初二教案的編寫應該結合學科知識和學生的實際情況,保證教學的針對性和有效性。以下是小編為大家整理的初二教案范文,供大家參考學習。
初二數學教案(優秀17篇)篇一
1、本節課首先從最簡單的正比例函數入手、從正比例函數的定義、函數關系式、引入次函數的概念。
2、八年級數學中的一次函數是中學數學中的一種最簡單、最基本的函數,是反映現實世界的數量關系和變化規律的常見數學模型之一,也是學生今后進一步學習初、高中其它函數和高中解析幾何中的直線方程的基礎。
1、雖然這是一節全新的數學概念課,學生沒有接觸過。但是,孩子們已經具備了函數的一些知識,如正比例函數的概念及性質,這些都為學習本節內容做好了鋪墊。
2、八年級數學中的一次函數是中學數學中的一種最簡單、最基本的函數,是反映現實世界的數量關系和變化規律的常見數學模型之一,也是學生今后進一步學習其它函數的基礎。
3、學生認知障礙點:根據問題信息寫出一次函數的表達式。
1、理解一次函數與正比例函數的概念以及它們的關系,在探索過程中,發展抽象思維及概括能力,體驗特殊和一般的辯證關系。
2、能根據問題信息寫出一次函數的表達式。能利用一次函數解決簡單的實際問題。
3、經歷利用一次函數解決實際問題的過程,逐步形成利用函數觀點認識現實世界的意識和能力。
1、一次函數、正比例函數的概念及關系。
2、會根據已知信息寫出一次函數的表達式。
初二數學教案(優秀17篇)篇二
1、在具體的操作活動中,讓學生認、讀、寫11-20各數,掌握20以內數的順序,初步建立數位的概念。
2、結合學生的實際情況,讓學生填寫算式。
3、在教學中滲透數的順序,并進行社會秩序教育。
4、學會與人合作,體會計算的多樣化,發展學生思維。
:掌握20以內數的順序。
初步建立數的概念。
:每組一個數位計數器及40-50根小棒等。
抓問題,用多種游戲,把抽象的`數位具體化。
1、數學課研究數學問題,一些小棒會有什么數學問題。
(每張桌子發40-50根小棒,玩小棒時間為3-5分鐘)。
2、你發現了什么數學問題。
(目的:練習20以內數的順序,也可以在玩小棒中發現十根捆一捆)。
3、游戲,看誰的手小巧。
老師報數,學生用棒子表示,討論:快的同學的訣竅。
出示:十根可以捆一捆。
再進行游戲,讓學生習慣中把1捆當作10根用。
4、完成:
()個一()個十。
試一試,在計數器拔出10。
個位只有幾顆珠子,怎么辦?(10個一是1個10)。
在個位拔上一顆珠子,表示1個十,也表示10個一。
在解決了10是1個十也是10個一后,還能過度試一試在計數器上表示。接下來就是讓學生通過自主合作,數位,組成和算式結合,理解11-20各數。
1、11-20各數在計數器上怎么表示呢?
問題提出后,可以組織學生討論交流,并加以解決,并結合p68的圖示表達自己的想法,學生之間互相交流,實現生生互動。
(這兒注意11-20的表達多樣,只要求至少一樣,方法選擇,方法應用應由學生通過自主交流來確定。)。
2、
1個十,1個一是1110+1=11。
10和11,十位上是1,沒有變,個位由0變成1,就是11。
3、15、19、20的數位可重點檢查。
(20的數位可由10-20,也可19-20來描述。)。
4、小結,從右邊起,第一位是個位,第二位是十位,數位不一樣,數也不一樣,十位上1表示1個十,個位上1表示1個一。
5、練習:(口算)。
10+910+810+710+610+5。
10+410+39+108+107+10。
6+105+104+103+10。
1、尋找粗心丟失的數。
游戲報數。(報數時丟一些中間數)。
2、開火車順數。
游戲:數數(順數和倒數)。
3、拔珠游戲(師生――生生)。
報數13,拔13并寫出13,同時說13的含義,還可畫珠。
4、p691-6自己完成。
1、完成10-20各數數位圖及小棒圖。
2、和父母互說10-20各數組成。
課后評析:
初二數學教案(優秀17篇)篇三
一次函數的圖像與性質的口訣:
一次函數是直線,圖像經過三象限;。
正比例函數更簡單,經過原點一直線;。
兩個系數k與b,作用之大莫小看,
k是斜率定夾角,b與y軸來相見,
k為正來右上斜,x增減y增減;。
k為負來左下展,變化規律正相反;。
k的絕對值越大,線離橫軸就越遠。
初二數學教案(優秀17篇)篇四
初二學生對平面圖形的認識能力正在形成,抽象思維還不夠,學習幾何知識處于現象描述和說理的過渡時期。因此,對這部分內容的學習,要引導學生學會正確的說理,理清楚四邊形在什么條件下用判定定理,在什么條件下用性質定理。
初二數學教案(優秀17篇)篇五
1、了解算術平方根的概念,會用根號表示正數的算術平方根,并了解算術平方根的非負性。
2、了解開方與乘方互為逆運算,會用平方運算求某些非負數的算術平方根。
算術平方根的概念。
根據算術平方根的概念正確求出非負數的算術平方根。
這就要用到平方根的概念,也就是本章的主要學習內容。這節課我們先學習有關算術平方根的概念。
1、提出問題:(書p68頁的問題)。
你是怎樣算出畫框的邊長等于5dm的呢?(學生思考并交流解法)。
這個問題相當于在等式擴=25中求出正數x的值。
一般地,如果一個正數x的平方等于a,即=a,那么這個正數x叫做a的算術平方根。a的算術平方根記為,讀作根號a,a叫做被開方數。規定:0的算術平方根是0.
