通過編寫計劃書,我們可以更好地分配資源,提高工作效率,實現更好的成果。如果你對計劃書的編寫感到困惑,以下范文或許能夠解決你的問題。
圓錐的體積教學方案(優秀15篇)篇一
多媒體演示1:。
(一個長方形,上面的一邊漸漸變短,直到變成三角形)。
師:剛才你看到多媒體屏幕上出現了什么樣的動畫?
生:我看到了一個長方形逐漸變成了三角形.
師:你看到的三角形和原來的長方形有什么關系?
生1:它們是等底等高的關系.
生2:它們面積的關系是倍數關系,正好兩倍.
生3:長方形的面積是三角形面積的兩倍,三角形面積是長方形面積的.
生4,等底等高的長方形的面積是三角形面積的兩倍,等底等高的三角形面積是長方形面積的.
師:很好,你們真會動腦筋,我們來在看一個動畫.
多媒體演示2:。
(圓柱體的上底面越來越小,直到縮成一點變成一個圓錐)。
師:這回你看到了什么?你猜想一下其中有什么知識和規律在里面?
生1:我看到一個圓柱體的上底面越來越小,直到縮成一點.
生2:圓柱體變成了圓錐體.
生3:我想圓錐體積和圓柱的體積一定有某種關系.
生4:圓柱體的體積是錐體的體積的兩倍,就和等底等高的長方形的面積是三角形面積的兩倍一樣.
生5:它們是等底等高的關系.
生6:圓柱體的體積不是錐體的體積的兩倍,而是三倍.
生7:圓柱體的體積和錐體的體積既不是兩倍關系,也不是三倍關系.而是其它的關系.
師:同學們真會動腦筋,那么剛才同學們的想法哪些是對的,哪些是錯的呢?同學們討論一下.注意:把肯定正確的想法和有爭論的想法分開討論.
(生匯報:。
正確的有:“我想圓錐體積和圓柱的體積一定有某種關系.”“它們是等底等高的關系.”有爭論的有:“圓柱體的體積是錐體的體積的兩倍,”“圓柱體的體積不是錐體的體積的兩倍,而是三倍.”)。
(學生進行討論)。
生1:可以找一些泥巴來試一試,先把一塊泥巴做成圓柱的形狀,量出底和高,然后再做成等底等高的圓錐,看能作幾個,能做幾個就說明是幾倍.
生2:我的方法也是用泥巴,但和他的方法不同的是,我先用泥巴做兩個等底等高的圓柱和圓錐,然后把他們稱一稱,根據他們的重量來判斷它們的體積是什么關系.
師:太好了還有什么更妙的主意沒有?
生3:我的想法是,做兩個等底等高的圓柱和圓錐容器,先把圓錐容器裝滿水,倒到圓柱容器里,看能倒幾下,能倒幾下就是幾倍關系.
生5:我的方法更簡單,也是先做等底等高的圓柱和圓錐,只是要做小一點,直接放到裝有水的量筒里,量出它們的體積來.
