教案能夠幫助教師理清教學思路,提前預測和解決可能出現的問題。以下是小編為大家整理的幾份高一教案范文,供大家參考和借鑒。
2023年高一數學教案數列范文(15篇)篇一
教學重點:理解等比數列的概念,認識等比數列是反映自然規律的重要數列模型之一,探索并掌握等比數列的通項公式。
教學難點:遇到具體問題時,抽象出數列的模型和數列的等比關系,并能用有關知識解決相應問題。
教學過程:
1.等差數列的通項公式。
2.等差數列的前n項和公式。
引入:1“一尺之棰,日取其半,萬世不竭。”
2細胞分裂模型。
3計算機病毒的傳播。
由學生通過類比,歸納,猜想,發現等比數列的特點。
進而讓學生通過用遞推公式描述等比數列。
讓學生回憶用不完全歸納法得到等差數列的通項公式的過程然后類比等比數列的通項公式。
注意:1公比q是任意一個常數,不僅可以是正數也可以是負數。
2當首項等于0時,數列都是0。當公比為0時,數列也都是0。
所以首項和公比都不可以是0。
3當公比q=1時,數列是怎么樣的,當公比q大于1,公比q小于1時數列是怎么樣的?
4以及等比數列和指數函數的關系。
5是后一項比前一項。
列:1,2,(略)。
小結:等比數列的通項公式。
1.教材p59練習1,2,3,題。
2.作業:p60習題1,4。
第二課時5.2.4等比數列(二)。
提問:等差數列的通項公式。
等比數列的通項公式。
1.討論:如果是等差列的三項滿足。
由學生給出如果是等比數列滿足。
2練習:如果等比數列=4,=16,=?(學生口答)。
如果等比數列=4,=16,=?(學生口答)。
3等比中項:如果等比數列。那么,
則叫做等比數列的等比中項(教師給出)。
4思考:是否成立呢?成立嗎?
成立嗎?
又學生找到其間的規律,并對比記憶如果等差列,
5思考:如果是兩個等比數列,那么是等比數列嗎?
如果是為什么?是等比數列嗎?引導學生證明。
6思考:在等比數列里,如果成立嗎?
如果是為什么?由學生給出證明過程。
列3:一個等比數列的第3項和第4項分別是12和18,求它的第1項和第2項。
解(略)。
列4:略:
練習:1在等比數列,已知那么。
2p61a組8。
2023年高一數學教案數列范文(15篇)篇二
2、實際問題中的有關術語、名稱:
(1)仰角與俯角:均是指視線與水平線所成的角;
(2)方位角:是指從正北方向順時針轉到目標方向線的夾角;
(3)方向角:常見的`如:正東方向、東南方向、北偏東、南偏西等;
3、用正弦余弦定理解實際問題的常見題型有:
測量距離、測量高度、測量角度、計算面積、航海問題、物理問題等;
2、實際問題中的有關術語、名稱:
(1)仰角與俯角:均是指視線與水平線所成的角;
(2)方位角:是指從正北方向順時針轉到目標方向線的夾角;
(3)方向角:常見的如:正東方向、東南方向、北偏東、南偏西等;
3、用正弦余弦定理解實際問題的常見題型有:
測量距離、測量高度、測量角度、計算面積、航海問題、物理問題等;
一、知識歸納
2、實際問題中的有關術語、名稱:
(1)仰角與俯角:均是指視線與水平線所成的角;
(2)方位角:是指從正北方向順時針轉到目標方向線的夾角;
(3)方向角:常見的如:正東方向、東南方向、北偏東、南偏西等;
3、用正弦余弦定理解實際問題的常見題型有:
測量距離、測量高度、測量角度、計算面積、航海問題、物理問題等;
二、例題討論
一)利用方向角構造三角形
四)測量角度問題
例4、在一個特定時段內,以點e為中心的7海里以內海域被設為警戒水域.點e正北55海里處有一個雷達觀測站a.某時刻測得一艘勻速直線行駛的船只位于點a北偏東。