也就是,在等式=a(x0)中,規定x=。
2、試一試:你能根據等式:=144說出144的算術平方根是多少嗎?并用等式表示出來。
3、想一想:下列式子表示什么意思?你能求出它們的值嗎?
建議:求值時,要按照算術平方根的意義,寫出應該滿足的關系式,然后按照算術平方根的記法寫出對應的值。例如表示25的算術平方根。
4、例1求下列各數的算術平方根:
(1)100;(2)1;(3);(4)0.0001。
p69練習1、2。
怎樣用兩個面積為1的小正方形拼成一個面積為2的大正方形?
方法1:課本中的方法,略;
方法2:
可還有其他方法,鼓勵學生探究。
問題:這個大正方形的邊長應該是多少呢?
大正方形的邊長是,表示2的算術平方根,它到底是個多大的數?你能求出它的值嗎?
建議學生觀察圖形感受的大小。小正方形的對角線的長是多少呢?(用刻度尺測量它與大正方形的邊長的大小)它的近似值我們將在下節課探究。
1、這節課學習了什么呢?
2、算術平方根的具體意義是怎么樣的?
3、怎樣求一個正數的算術平方根。
p75習題13.1活動第1、2、3題。
初二數學教案(優秀17篇)篇六
1、通過拼圖活動,讓學生感受無理數產生的實際背景和引入的必要性。
2、能判斷給出的數是否為有理數;并能說出現由。
過程與方法。
情感與價值觀。
1、激勵學生積極參與教學活動,提高大家學習數學的熱情、
2、引導學生充分進行交流,討論與探索等教學活動,培養他們的合作與鉆研精神。
3、了解有關無理數發現的知識,鼓勵學生大膽質疑,培養他們為真理而奮斗的精神。
教學重點。
1、讓學生經歷無理數發現的過程、感知生活中確實存在著不同于有理數的數、
2、會判斷一個數是否為有理數、
教學難點。
1、把兩個邊長為1的正方形拼成一個大正方形的動手操作過程、
教學方法。
教師引導,主要由學生分組討論得出結果、
教學過程。
一、創設問題情境,引入新課。
[師]同學們,我們學過不計其數的`數,概括起來我們都學過哪些數呢?
[生]在小學我們學過自然數、小數、分數。
[生]在初一我們還學過負數、
二、講授新課。
1、問題的提出。
[生]好、(學生非常高興地投入活動中)。
[師]經過大家的共同努力,每個小組都完成了任務,請各組把拼的圖展示一下。
同學們非常踴躍地呈現自己的作品給老師。
[師]現在我們一齊把大家的做法總結一下。
2、下列說法中正確的是()。
a、不循環小數是無理數。
c、有理數都是有限小數。
d、3、1415926是有理數。
3、下列語句正確的是()。
a、3、78788788878888是無理數。
b、無理數分正無理數、零、負無理數。
c、無限小數不能化成分數。
d、無限不循環小數是無理數。
1、在棱長為4cm的正方體箱子中,想放入一根細長的玻璃棒,則這根玻璃棒的最大長度可能是多少?(結果保留3位有效數字)。
2、下圖是由16個邊長為1的小正方形拼成的,任意連接這些小正方形的若干個頂點,可得到一些線段,試分別畫出一條長度是有理數的線段和一條長度是無理數的線段、(要求:所作線段不得與圖中已有的線重合)。
初二數學教案(優秀17篇)篇七
經歷探索一次函數的應用問題,發展抽象思維.。
培養變量與對應的思想,形成良好的函數觀點,體會一次函數的應用價值.。
1.重點:一次函數的應用.。
2.難點:一次函數的應用.。
3.關鍵:從數形結合分析思路入手,提升應用思維.。
采用“講練結合”的教學方法,讓學生逐步地熟悉一次函數的應用.。
y=。
拓展:若a城有肥料300噸,b城有肥料200噸,其他條件不變,又應怎樣調運?