圓錐的體積教學方案(優秀15篇)篇二
本節課在學習圓柱的體積的基礎上,再學習圓錐的體積,學生感到非常簡單易懂,因此學起來并不感到困難。但教學過后,仍感到有許多不盡人意之處,當然也有許多收獲。
2、是在實驗時,讓學生小組合作親自動手實驗,以實驗要求為主線,即動手操作,又動腦思考,努力探索圓錐體積的計算方法。這樣的學習,學生學的活,記得牢,即發揮教師的主導作用,又體現了學生的主體地位。學生在學習的過程中,始終是一個探索者、研究者、發現者,并獲得了富有成效的學習體驗。
3、探究圓錐體積計算方法的學習過程,學生可以不再是實驗演示的被動的觀看者,而是參與操作的主動探索者,真正成為學習的主人。在整個學習過程中,學生獲得的不僅是新活的數學知識,同時也獲得了更多的是探究學習的科學方法,探究成功的喜悅以及探究失敗的深刻反思,在這樣的學習中,學生會逐步變的有思想、會思考、會逐漸發現自身的價值。
4、每個學生都經歷“猜想---設計實驗驗證---發現算法”的自主探究學習的過程,在教師適當的引導下給于學生根據自己的設想自由探究等底等高的圓錐體和圓柱體體積之間的關系,圓錐體體積的計算方法。讓每個學生都經歷一次探究學習的過程。
1、許多學生在計算過程中常忘記除以3,需要加強練習。
2、許多學生在計算中出現錯誤,計算能力不過關,口算也不過關,導致計算失敗。
3、在學生進行倒沙實驗時,應該事先讓學生準備好充分的學具,比如,準備一個圓柱,然后做一個和圓柱等底等高的圓錐,在做一個等底不等高的圓錐或者等高不等底的,這樣學生就比較明顯的看出與圓柱等底等高的圓錐的體積是圓柱體積的三分之一。
4、一節好課在教學時要層次清楚,步步深入,重點突出。應注意激發學生的求知欲。要有全體學生的積極參與,突出學生的主體作用。我在這幾個方面都還要加強。
圓錐的體積教學方案(優秀15篇)篇三
《圓錐的體積》設計意在讓學生經歷猜想、體驗、探究、驗證、總結的過程,經歷圓錐的體積計算公式的推導過程,強調學生的經歷和體驗,從根本上理解并掌握圓錐體積的計算公式,從而能正確的計算圓錐體積。但最后課堂卻沒有達到預期的教學效果。課后結合老師們的建議,從這節課上找到了很多不足之處。
從直觀的過程,逐步提煉抽象,再解決實際問題,這是一個非常重要的過程。但我卻在得出結論后,急著去練習強化等底等高和,接著直接拋出了最后一個練習,漏了公式最后的結論得出,最終直接導致教學效果不好,給這節可留下了很多遺憾。
除此之外,練習的設計也存在很多問題。第一,練習設計的不夠精煉,開始的判斷題、填空題設計的多,最后一題偏難,在這節課里有些不合時宜還浪費了時間。第二,最后的計算練習應逐層深化圓錐的體積計算。圓錐的體積的計算是這節課最后的落腳點,對于學生也是個難點。練習的設計應以幫助學生建立解決問題的模型,針對孩子的認知規律,設計由簡到難的梯度練習,逐層深化圓錐的體積計算。
基于此我又重新設計了整節課的后半部分:
驗證后的總結:
通過這個實驗你得出了什么結論???????????????。
如果是這個細長的圓錐,還是這個結果嗎??????等底等高。
補充完整板書:
等底等高???????。
s表示什么?h表示什么?
1/3×19×12=。
討論:
1.如果沒有直接告訴s,而是告訴我們r和h,應該怎么求v呢?
先求s.???。
2.如果知道d和h呢???先求r。
提高練習:
工地上有一些沙子,堆起來近似于一個圓錐,這堆沙子大約多少立方米?
1/3×3.14×1×1.2=。
第二天的課,我用這個程序在班里重新上了一遍,下課前進行了小測:?求圓錐的體積。
全班51人,44人過關(其中37人全部對,7人最后計算有誤)。
7人不過關,其中2人忘了乘,3人忘了給半徑平方,一人半徑和高弄反了,一人寫不會。
最后7人中,有3人自己訂正正確,剩余4人通過教師再次講解后自己訂正正確。
這一節失敗的課讓我反思了很多,除了總結和練習,還找到了很多不足之處均待提高。
1.課堂提問沒有給學生留下足夠的思考空間。
如:“你打算用什么方法測量這個圓錐的體積?”問題提出后,我僅停頓了2秒,沒有學生舉手我就接著說“我們解決一個未知問題通常會把它轉化為已知問題,那么圓錐的體積可以轉化為我們原來學過的哪個立體圖形的體積呢?”說完這句話,我就意識到,這個地方應該讓學生充分的思考,充分的說一說方法,如果學生說不出,我再說這些話,學生可能會給我很多驚喜。
2實驗結束后,你想說什么?