2023年高一數學教案數列范文(15篇)篇三
所謂三維目標是是指:“知識與技能”,“過程和方法”、“情感、態度、價值觀”。
知識與技能:既是課堂教學的出發點,又是課堂教學的歸宿。我們在教學過程中,需要學生掌握什么,哪些些問題需要重點掌握,哪些只需簡單理解;技能是會與不會的問題。屬顯性范疇,具有可測性,大都采用定量分析與評價、知識與技能是傳統教學合理的內核,是我國傳統教育教學的優勢,應該從傳統教學中繼承與發揚。新課改不是不要雙基,而是不要過度的強調雙基,而舍棄弱化其它有價值的東西,導致非全面、不和藹的發展。
過程與方法:既是課堂教學的目標之一,又是課堂教學的操作系統。“過程和方法”維度的目標立足于讓學生會學,新課程倡導對學與教的過程的體驗、方法的選擇,是在知識與能力目標基礎上對教學目標的進一步開發。過程與方法是一個體驗的過程、發現的過程,不但可以讓學生體驗到科學發展的過程,我們更多地要讓學生掌握過程,不一定要統一的結果。
情感、態度與價值觀:既是課堂教學的目標之一,又是課堂教學的動力系統。“情感、態度和價值觀”,目標立足于讓學生樂學,新課程倡導對學與教的情感體驗、態度形成、價值觀的體現,是在知識與能力、過程與方法目標基礎上對教學目標深層次的開拓,只有學生充分的認識到他們肩負的責任,就能夠激發起他們的學習熱情,他們才會有濃厚的學習興趣,才能學有所成,將來回報社會。
三維目標不是三個目標,也不是三種目標,是一個問題的三個方面。三維目標是三位一體不可分割的,他們是相輔相成的,相互促進的。
2023年高一數學教案數列范文(15篇)篇四
本節的重點是二次根式的化簡.本章自始至終圍繞著二次根式的化簡與計算進行,而二次根式的化簡不但涉及到前面學習過的算術平方根、二次根式等概念與二次根式的運算性質,還要牽涉到絕對值以及各種非負數、因式分解等知識,在應用中常常需要對字母進行分類討論.
本節的難點是正確理解與應用公式.這個公式的表達形式對學生來說,比較生疏,而實際運用時,則要牽涉到對字母取值范圍的討論,學生往往容易出現錯誤.
教法建議
1.性質的引入方法很多,以下2種比較常用:
(1)設計問題引導啟發:由設計的問題
1)、、各等于什么?
2)、、各等于什么?
啟發、引導學生猜想出
(2)從算術平方根的意義引入.
2.性質的鞏固有兩個方面需要注意:
(1)注意與性質進行對比,可出幾道類型不同的題進行比較;
(2)學生初次接觸這種形式的表示方式,在教學時要注意細分層次加以鞏固,如單個數字,單個字母,單項式,可進行因式分解的多項式,等等.
(第1課時)
1.掌握二次根式的性質
2.能夠利用二次根式的性質化簡二次根式
3.通過本節的學習滲透分類討論的數學思想和方法
對比、歸納、總結
1.重點:理解并掌握二次根式的性質
2.難點:理解式子中的可以取任意實數,并能根據字母的取值范圍正確地化簡有關的二次根式.
1課時
五、教b具學具準備
投影儀、膠片、多媒體
復習對比,歸納整理,應用提高,以學生活動為主
一、導入新課
我們知道,式子()表示非負數的算術平方根.
問:式子的意義是什么?被開方數中的表示的是什么數?
答:式子表示非負數的算術平方根,即,且,從而可以取任意實數.
二、新課
計算下列各題,并回答以下問題:
(1);(2);(3);
1.各小題中被開方數的冪的底數都是什么數?
2.各小題的結果和相應的被開方數的冪的底數有什么關系?
3.用字母表示被開方數的冪的底數,將有怎樣的結論?并用語言敘述你的結論.