課本p119練習.。
由學生自我評價本節課的表現.。
課本p120習題14.2第9,10,11題.。
初二數學教案(優秀17篇)篇八
學生的知識技能基礎:在本章的學習中,學生已會利用平均數的公式進行計算,并能解決一些相關的實際問題;在《有理數》和《實數》的章節中,學生曾學習用計算器計算數的加、減、乘、除、乘方和開方運算,已初步具有利用計算器處理數據的基本技能。
學生活動經驗基礎:學生在前面的數學學習活動中,已獲得了從事統計活動所必須的數學方法,形成了動手實踐、自主探索、合作交流的學習方式,積累了使用計算器處理數據和進行探索活動的一些數學活動經驗。
本節課的學習任務是:初步經歷數據的收集、加工與整理的過程,通過自主探索,學會利用計算器求一組數據的平均數;通過例題和習題的學習,加強知識之間的聯系,鞏固對各種圖表信息的識別和評判能力,發展學生初步的統計意識和數據處理能力,達成有關的情感態度目標。為此,本節課的教學目標是:
1、知識與技能:根據給定信息,會利用計算器求一組數據的平均數,并會進行數據的收集、加工與整理。
2、過程與方法:初步經歷數據的收集、加工與整理的過程,發展學生初步的統計意識和數據處理能力。
3、情感與態度:通過使用計算器求平均數的探索活動,培養學生的探索精神和創新意識;通過相互間合作交流,讓所有學生都有所獲,共同發展。
本節課設計了五個教學環節:第一環節:情境引入;第二環節:活動探究;第三環節:運用提高;第四環節:課堂小結;第五環節:布置作業。
內容:展示引例:20xx年第一季度我國各地區農村家庭平均每人現金收入情況表:(單位:元)。
請計算這組數據的平均數,在計算過程中,你體會到什么困難嗎?
顯然,當一組數據比較大且比較多時,用筆計算平均數較麻煩,因此,需要一個幫手—計算器,這節課就來學習用計算器求平均數。
目的:通過以上用筆計算一組較大且較多數據的平均數,使學生感到筆算的麻煩與困難,產生用計算器求平均數的欲望,從而調動學生學習的積極主動性。另外,給這組數據賦予“我國各地區農村家庭平均每人現金收入情況”的背景,是想讓學生關注社會的發展,增強社會責任感。
注意事項:引例不一定非要算出結果來,只要讓學生嘗試一下用筆計算較大且較多數據的平均數的困難,產生用計算器求平均數的欲望,就可引入課題,不要過多地耽誤課堂時間。
內容:學生分組(拿同類型計算器的同學分在一起)活動探究,看哪個小組做得好:
(1)估計一下自己課桌的寬度,并將各組員的估計結果統計出來(精確0.1厘米)。
(2)用計算器求出估計結果的平均值,你是怎么做的?與同伴交流。在學生分組合作探究的基礎上,全班總結交流不同類型的計算器求平均數的一般步驟,教師根據反饋的信息,及時進行評價。
(3)用尺子量一量課桌的寬度,看看大家估計的結果怎么樣。
各組派代表談談本組估計結果的準確度,對準確度較高的小組進行表揚,并評為優秀小組以資鼓勵。
目的:活動(1)是讓學生初步經歷數據的收集、加工與整理的過程,進一步發展學生初步的統計意識和數據處理能力。
活動(2)是通過相互比較,引起學生對計算方式的思考,做出自我評判,從而正確掌握用計算器求平均數的方法。全班總結交流不同類型的計算器求平均數的一般步驟,可以開闊視野,增長才干。
活動(3)的評價是為了學生的成功感和自信心,激勵他們繼續探索和創新,把數學做得更好。
注意事項:教師首先要是熟悉本班學生所用各類型計算器的使用方法,其次在學生分組活動時,教師要巡視、傾聽,鼓勵學生自己探索計算器的用法,但在必要時可做適當的指導。
內容:
1、利用計算器計算下列數據的平均數:12.8,12.9,13.4,13.0,14.1,13.5,12.7,12.4,13.9,13.8,14.3,13.2,13.5。
2、觀察下圖1,利用計算器計算上海東方大鯊魚籃球隊隊員的平均年齡。
3、英語老師布置了10道選擇題作為課堂練習,小麗將全班同學的解題情況。
4、利用計算器計算本節課的引例中我國各地區農村家庭平均每人現金收入的平均數、中位數和眾數,并回答下列問題:
(1)如果要如實反映我國農村的現金收入狀況,你會用哪個數據?