學生經歷了猜想、體驗、探究、驗證的過程,在實驗的過程中肯定會發現很多問題、矛盾。實驗結束后,學生應該有很多話要說。此時問一問,你想說什么?既給了學生一個思維提升的過程,又能順利的總結出這節課的結論。
3.如何有效的調動起學生的積極性,讓高年級的學生也能積極回答問題?
這個問題,我曾經百思不得其解,總以為就是高年級學生的公開課比低年級的公開課難上,這節課后也豁然找到了原因:一是出在我平時的課堂上。由于平時上課總要照顧后進生,所以在回答問題時,往往不去叫舉手的好學生,總去點不舉手的后進生,公開課時也不由自主地這樣做。但是這樣做的后果就是導致,舉手的同學本來就有些害怕,我還總不去叫他。不但打擊了舉手同學的積極性,還打消了其他同學舉手的念頭。另一個很重要的原因是緣于教師上課的心態。對著低年級學生上課,我們很容易放下姿態,去“哄”他們,有一點做的好、說的好了,教師就會給很高的評價。而且態度還“和藹可親”
通過不斷的反思自己,讓我發現了很多自己的問題。這一節課,
可以說是我從教以來對我打擊最大的一節課,卻又是讓我收獲最大的一節課。課堂上留下了很多遺憾,有機會真想再重新上一遍這節課。
圓錐的體積教學方案(優秀15篇)篇四
一、復習導入。
1、怎樣計算圓柱的體積?(板書公式)
2、一個圓柱的底面積是60平方米,高15米,它的體積是多少立方米?
3、出示一個圓錐,請學生說說圓錐的特征。
4、導入:前面我們已經認識了圓錐,掌握了它的特征,那么圓錐的體積應怎樣計算呢?今天這節課我們就來研究這個問題。(板書課題)
二、動手測量,大膽猜想。
1、動手測量,找圓錐和圓柱的底和高的關系。
2、學生動手測量,教師巡視。給予指導。
3、交流得出結論:圓柱和圓錐等底等高。
4、猜想等底等高的圓柱和圓錐的體積之間有什么關系?
三、實驗操作,推導出圓錐體積計算公式。
1、實驗操作。
師:圓錐的體積到底與等底等高的圓柱的體積之間有什么關系呢?我們就用實驗來驗證我們的猜想。每個小組都準備了米或沙,打算怎么實驗,商量好辦法后再操作。
2、學生分組實驗,教師巡視。
3、匯報交流,你們組是怎么做實驗的?通過實驗你發現了什么?
4、強調等底等高。
5小結:不是任何一個圓錐的體積都是任何一個圓柱體積的1/3,必須有前提條件。(板書結論)
6、練習(出示)
(1)一個圓柱的體積是1.8立方分米,與它等底等高的圓錐的體積是()立方分米。
(2)一個圓錐的體積是1.8立方分米,與它等底等高的圓柱的體積是()立方分米。
7、得出圓錐的體積計算公式。
8、用字母表示圓錐的體積計算公式。
三、鞏固練習。
1、計算下面圓錐的體積。(只列式不計算)
底面積是6.28平方分米,高是9分米。
底面半徑是6厘米,高是4.5厘米。
底面直徑是4厘米,高是4.8厘米。
底面周長是12.56厘米,高是6厘米。
2、填空。
a圓錐的體積=(),用字母表示是()。
b圓柱體積的與和它()的圓錐的體積相等。
c一個圓柱和一個圓錐等底等高,圓柱的體積是3立方分米,圓錐的體積是()立方分米。
d一個圓錐的底面積是12平方厘米,高是6厘米,體積是()立方厘米。
3、判斷。(用手勢表示)
a圓柱體的體積一定比圓錐體的體積大()
b圓錐的體積等于和它等底等高的圓柱體的()
c正方體、長方體、圓錐體的體積都等于底面積×高。()
d等底等高的圓柱和圓錐,如果圓柱體的體積是27立方米,那么圓錐的體積是9立方米。()
四、全課小結。
師:今天這結課學習了什么?通過今天的學習研究你有什么收獲?
