它們的因數的?(檢查板演題)
(2)口答后三個數的因數。
引導:能說出后面每個數的全部因數嗎?(學生口答,教師板書)
提問:一個數的因數有什么特點?
說明:一個數因數的個數是有限的,最小的是1.最大的是它本身。
3.分別說出下面各數的倍數。
581217
分別指名學生說出各數的倍數,教師板書。
提問:為什么要寫省略號?一個數的倍數有什么特點?
說明:一個數倍數的個數是無限的,最小的是它本身,沒有最大的倍數。
4.做“練習與應用”第3題。
(1)讓學生獨立完成填數。
交流:題里各是怎樣填的?(呈現結果)填數時怎樣想的?
提問:哪些數既是3的倍數,又是5的倍數?你是怎樣想的?
同時是2和5的倍數的數有什么特征?
哪些數既是2的倍數,又是5和3的倍數?說說你的判斷方法。
(2)這里哪些數是偶數?奇數呢?
你是怎樣判斷偶數和奇數的?
5.做“練習與應用”第4題。
要求學生獨立思考,自己選出兩張卡片,按各題的要求分別組成兩位數,把能組成的數記錄下來。
交流:同時是5和3的倍數的數有哪些?(板書:30)如果是三位數呢?
(板書:180810)
組成的兩位數中最大的偶數是多少?(板書:80)最小的奇數呢?(板書:13)
6.做“練習與應用”第5題。
讓學生把質數圈出來,在合數下面畫線。
交流:哪些是質數,哪些是合數?(板書成兩類)質數和合數是按什么分的?
說明:質數只有2個因數,合數至少有3個因數。
7.做“練習與應用’’第6題。
讓學生選出質數和偶數。
交流、呈現結果。
提問:觀察表里選出的質數和偶數,所有的質數都是奇數嗎?請舉出一個具體例子。
所有的合數都是偶數嗎?你能舉例子說明嗎?
指出:如果要說明一個結論是錯誤的,只要舉一個反例。比如,要判斷質數都是奇數的說法是錯的,只要舉出質數2是偶數這個例子。這里質數2是偶數就是一個反例。要判斷合數都是偶數是錯的,也只要舉一個反例,比如合數9就是奇數。
8.下面的說法正確嗎?
(1)大于0的自然數不是奇數就是偶數。
(2)大于0的自然數不是質數就是合數。
(3)奇數都是質數,偶數都是合數。
(4)自然數中最小的偶數是2,最小的合數是4。
(5)一個數本身既是它的因數,又是它的倍數。
9.做“練習與應用”第7題。
(1)讓學生填空,指名板演。交流并確認結果。
提問:這里填寫的質數都叫積的什么數?為什么稱它是積的質因數?
說明:這里把合數寫成這種質數相乘的形式,叫什么?
(2)把30、42分別分解質因數。
學生完成,交流板書,檢查訂正。
四、全課總結
提問:這節課主要復習的哪些內容?你有哪些收獲?
因數和倍數數學教案(通用22篇)篇二十
(父子、母子、母女關系)我和你們的關系是?(師生關系)。
在數學中,數與數之間也存在著多種關系,這節課,我們一起研究兩數之間的因數與倍數關系。
(二)探究新知-理解因數和倍數的意義。
教學例1:
1.觀察算式的特點,進行分類。
(1)仔細觀察算式的特點,你能把這些算式分類嗎?
(2)交流學生的分類情況。(預設:學生會根據算式的計算結果分成兩類)。
第一類是被除數、除數、商都是整數;第二類是被除數、除數都是整數,而商不是整數。
2.明確因數和倍數的意義。
(1)同學們,在整數除法中,如果商是整數而沒有余數,我們就說被除數是除數的倍數,除數是被除數的因數。例如,12÷2=6,我們就說12是2的倍數,2是12的因數。12÷6=2,我們就說12是6的倍數,6是12的因數。
(2)在第一類算式中找一個算式,說一說,誰是誰的因數?誰是誰的倍數?
(3)強調一點:為了方便,在研究倍數與因數的時候,我們所說的數指的是自然數(一般不包括0)。
3.理解因數和倍數的依存關系。
(1)獨立完成教材第5頁“做一做”。
(2)我們能不能說“4是因數”“24是倍數”呢?表述時應該注意什么?
4.理解一個數的“因數”和乘法算式中的“因數”的區別以及一個數的“倍數”與“倍”的區別。
(1)今天學的一個數的“因數”與以前乘法算式中的“因數”有什么區別呢?
課件出示:
乘法算式中的“因數”是相對于“積”而言的,可以是整數,也可以是小數、分數;而一個數的“因數”是相對于“倍數”而言的,它只能是整數。
(2)今天學的“倍數”與以前的“倍”又有什么不同呢?
“倍數”是相對于“因數”而言的,只適用于整數;而“倍”適用于小數、分數、整數。
(3)交流匯報。
(三)探究新知-找一個數的因數。
教學例2:
1.探究找18的因數的方法。
(1)18的因數有哪些?你是怎么找的?
(2)交流方法。
預設:方法一:根據因數和倍數的意義,通過除法算式找18的因數。
因為18÷1=18,所以1和18是18的因數。
因為18÷2=9,所以2和9是18的因數。
因為18÷3=6,所以3和6是18的.因數。
方法二:根據尋找哪兩個整數相乘的積是18,尋找18的因數。
因為1×18=18,所以1和18是18的因數。
因為2×9=18,所以2和9是18的因數。
因為3×6=18,所以3和6是18的因數。
2.明確18的因數的表示方法。
(1)我們怎樣來表示18的因數有哪些呢?怎樣表示簡潔明了?