(2)如果要展示我國農村發展形勢好,你會用哪個數據?
(3)從這些數據中,你獲得了哪些信息?有何感想?
目的:第1題是課本上的練習題,直接利用計算器計算一組數據的平均數。第2、3題分別是課本上的例題和練習題,作用是加強知識之間的聯系,鞏固對各種圖表信息的識別和評判能力。把第2題課本例題放在練習題后,題目顯得有梯度,能更好地體現循序漸進的原則。第4題前呼后應,解決引例中“懸案”,充分體現用計算器計算一組較大且較多數據的平均數的優越性,培養學生運用現代技術手段的主動意識,以及選擇恰當的數據代表對問題作出評判的能力。
注意事項:第2、3題都有幾個相同數據的求和,在輸入這些數據時,要讓學生注意鍵的連續使用。第4題要留出時間讓學生交流各自獲得的信息和感想,互相啟發,共同提高。
初二數學教案(優秀17篇)篇九
教學目標:
1、掌握平均數、中位數、眾數的概念,會求一組數據的平均數、中位數、眾數。
2、在加權平均數中,知道權的差異對平均數的影響,并能用加權平均數解釋現實生活中一些簡單的現象。
3、了解平均數、中位數、眾數的差別,初步體會它們在不同情境中的應用。
4、能利和計算器求一組數據的算術平均數。
教學重點:
體會平均數、中位數、眾數在具體情境中的意義和應用。
教學難點:
對于平均數、中位數、眾數在不同情境中的應用。
教學過程:
一、知識回顧與思考。
1、平均數、中位數、眾數的概念及舉例。
一般地對于n個數x1……xn把(x1+x2+…xn)叫做這n個數的.算術平均數,簡稱平均數。
如某公司要招工,測試內容為數學、語文、外語三門文化課的綜合成績,滿分都為100分,且這三門課分別按25%、25%、50%的比例計入總成績,這樣計算出的成績為數學,語文、外語成績的加權平均數,25%、25%、50%分別是數學、語文、外語三項測試成績的權。
中位數就是把一組數據按大小順序排列,處在最中間位置的數(或最中間兩個數據的平均數)叫這組數據的中位數。
眾數就是一組數據中出現次數最多的那個數據。
如3,2,3,5,3,4中3是眾數。
2、平均數、中位數和眾數的特征:
(1)平均數、中位數、眾數都是表示一組數據“平均水平”的平均數。
(2)平均數能充分利用數據提供的信息,在生活中較為常用,但它容易受極端數字的影響,且計算較繁。
(3)中位數的優點是計算簡單,受極端數字影響較小,但不能充分利用所有數字的信息。
(4)眾數的可靠性較差,它不受極端數據的影響,求法簡便,當一組數據中個別數據變動較大時,適宜選擇眾數來表示這組數據的“集中趨勢”。
3、算術平均數和加權平均數有什么區別和聯系:
算術平均數是加權平均數的一種特殊情況,加權平均數包含算術平均數,當加權平均數中的權相等時,就是算術平均數。
4、利用計算器求一組數據的平均數。
利用科學計算器求平均數的方法計算平均數。
二、例題講解:
三、課堂練習:
復習題a組。
四、小結:
1、掌握平均數、中位數與眾數的概念及計算。
2、理解算術平均數與加權平均數的聯系與區別。
五、作業:
復習題b組、c組(選做)。
初二數學教案(優秀17篇)篇十
當運用方程解決實際問題時,首先要弄清題意,從實際問題中抽象出數學問題,然后分析數學問題中的等量關系,并由此列出方程;求出所列方程的解;檢驗解的合理性。應用一元一次方程解決實際問題的關鍵是:根據題意首先尋找“等量關系”。
初二數學教案(優秀17篇)篇十一
例1 某數的3倍減2等于某數與4的和,求某數、
(首先,用算術方法解,由學生回答,教師板書)
解法1:(4+2)÷(3-1)=3、
答:某數為3、
(其次,用代數方法來解,教師引導,學生口述完成)
解法2:設某數為x,則有3x-2=x+4、
解之,得x=3、
答:某數為3、
師生共同分析:
1、本題中給出的已知量和未知量各是什么?