2023年高一數學教案數列范文(15篇)篇五
將一張很大的薄紙對折,對折30次后(如果可能的話)有多厚?不妨假設這張紙的厚度為0.01毫米。
30次后,厚度為,這個厚度超過了世界最高的山峰——珠穆朗瑪峰的高度。如果紙再薄一些,比如紙厚0.001毫米,對折34次就超過珠穆朗瑪峰的高度了。還記得國王的承諾嗎?第31個格子中的米已經是1073741824粒了,后邊的格子中的米就更多了,最后一個格子中的米應是粒,用計算器算一下吧(用對數算也行)。
2023年高一數學教案數列范文(15篇)篇六
在具體的問題情境中,發現數列的`等比關系,能用有關知識解決相應問題。
等比數列的前n項和的公式及應用。
等比數列的前n項和公式的推導過程。
一、復習準備:
提問:等比數列的通項公式;
等比數列的性質;
等差數列的前n項和公式;
二、講授新課:
1、教學:
思考:一個細胞每分鐘就變成兩個,那么經過一個小時,它會分裂成多少個細胞呢?
分析:公比,因為,一個小時有60分鐘。
思考:那么經過一個小時,一共有多少個細胞呢?
又因為。
所以,則=1152921504。
則一個小時一共有1152921504個細胞。
2、練習:
列1(解略)。
列2(解略)。
在等比數列中:已知求已知求。
在等比數列中,xx,則xx。
三、小結:等比數列的前n項和公式。
四、作業:p66,1題。
2023年高一數學教案數列范文(15篇)篇七
3.通過參與編題解題,激發學生學習的興趣.
教學重點是通項公式的認識;教學難點是對公式的靈活運用.。
用具。
方法。
研探式.
一.復習提問。
等差數列的概念是從相鄰兩項的關系加以定義的,這個關系用遞推公式來表示比較簡單,但我們要圍繞通項公式作進一步的理解與應用.
二.主體設計。
通項公式反映了項與項數之間的函數關系,當等差數列的首項與公差確定后,數列的每一項便確定了,可以求指定的項(即已知求).找學生試舉一例如:“已知等差數列中,首項,公差,求.”這是通項公式的簡單應用,由學生解答后,要求每個學生出一些運用等差數列通項公式的題目,包括正用、反用與變用,簡單、復雜,定量、定性的均可,教師巡視將好題搜集起來,分類投影在屏幕上.
1.方程思想的運用。
(1)已知等差數列中,首項,公差,則-397是該數列的第______項.
(2)已知等差數列中,首項,則公差。
(3)已知等差數列中,公差,則首項。
這一類問題先由學生解決,之后教師點評,四個量,在一個等式中,運用方程的思想方法,已知其中三個量的值,可以求得第四個量.
2.基本量方法的使用。
(1)已知等差數列中,,求的值.
若學生的題目只有這兩種類型,教師可以小結(最好請出題者、解題者概括):因為已知條件可以化為關于和的二元方程組,所以這些等差數列是確定的,由和寫出通項公式,便可歸結為前一類問題.解決這類問題只需把兩個條件(等式)化為關于和的二元方程組,以求得和,和稱作基本量.
教師提出新的問題,已知等差數列的一個條件(等式),能否確定一個等差數列?學生回答后,教師再啟發,由這一個條件可得到關于和的二元方程,這是一個和的制約關系,從這個關系可以得到什么結論?舉例說明(例題可由學生或教師給出,視具體情況而定).
類似的還有。
(4)已知等差數列中,求的值.
以上屬于對數列的項進行定量的研究,有無定性的判斷?引出。
4.研究項的符號。
這是為研究等差數列前項和的最值所做的準備工作.可配備的題目如。
(1)已知數列的通項公式為,問數列從第幾項開始小于0?
(2)等差數列從第________項起以后每項均為負數.