(2)交流方法。
預設:列舉法,18的因數有:1,2,3,6,9,18。
集合圖的方法(如下圖所示)。
3.練習找一個數的因數。
(1)你能找出30的因數有哪些嗎?36的因數呢?
(2)怎樣找才能不遺漏、不重復地找出一個數的所有因數?
(四)探究新知-找一個數的倍數。
教學例3:
1.探究找2的倍數的方法。
(1)2的倍數有哪些?你是怎么找的?
(2)想方法:利用乘法算式找2的倍數。
因為2×1=2,所以2是2的倍數。
因為2×2=4,所以4是2的倍數。
因為2×3=6,所以6是2的倍數。……。
(3)2的倍數能寫完嗎?你能繼續找嗎?寫不完怎么辦?
(4)根據前面的經驗,試著表示出2的倍數有哪些?(預設:列舉法、集合圖的方法)。
2.練習找一個數的倍數。
你能找出3的倍數有哪些嗎?5的倍數呢?
(五)我的發現-因數與倍數的特征。
舉例子,找規律,勾畫知識點,讀一讀。
預設:一個數的因數的個數是有限的,最小的因數是1,最大的因數是它本身;一個數的倍數的個數是無限的,沒有最大的倍數,最小的倍數是它本身。1是所有非零自然數的因數。
(六)智慧樂園。
1.在練習本上完成下列填空題。(獨立完成后,師訂正答案)。
一個數的最大因數是17,這個數是(),它的最小的因數是()。
一個數的最小倍數是17,這個數是(),它()最大的倍數,17的倍數的個數是().
一個數既是12的因數,又是12的倍數,這個數是()。
2.在練習本上完成下列判斷題。(獨立完成后,師訂正答案)。
(1)在算式6×4=24中,6是因數,24是倍數。()。
(2)15的倍數一定大于15。()。
(3)1是除0以外所有自然數的因數。()。
(4)40以內6的倍數有12、18、24、30、36這5個。()。
(5)34的最小倍數是34;34的最小因數是17。()。
(6)1.2是3的倍數。()。
(七)全課總結,交流收獲。
這節課我們學了哪些知識?你有什么收獲?
(八)布置作業。
完成課時練第3、4頁,提交家校本。
因數和倍數數學教案(通用22篇)篇二十一
1.使學生初步掌握2、5的倍數的特征。
2.使學生知道奇數、偶數的概念。
能力目標。
1.會判斷一個數是否能被2、5整除。
2.會判斷奇數、偶數。
3.培養類推能力及主動獲取知識的能力。
情感目標。
激發學生的學習興趣。
因數和倍數數學教案(通用22篇)篇二十二
一個數因數的求法和一個數倍數的求法(教材第6頁例2、例3,教材第7~8頁練習二第2~8題)。
1.通過學習使學生掌握找一個數的因數,倍數的方法;
2.學生能了解一個數的因數是有限的,倍數是無限的;
3.能熟練地找一個數的因數和倍數;
4.在解決問題的過程中,培養學生思維的有序性、條理性,增強學生的探究意識和求索精神。
掌握找一個數的因數和倍數的方法,能熟練地找一個數的因數和倍數。
說出下列各式中誰是誰的因數?誰是誰的倍數?20÷4=56×3=18
在上面的算式中,6和3都是18的因數,你知道還有哪些數是18的因數嗎?18是3的倍數,你知道還有哪些數是3的倍數嗎?這節課我們就來學習如何找一個數的因數和倍數。
(一)找因數:
1.出示例1:18的因數有哪幾個?
一個數的因數還不止一個,我們一起找找18的因數有哪些?
學生嘗試完成后匯報
(18的因數有:1,2,3,6,9,18)教師:說說看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一對一對找,如1×18=18,2×9=18…)
教師:18的因數中,最小的是幾?最大的是幾?我們在寫的時候一般都是從小到大排列的。
2.用這樣的方法,請你再找一找36的因數有哪些?
舉錯例(1,2,3,4,6,6,9,12,18,36)
教師:這樣寫可以嗎?為什么?(不可以,因為重復的因數只要寫一個就可以了,所以不需要寫兩個6)
仔細看看,36的因數中,最小的是幾,最大的是幾?
教師板書:一個數的最小因數是1,最大因數是它本身。
3.你還想找哪個數的因數?(18、42……)請你選擇其中的一個在自練本上寫一寫,然后匯報。
從最小的自然數1找起,也就是從最小的因數找起,一直找到它的本身,找的過程中一對一對找,寫的時候從小到大寫。
(二)找倍數:
教師:這樣寫可以嗎?為什么?應該怎么改呢?
教師:表示一個數的倍數情況,除了用這種文字敘述的方法外,還可以用集合來表示2的倍數,3的`倍數,5的倍數。
教師:我們知道一個數的因數的個數是有限的,那么一個數的倍數個數是怎么樣的呢?
(一個數的倍數的個數是無限的,最小的倍數是它本身,沒有最大的倍數)
1.完成課本第7頁練習二第2~5題。
2.完成教材第8頁練習二第6~8題。
我們一起來回憶一下,這節課我們重點研究了一個什么問題?你有什么收獲呢?
一個數的因數的個數是有限的,最小的是1,最大的是它本身。一個數的倍數的個數是無限的,最小的倍數是它本身,沒有最大的倍數。
本節課是在學生認識因數和倍數的基礎上進行教學的,在找一個數的因數時,如何做到既不重復又不遺漏,對于剛剛對因數和倍數有感性認識的學生來說有一定的困難,教學時充分發揮小組學習的優勢,在小組交流的過程中,學生對自己的方法進行反思,吸取同伴的好方法,很好的體現了自主探索和合作交流的教學理念。