2、已知量與未知量之間存在著怎樣的相等關系?(原來重量-運出重量=剩余重量)
上述分析過程可列表如下:
解:設原來有x千克面粉,那么運出了15%x千克,由題意,得
x-15%x=42 500,
所以 x=50 000、
答:原來有 50 000千克面粉、
(還有,原來重量=運出重量+剩余重量;原來重量-剩余重量=運出重量)
教師應指出:
(2)例2的解方程過程較為簡捷,同學應注意模仿、
依據例2的分析與解答過程,首先請同學們思考列一元一次方程解應用題的方法和步驟;然后,采取提問的方式,進行反饋;最后,根據學生總結的情況,教師總結如下:
(2)根據題意找出能夠表示應用題全部含義的一個相等關系、(這是關鍵一步);
(4)求出所列方程的解;
(仿照例2的分析方法分析本題,如學生在某處感到困難,教師應做適當點撥、解答過程請一名學生板演,教師巡視,及時糾正學生在書寫本題時可能出現的各種錯誤、并嚴格規范書寫格式)
解:設第一小組有x個學生,依題意,得
3x+9=5x-(5-4),
解這個方程: 2x=10,
所以 x=5、
其蘋果數為 3× 5+9=24、
答:第一小組有5名同學,共摘蘋果24個、
學生板演后,引導學生探討此題是否可有其他解法,并列出方程、
(設第一小組共摘了x個蘋果,則依題意,得 )
3、某工廠女工人占全廠總人數的 35%,男工比女工多 252人,求全廠總人數、
首先,讓學生回答如下問題:
1、本節課學習了哪些內容?
2、列一元一次方程解應用題的方法和步驟是什么?
3、在運用上述方法和步驟時應注意什么?
依據學生的回答情況,教師總結如下:
(2)以上步驟同學應在理解的基礎上記憶、
1、買3千克蘋果,付出10元,找回3角4分、問每千克蘋果多少錢?
2、用76厘米長的鐵絲做一個長方形的教具,要使寬是16厘米,那么長是多少厘米?
初二數學教案(優秀17篇)篇十二
(一)、知識與技能:
(1)使學生了解因式分解的意義,理解因式分解的概念。
(2)認識因式分解與整式乘法的相互關系——互逆關系,并能運用這種關系尋求因式分解的方法。
(二)、過程與方法:
(1)由學生自主探索解題途徑,在此過程中,通過觀察、類比等手段,尋求因式分解與因數分解之間的關系,培養學生的觀察能力,進一步發展學生的類比思想。
(2)由整式乘法的逆運算過渡到因式分解,發展學生的逆向思維能力。
(3)通過對分解因式與整式的乘法的觀察與比較,培養學生的分析問題能力與綜合應用能力。
(三)、情感態度與價值觀:讓學生初步感受對立統一的辨證觀點以及實事求是的科學態度。
二、教學重點和難點。
重點:因式分解的概念及提公因式法。
難點:正確找出多項式各項的公因式及分解因式與整式乘法的區別和聯系。
三、教學過程。
教學環節:
活動1:復習引入。
看誰算得快:用簡便方法計算:
(1)7/9×13-7/9×6+7/9×2=;。
(2)-2.67×132+25×2.67+7×2.67=;。
(3)992–1=。
設計意圖:
如果說學生對因式分解還相當陌生的話,相信學生對用簡便方法進行計算應該相當熟悉.引入這一步的目的旨在讓學生通過回顧用簡便方法計算——因數分解這一特殊算法,使學生通過類比很自然地過渡到正確理解因式分解的概念上,從而為因式分解的掌握掃清障礙,本環節設計的計算992–1的值是為了降低下一環節的難度,為下一環節的理解搭一個臺階.
注意事項:學生對于(1)(2)兩小題逆向利用乘法的分配律進行運算的方法是很熟悉,對于第(3)小題的逆向利用平方差公式的運算則有一定的困難,因此,有必要引導學生復習七年級所學過的整式的乘法運算中的平方差公式,幫助他們順利地逆向運用平方差公式。
活動2:導入課題。
p165的探究(略);。
2.看誰想得快:993–99能被哪些數整除?你是怎么得出來的?
設計意圖:
引導學生把這個式子分解成幾個數的積的形式,繼續強化學生對因數分解的理解,為學生類比因式分解提供必要的精神準備。
活動3:探究新知。
看誰算得準:
計算下列式子:
(1)3x(x-1)=;。
(2)(a+b+c)=;。
(3)(+4)(-4)=;。
(4)(-3)2=;。
(5)a(a+1)(a-1)=;。
根據上面的算式填空:
(1)a+b+c=;。
(2)3x2-3x=;。
(3)2-16=;。
(4)a3-a=;。
(5)2-6+9=。
在第一組的整式乘法的計算上,學生通過對第一組式子的觀察得出第二組式子的結果,然后通過對這兩組式子的結果的比較,使學生對因式分解有一個初步的意識,由整式乘法的逆運算逐步過渡到因式分解,發展學生的逆向思維能力。
活動4:歸納、得出新知。
比較以下兩種運算的聯系與區別:
a(a+1)(a-1)=a3-a。
a3-a=a(a+1)(a-1)。
在第三環節的運算中還有其它類似的例子嗎?除此之外,你還能找到類似的例子嗎?