三.小結。
1.用方程思想認識等差數列通項公式;
四.板書設計。
1.方程思想的運用。
2.基本量方法的使用。
4.研究項的符號。
2023年高一數學教案數列范文(15篇)篇八
1.了解函數的單調性和奇偶性的概念,掌握有關證明和判斷的基本方法.
(1)了解并區分增函數,減函數,單調性,單調區間,奇函數,偶函數等概念.
(2)能從數和形兩個角度認識單調性和奇偶性.
(3)能借助圖象判斷一些函數的單調性,能利用定義證明某些函數的單調性;能用定義判斷某些函數的奇偶性,并能利用奇偶性簡化一些函數圖象的繪制過程.
2.通過函數單調性的證明,提高學生在代數方面的推理論證能力;通過函數奇偶性概念的形成過程,培養學生的觀察,歸納,抽象的能力,同時滲透數形結合,從特殊到一般的數學思想.
3.通過對函數單調性和奇偶性的理論研究,增學生對數學美的體驗,培養樂于求索的精神,形成科學,嚴謹的研究態度.
(1)函數單調性的概念。包括增函數、減函數的定義,單調區間的概念函數的單調性的判定方法,函數單調性與函數圖像的關系.
(2)函數奇偶性的概念。包括奇函數、偶函數的定義,函數奇偶性的判定方法,奇函數、偶函數的圖像.
(1)本節教學的重點是函數的單調性,奇偶性概念的形成與認識.教學的難點是領悟函數單調性, 奇偶性的本質,掌握單調性的證明.
(2)函數的單調性這一性質學生在初中所學函數中曾經了解過,但只是從圖象上直觀觀察圖象的上升與下降,而現在要求把它上升到理論的高度,用準確的數學語言去刻畫它.這種由形到數的翻譯,從直觀到抽象的轉變對高一的學生來說是比較困難的,因此要在概念的形成上重點下功夫.單調性的證明是學生在函數內容中首次接觸到的代數論證內容,學生在代數論證推理方面的能力是比較弱的,許多學生甚至還搞不清什么是代數證明,也沒有意識到它的重要性,所以單調性的證明自然就是教學中的難點.
(1)函數單調性概念引入時,可以先從學生熟悉的一次函數,,二次函數.反比例函數圖象出發,回憶圖象的增減性,從這點感性認識出發,通過問題逐步向抽象的定義靠攏.如可以設計這樣的問題:圖象怎么就升上去了?可以從點的坐標的角度,也可以從自變量與函數值的關系的角度來解釋,引導學生發現自變量與函數值的的變化規律,再把這種規律用數學語言表示出來.在這個過程中對一些關鍵的詞語(某個區間,任意,都有)的理解與必要性的認識就可以融入其中,將概念的形成與認識結合起來.
(2)函數單調性證明的步驟是嚴格規定的,要讓學生按照步驟去做,就必須讓他們明確每一步的必要性,每一步的目的,特別是在第三步變形時,讓學生明確變換的目標,到什么程度就可以斷號,在例題的選擇上應有不同的變換目標為選題的標準,以便幫助學生總結規律.
函數的奇偶性概念引入時,可設計一個課件,以的圖象為例,讓自變量互為相反數,觀察對應的函數值的變化規律,先從具體數值開始,逐漸讓在數軸上動起來,觀察任意性,再讓學生把看到的用數學表達式寫出來.經歷了這樣的過程,再得到等式時,就比較容易體會它代表的是無數多個等式,是個恒等式.關于定義域關于原點對稱的問題,也可借助課件將函數圖象進行多次改動,幫助學生發現定義域的對稱性,同時還可以借助圖象說明定義域關于原點對稱只是函數具備奇偶性的必要條件而不是充分條件.
2023年高一數學教案數列范文(15篇)篇九
1、掌握等比數列前項和公式,并能運用公式解決簡單的問題。
(1)理解公式的推導過程,體會轉化的思想;
2、通過公式的靈活運用,進一步滲透方程的思想、分類討論的思想、等價轉化的思想。
3、通過公式推導的教學,對學生進行思維的嚴謹性的訓練,培養他們實事求是的科學態度。
(1)知識結構。
先用錯位相減法推出等比數列前項和公式,而后運用公式解決一些問題,并將通項公式與前項和公式結合解決問題,還要用錯位相減法求一些數列的前項和。
(2)重點、難點分析。
是等比數列前項和公式的推導與應用。公式的推導中蘊含了豐富的數學思想、方法(如分類討論思想,錯位相減法等),這些思想方法在其他數列求和問題中多有涉及,所以對等比數列前項和公式的要求,不單是要記住公式,更重要的是掌握推導公式的方法。等比數列前項和公式是分情況討論的,在運用中要特別注意和兩種情況。
(1)本節內容分為兩課時,一節為等比數列前項和公式的推導與應用,一節為通項公式與前項和公式的綜合運用,另外應補充一節數列求和問題。
(2)等比數列前項和公式的推導是重點內容,引導學生觀察實例,發現規律,歸納總結,證明結論。
(3)等比數列前項和公式的推導的其他方法可以給出,提高學生學習的興趣。
(4)編擬例題時要全面,不要忽略的情況。
(5)通項公式與前項和公式的綜合運用涉及五個量,已知其中三個量可求另兩個量,但解指數方程難度大。
2023年高一數學教案數列范文(15篇)篇十
【知識與技能】能夠復述等差數列的概念,能夠學會等差數列的通項公式的推導過程及蘊含的數學思想。
【過程與方法】在領會函數與數列關系的前提下,把研究函數的方法遷移來研究數列,提高知識、方法遷移能力;通過階梯性練習,提高分析問題和解決問題的能力。
【情感態度與價值觀】通過對等差數列的研究,具備主動探索、勇于發現的求知精神;養成細心觀察、認真分析、善于總結的良好思維習慣。
【教學重點】。
等差數列的概念、等差數列的通項公式的推導過程及應用。
【教學難點】。
環節一:導入新課。
教師ppt展示幾道題目:
1.我們經常這樣數數,從0開始,每隔5一個數,可以得到數列:0,5,15,20,252.小明目前會100個單詞,他她打算從今天起不再背單詞了,結果不知不覺地每天忘掉2個單詞,那么在今后的五天內他的單詞量逐日依次遞減為:100,98,96,94,92。
在澳大利亞悉尼舉行的奧運會上,女子舉重正式列為比賽項目,該項目共設置了7個級別,其中交情的4個級別體重組成數列(單位:kg):48,53,58,63。
教師提問學生這幾組數有什么特點?學生回答從第二項開始,每一項與前一項的差都等于一個常數,教師引出等差數列。
環節二:探索新知。
學生閱讀教材,同桌討論,類比等比數列總結出等差數列的概念。
如果一個數列,從第二項開始它的每一項與前一項之差都等于同一常數,這個數列就叫等差數列,這個常數叫做等差數列的公差,通常用字母d來表示。
問題1:等差數列的概念中,我們應該注意哪些細節呢?