初二數學教案(優秀17篇)篇十三
1.經歷平行四邊形判別條件的探索過程,發現平行四邊形的常用判別條件。
2.掌握平行四邊形的判別條件;對角線互相平分的四邊形是平行四邊形;一組對邊平行且相等的四邊形是平行四邊形;兩組對邊分別相等的四邊形是平行四邊形。
3.逐步掌握說理的基本方法。
初二數學教案(優秀17篇)篇十四
教學目標:
1、經歷數據離散程度的探索過程。
2、了解刻畫數據離散程度的三個量度極差、標準差和方差,能借助計算器求出相應的數值。
教學重點:會計算某些數據的極差、標準差和方差。
教學難點:理解數據離散程度與三個差之間的關系。
教學準備:計算器,投影片等。
教學過程:
一、創設情境。
1、投影課本p138引例。
(通過對問題串的解決,使學生直觀地估計從甲、乙兩廠抽取的20只雞腿的平均質量,同時讓學生初步體會平均水平相近時,兩者的離散程度未必相同,從而順理成章地引入刻畫數據離散程度的一個量度極差)。
2、極差:是指一組數據中最大數據與最小數據的差,極差是用來刻畫數據離散程度的一個統計量。
二、活動與探究。
如果丙廠也參加了競爭,從該廠抽樣調查了20只雞腿,數據如圖(投影課本159頁圖)。
問題:1、丙廠這20只雞腿質量的平均數和極差是多少?
2、如何刻畫丙廠這20只雞腿質量與其平均數的差距?分別求出甲、丙兩廠的20只雞腿質量與對應平均數的差距。
3、在甲、丙兩廠中,你認為哪個廠雞腿質量更符合要求?為什么?
(在上面的情境中,學生很容易比較甲、乙兩廠被抽取雞腿質量的極差,即可得出結論。這里增加一個丙廠,其平均質量和極差與甲廠相同,此時導致學生思想認識上的矛盾,為引出另兩個刻畫數據離散程度的量度標準差和方差作鋪墊。
三、講解概念:
方差:各個數據與平均數之差的平方的平均數,記作s2。
設有一組數據:x1,x2,x3,,xn,其平均數為。
則s2=,。
而s=稱為該數據的標準差(既方差的算術平方根)。
從上面計算公式可以看出:一組數據的極差,方差或標準差越小,這組數據就越穩定。
四、做一做。
(通過對此問題的解決,使學生回顧了用計算器求平均數的步驟,并自由探索求方差的詳細步驟)。
五、鞏固練習:課本第172頁隨堂練習。
六、課堂小結:
1、怎樣刻畫一組數據的離散程度?
2、怎樣求方差和標準差?
七、布置作業:習題5.5第1、2題。
初二數學教案(優秀17篇)篇十五
(2)重點、難點分析。
本節內容的重點是線段垂直平分線定理及其逆定理.定理反映了線段垂直平分線的性質,是證明兩條線段相等的依據;逆定理反映了線段垂直平分線的判定,是證明某點在某條直線上及一條直線是已知線段的垂直平分線的依據.
本節內容的難點是定理及逆定理的關系.垂直平分線定理和其逆定理,題設與結論正好相反.學生在應用它們的時候,容易混淆,幫助學生認識定理及其逆定理的區別,這是本節的難點.
2、教法建議。
本節課教學模式主要采用“學生主體性學習”的教學模式.提出問題讓學生想,設計問題讓學生做,錯誤原因讓學生說,方法與規律讓學生歸納.教師的作用在于組織、點撥、引導,促進學生主動探索,積極思考,大膽想象,總結規律,充分發揮學生的主體作用,讓學生真正成為教學活動的主人.具體說明如下:
(1)參與探索發現,領略知識形成過程。
學生前面,學習過線段垂直平分線的概念,這樣由復習概念入手,順其自然提出問題:在垂直平分線上任取一點p,它到線段兩端的距離有何關系?學生會很容易得出“相等”.然后學生完成證明,找一名學生的證明過程,進行投影總結.最后,由學生將上述問題,用文字的形式進行歸納,即得線段垂直平分線定理.這樣讓學生親自動手實踐,積極參與發現,激發了學生的認識沖突,使學生克服思維和探求的惰性,獲得鍛煉機會,對定理的產生過程,真正做到心領神會.
(2)采用“類比”的學習方法,獲取逆定理。
線段垂直平分線的定理及逆定理的證明都比較簡單,學生學習一般沒有什么困難,這一節的難點仍然的定理及逆定理的關系,為了很好的突破這一難點,教學時采用與角的平分線的性質定理和逆定理對照,類比的方法進行教學,使學生進一步認識這兩個定理的區別和聯系.
(3)通過問題的解決,讓學生學會從不同角度分析問題、解決問題;讓學生學會引申、變更問題,以培養學生發現問題、提出問題的創造性能力.
初二數學教案(優秀17篇)篇十六
1、學生的認知基礎:學生已學過三角形的內角和定理,以及三角形的邊、頂點、內角等概念,并且已初步了解四邊形可分成兩個三角形來求內角和,這為本節課的學習打下了基礎。因而學生在探索多邊形內角和時,便會很容易想到“拼”和“量”和把多邊形轉化成三角形等方法。另外,在以往的學習中,學生的動手實踐、自主探索及合作探究能力都得到一定的訓練,本節將進一步培養學生這些方面的能力。
2、學生的年齡心理特點:八年級的學生具有很強的感性認知基礎,對一些具體的實踐活動十分感興趣。活潑好動,思維敏捷,表現欲強,但思考問題不全面。
二、教學目標。
1、知識與技能目標:
(1)理解多邊形及正多邊形的定義。
(2)掌握多邊形內角和公式。
2、過程與方法目標:
(1)掌握類比歸納、轉化的學習方法;。
(2)培養學生說理和簡單推理的意識及能力。
3、情感、態度與價值觀目標:
讓學生經歷探索多邊形內角和的過程,進一步發展學生的合情推理意識、主動探究的學習習慣;通過實際情景的引入,讓學生進一步體會數學與現實生活的緊密聯系。
三、教學重、難點。
教學重點:(1)多邊形內角和公式。
(2)計算多邊形的內角和及依據內角和確定多邊形邊數。
教學難點:多邊形內角和公式的推導。
四、方法和手段:
方法:綜合運用自主探究、合作交流、問題解決及研究式學習等方法。
手段:本節課采用多媒體與學科教學整和,以增大課堂信息量,加強直觀性及趣味性,有利于學生觀察、探究能力的提高。
五、教具、學具。
多媒體課件、三角板。
六、教學過程。
教師活動學生活動。
教學說明。
(一)創設情境。
1、在現實生活中,蘊含著豐富的幾何圖形。
2、觀察圖片找學過的幾何圖形?
(二)多邊形的概念。
1、那么什么樣的圖形是三角形呢?怎樣的圖形叫做四邊形呢?
3、多邊形的相關概念:多邊形的對角線、邊、頂點、內角、內角和等。
教師邊畫圖邊說明。
4、凸多邊形和凹多邊形的概念。
(三)探究活動:公式的推導。
1、提出問題。
(1)、我們學過的三角形的內角和是多少呢?
(2)、那么四邊形的內角和又是多少呢?你是怎么得到的?
(3)、那么五邊形、常見的六邊形。
的螺帽的內角和有沒有計算方法呢?
今天我們就來探索多邊形的內角和(板書課題)。
2、動手操作實踐,自己探索。
歸納為以下幾種方法:
方法1、過四邊形的一個頂點連對角線,把四邊形分割成兩個三角形。
方法2、過四邊形內任意一點與四邊形的各頂點連結,把四邊形分成三角形。
方法3、在四邊形的任一邊上取一點,與不相鄰的各頂點連結,把四邊形分成四個三角形。
方法4、在四邊形外任取一點,把這點與各頂點連結。
3、觀察、尋找規律。
五、六、七邊形內角和之間有何規律?
3、猜想。
那么對于n邊形猜想一下內角和計算公式是什么?
4、驗證。
就我們已求出的特殊多邊形的內角和,通過公式再求一次是否相符?
5、小結歸納。
(四)課堂練習。
1、求12邊形的內角和度數。
2、如果n邊形的內角和為1080°,求這個多邊形的邊數。
3、從一個多邊形一個頂點的所有對角線,將這個多邊形分成7個三角形,這個多邊形是__________邊形,它的內角和是____________________.
(五)正多邊形的概念。
1、正多邊形的概念:
(1)、一個多邊形的每一個內角都相等,它的邊一定相等嗎?
(2)、一個多邊形的邊相等,它的內角一定相等嗎?
(3)正多邊形的概念:在平面內,內角都相等,邊也都相等的多邊形叫做正多邊形。
2、鞏固練習。
(1)正三角形、正四邊形、正五邊形、正六邊形的內角分別是多少度?
(2)正多邊形在自然界中也常見,如蜜蜂的蜂房就是一個正六邊形的形狀,
(五)課堂小結。
今天你學到了什么知識?要求用自己的話說出來?
(六)課外作業:
教科書第110頁習題1、2、3。
讓學生說說自己的想法。
學生通過觀察發現:
三角形、四邊形、五邊形。
由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。
在平面內,由不在同一直線上的四條線段首尾順次相接所組成的圖形叫做四邊形。
三角形的內角和為180°。
四邊形的內角和為360°。
學生口述得到四邊形內角和為360°的方法。
1、正方形、矩形的內角和為4×90°。
一般的四邊形呢?