環節三:課堂練習。
(1)1,2,4,6,8,10,12,……。
(2)0,1,2,3,4,5,6,……。
(3)3,3,3,3,3,3,3,……。
(4)-8,-6,-4,-2,0,2,4,……。
(5)3,0,-3,-6,-9,……。
環節四:小結作業。
關鍵字:從第二項開始它的每一項與前一項之差都等于同一常數。
作業:現實生活中還有哪些等差數列的實際應用呢?根據實際問題自己編寫兩道等差數列的題目并進行求解。
2023年高一數學教案數列范文(15篇)篇十一
[教學方法]:講練結合法
[授課類型]:復習課
[課時安排]:1課時
[教學過程]:集合部分匯總
本單元主要介紹了以下三個問題:
1,集合的含義與特征
2,集合的表示與轉化
3,集合的基本運算
一,集合的含義與表示(含分類)
1,具有共同特征的對象的全體,稱一個集合
2,集合按元素的個數分為:有限集和無窮集兩類
2023年高一數學教案數列范文(15篇)篇十二
1、鞏固集合、子、交、并、補的概念、性質和記號及它們之間的關系。
2、了解集合的運算包含了集合表示法之間的轉化及數學解題的`一般思想。
3、了解集合元素個數問題的討論說明。
通過提問匯總練習提煉的形式來發掘學生學習方法。
培養學生系統化及創造性的思維。
[教學重點、難點]:會正確應用其概念和性質做題[教具]:多媒體、實物投影儀。
[教學方法]:講練結合法。
[授課類型]:復習課。
[課時安排]:1課時。
[教學過程]:集合部分匯總。
本單元主要介紹了以下三個問題:
1,集合的含義與特征。
2,集合的表示與轉化。
3,集合的基本運算。
一,集合的含義與表示(含分類)。
1,具有共同特征的對象的全體,稱一個集合。
2,集合按元素的個數分為:有限集和無窮集兩類。
2023年高一數學教案數列范文(15篇)篇十三
(1)通過實物操作,增強學生的直觀感知。
(2)能根據幾何結構特征對空間物體進行分類。
(3)會用語言概述棱柱、棱錐、圓柱、圓錐、棱臺、圓臺、球的結構特征。
(4)會表示有關于幾何體以及柱、錐、臺的分類。
(1)讓學生通過直觀感受空間物體,從實物中概括出柱、錐、臺、球的幾何結構特征。
(2)讓學生觀察、討論、歸納、概括所學的知識。
(1)使學生感受空間幾何體存在于現實生活周圍,增強學生學習的積極性,同時提高學生的觀察能力。
(2)培養學生的空間想象能力和抽象括能力。
重點:讓學生感受大量空間實物及模型、概括出柱、錐、臺、球的結構特征。難點:柱、錐、臺、球的結構特征的概括。
(1)學法:觀察、思考、交流、討論、概括。
(2)實物模型、投影儀四、教學思路。
1、教師提出問題:在我們生活周圍中有不少有特色的建筑物,你能舉出一些例子嗎?這些建筑的幾何結構特征如何?引導學生回憶,舉例和相互交流。教師對學生的活動及時給予評價。
2、所舉的建筑物基本上都是由這些幾何體組合而成的,(展示具有柱、錐、臺、球結構特征的空間物體),你能通過觀察。根據某種標準對這些空間物體進行分類嗎?這是我們所要學習的內容。
1、引導學生觀察物體、思考、交流、討論,對物體進行分類,分辯棱柱、圓柱、棱錐。
3、組織學生分組討論,每小組選出一名同學發表本組討論結果。在此基礎上得出棱柱的主要結構特征。
(1)有兩個面互相平行;
(2)其余各面都是平行四邊形;
(3)每相鄰兩上四邊形的公共邊互相平行。概括出棱柱的概念。
4、教師與學生結合圖形共同得出棱柱相關概念以及棱柱的表示。
5、提出問題:各種這樣的棱柱,主要有什么不同?可不可以根據不同對棱柱分類?
6、以類似的方法,讓學生思考、討論、概括出棱錐、棱臺的結構特征,并得出相關的概念,分類以及表示。
7、讓學生觀察圓柱,并實物模型演示,如何得到圓柱,從而概括出圓標的概念以及相關的概念及圓柱的表示。
8、引導學生以類似的方法思考圓錐、圓臺、球的結構特征,以及相關概念和表示,借助實物模型演示引導學生思考、討論、概括。
9、教師指出圓柱和棱柱統稱為柱體,棱臺與圓臺統稱為臺體,圓錐與棱錐統稱為錐體。
1、有兩個面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱(舉反例說明,如圖)。
2、棱柱的何兩個平面都可以作為棱柱的底面嗎?
3、課本p8,習題1.1a組第1題。
5、棱臺與棱柱、棱錐有什么關系?圓臺與圓柱、圓錐呢?