學生思考、討論得到解法。
完成表格。
學生分組根據自己所找到的求四邊形的內角和度數的方法,分別求出五邊形、六邊形、七邊形的內角和,并歸納得出:
n邊形的內角和的計算公式:。
(n-2)·180°。
讓學生獨立完成。
不一定,如矩形。
不一定,如菱形。
等邊三角形、正方形。
1、多邊形內角和公式。
2、探索多邊形內角和公式的方法。
從現實生活中引入,讓學生感受生活中處處有數學。(通過課件展示圖片,讓學生直觀感受。)。
學生利用三角形、四邊形的定義進行知識的遷移,獲得多邊形的概念。
學生自己動手畫圖,有助于幫助理解概念。
從學生感興趣的問題出發,設置懸念,引入課題。
要給學生一定的思考、交流的時間,鼓勵學生大膽的發言,尋找多種方法求得五邊形內角和的度數。(利用在課件中設置觸發器的方法,可以靈活的演示學生的分割方法。)。
鼓勵學生大膽猜想、大膽發現。
通過類比、歸納,完成從特殊到一般的認識,體現數學認識的一般過程。
培養學生解決問題的能力,鞏固對n邊形的內角和公式的掌握:。
讓學生理解一個多邊形的邊相等,但角并不一定相等;。
角相等,但邊也并不。
一定相等。
鞏固學生對n邊形的內角和的公式的掌握,培養學生的解題能力:。
鞏固推導公式的方法和多邊形公式的掌握。
七、教學反思。
本節課從實際問題入手,在引課時出示了多幅日常生活用品和建筑的圖片,加強了數學與實際生活的聯系,讓學生感到數學離自己很近,激發了學生的求知欲。創設了良好的教學氛圍。其次注重讓學生在學習活動中領悟數學思想方法。數學的思想方法比有限的數學知識更為重要。學生在探索多邊形內角和的過程中先把五邊形轉化成三角形.進而求出內角和,這體現了由未知轉化為已知的思想。特別是在課堂教學中適時的利用問題加以引導,使學生領會數學思想方法,真正理解和掌握數學的知識、技能,增強空間觀念及數學思考能力培養,并獲得數學活動經驗。同時,恰當的使用課件擴大了課堂容量,使課堂教學的深度和廣度都有所提高。課件的使用提高了課堂效率,為學生的探索討論贏得了時間。同時也加大了練習量,有助于學生知識可鞏固和提高。
整節課學生的情緒飽滿,思維活躍,在教師適當的引導下,學生能夠合作交流和自主探究,成功的利用四種方法探索出了多邊形的內角和公式,較好的完成了本節課的教學目標。
初二數學教案(優秀17篇)篇十七
教學內容和地位:
眾數、中位數是描述一組數據的集中趨勢的兩個統計特征量,是幫助學生學會用數據說話的基本概念。本節課的教學內容和現實生活密切相關,是培養學生應用數學意識和創新能力的最好素材。
教學重點和難點:
本節課的重點是眾數和中位數兩概念的形成過程及兩概念的運用。本節課的難點是對統計數據從多角度進行全面地分析。因為利用數據進行分析,對剛剛接觸統計的學生來說,他們原有的認知結構中缺乏這方面的知識經驗,所以,我們可以借助生活中的事例,利用豐富多彩的多媒體輔助,幫助學生突破這一知識難點。
教學目標分析:
認知目標:
(1)使學生認知眾數、中位數的意義;。
(2)會求一組數據的眾數、中位數。
能力目標:
(1)讓學生接觸并解決一些社會生活中的問題,為學生創新學數學、用數學的情境,培養學生的數學應用意識和創新意識。
(2)在問題解決的過程中,培養學生的自主學習能力;。
(3)在問題分析的過程中,培養學生的團結協作精神。
情感目標:
(2)在合作學習中,學會交流,相互評價,提高學生的合作意識與能力。
教學輔助:網絡教室、多媒體輔助網絡教學課件、bbs電子公告欄、學習資源庫。
教法與學法:
根據本節課的教學內容,主要采用了討論發現法。即課堂上,教師(或學生)提出適當的問題,通過學生與學生(或教師)之間相互交流,相互學習,相互討論,在問題解決的過程中發現概念的產生過程,體現“數學教學是數學思維活動的過程的教學”。在教學活動中,通過學生的自主學習來體現他們的主體地位,而教師是通過對學生參與學習的啟發、調整、激勵來體現自己的主導作用。另外,在學生合作學習的同時,始終堅持對學生進行“學疑結合”、“學思結合”、“學用結合”的學法指導,這對學生的主體意識的培養和創新能力的培養都有積極的意義。