由學生整理學習了哪些內容六、布置作業。
課本p8練習題1.1b組第1題。
課外練習課本p8習題1.1b組第2題。
2023年高一數學教案數列范文(15篇)篇十四
數列是高中數學重要內容之一,它不僅有著廣泛的實際應用,而且起著承前啟后的作用。一方面,數列作為一種特殊的函數與函數思想密不可分;另一方面,學習數列也為進一步學習數列的極限等內容做好準備。而等差數列是在學生學習了數列的有關概念和給出數列的兩種方法——通項公式和遞推公式的基礎上,對數列的知識進一步深入和拓廣。同時等差數列也為今后學習等比數列提供了“聯想”、“類比”的思想方法。
一、片頭。
(30秒以內)。
前面學習了數列的概念與簡單表示法,今天我們來學習一種特殊的數列-等差數列。本節微課重點講解等差數列的定義,并且能初步判斷一個數列是否是等差數列。
30秒以內。
二、正文講解(8分鐘左右)。
第一部分內容:由三個問題,通過判斷分析總結出等差數列的定義60秒。
第二部分內容:給出等差數列的定義及其數學表達式50秒。
三、結尾。
(30秒以內)授課完畢,謝謝聆聽!30秒以內。
本節課通過生活中一系列的實例讓學生觀察,從而得出等差數列的概念,并在此基礎上學會判斷一個數列是否是等差數列,培養了學生觀察、分析、歸納、推理的能力。充分體現了學生做數學的過程,使學生對等差數列有了從感性到理性的認識過程。
讀書破萬卷下筆如有神,以上就是為大家帶來的4篇《高中數學數列教案:等差數列》,希望可以對您的寫作有一定的參考作用,更多精彩的范文樣本、模板格式盡在。
2023年高一數學教案數列范文(15篇)篇十五
§3.1.1數列、數列的通項公式目的:要求學生理解數列的概念及其幾何表示,理解什么叫數列的通項公式,給出一些數列能夠寫出其通項公式,已知通項公式能夠求數列的項。
重點:1數列的概念。按一定次序排列的一列數叫做數列。數列中的每一個數叫做數列的項,數列的第n項an叫做數列的通項(或一般項)。由數列定義知:數列中的數是有序的,數列中的數可以重復出現,這與數集中的數的無序性、互異性是不同的。
3.4.-1的正整數次冪:-1,1,-1,1,…。
5.無窮多個數排成一列數:1,1,1,1,…。
二、提出課題:數列。
1.數列的定義:按一定次序排列的一列數(數列的有序性)。
2.名稱:項,序號,一般公式,表示法。
3.通項公式:與之間的函數關系式如數列1:數列2:數列4:
4.分類:遞增數列、遞減數列;常數列;擺動數列;有窮數列、無窮數列。
5.實質:從映射、函數的觀點看,數列可以看作是一個定義域為正整數集n-(或它的有限子集{1,2,…,n})的函數,當自變量從小到大依次取值時對應的一列函數值,通項公式即相應的函數解析式。
6.用圖象表示:—是一群孤立的點例一(p111例一略)。
三、關于數列的通項公式1.不是每一個數列都能寫出其通項公式(如數列3)。
2.數列的通項公式不唯一如:數列4可寫成和。
3.已知通項公式可寫出數列的任一項,因此通項公式十分重要例二(p111例二)略。
五、小結:1.數列的有關概念2.觀察法求數列的通項公式。
六、作業:練習p112習題3.1(p114)1、2。
2.寫出下面數列的一個通項公式,使它的前4項分別是下列各數:(1)1、、、;(2)、、、;(3)、、、;(4)、、、。
3.求數列1,2,2,4,3,8,4,16,5,…的一個通項公式。
6.在數列{an}中a1=2,a17=66,通項公式或序號n的一次函數,求通項公式。
7.設函數(),數列{an}滿足(1)求數列{an}的通項公式;(2)判斷數列{an}的單調性。
7.(1)an=(2)1又an0,∴是遞增數列。