五、解決實際問題。
在建筑工地上,有一個近似圓錐形狀的沙堆,測得底面直徑是4米,高1.5米。每立方米沙大約重1.7噸,這堆沙約重多少噸?(得數保留整噸數)
圓錐的體積教學方案(優秀15篇)篇五
這一節失敗的課讓我反思了很多,除了總結和練習,還找到了很多不足之處均待提高。
如:“你打算用什么方法測量這個圓錐的體積?”問題提出后,我僅停頓了2秒,沒有學生舉手我就接著說“我們解決一個未知問題通常會把它轉化為已知問題,那么圓錐的體積可以轉化為我們原來學過的哪個立體圖形的體積呢?”說完這句話,我就意識到,這個地方應該讓學生充分的思考,充分的說一說方法,如果學生說不出,我再說這些話,學生可能會給我很多驚喜。
學生經歷了猜想、體驗、探究、驗證的過程,在實驗的過程中肯定會發現很多問題、矛盾。實驗結束后,學生應該有很多話要說。此時問一問,你想說什么?既給了學生一個思維提升的過程,又能順利的總結出這節課的結論。
這個問題,我曾經百思不得其解,總以為就是高年級學生的公開課比低年級的公開課難上,這節課后也豁然找到了原因:一是出在我平時的課堂上。由于平時上課總要照顧后進生,所以在回答問題時,往往不去叫舉手的好學生,總去點不舉手的后進生,公開課時也不由自主地這樣做。但是這樣做的后果就是導致,舉手的同學本來就有些害怕,我還總不去叫他。不但打擊了舉手同學的積極性,還打消了其他同學舉手的念頭。另一個很重要的原因是緣于教師上課的心態。對著低年級學生上課,我們很容易放下姿態,去“哄”他們,有一點做的好、說的好了,教師就會給很高的評價。而且態度還“和藹可親”
圓錐的體積教學方案(優秀15篇)篇六
《圓錐的體積》是九年義務教育六年制小學數學第十一冊第三單元的內容。
1、通過讓學生小組合作探究,利用不同的方法測量出圓錐的體積。體驗到計算圓錐體積的計算公式v=1/3sh是最簡便的方法。
2、鍛煉學生的操作能力,估算能力,評價能力,更好的發展他們的創新能力。
3、培養學生的合作意識及主動探索知識的精神。
讓學生自己親身體驗到計算圓錐體積的不同方法。從而理解計算公式v=1/3sh,并感受到計算公式的簡便。
教學難點:能利用不同方法計算不同物體的體積。知識的活學活用。
1、個學生一組,每組各有量杯;量桶;一升的容器;等底等高的圓柱與圓錐器皿;大米,沙子或水;1立方厘米的小方塊若干。
2、教學軟件。
一、創設情景,激趣引新。
1、首先教師手中拿一圓柱體問:“同學們,老師想知道這個圓柱體的體積你們能幫助我嗎?”
(學生踴躍舉手說明。可以先測量出圓柱的半徑與高。再用圓周率乘半徑的平方得到底面積,最后乘以高就可以了。)
2、教師表示贊同,并抓住這一契機拿出于剛才圓柱等底等高的圓錐,問:“那老師這里還有一個圓錐體,它的體積應該怎樣計算呢?你們知道嗎?”(學生齊答不)那你們想不想研究呢?(學生齊答想)好,下面我們就一起來研究圓錐的體積該怎樣計算。
二、小組合作,探究學習。
1、動手操作,測量圓錐體的體積。
要求:每組同學,利用桌面上的工具(量杯,量桶,與圓錐等底等高圓柱容器,大米,沙子,水,1立方分米小方塊)測量出自己組內的圓錐體的體積。測量物體是容器的厚度不計。
3、分組匯報不同的方法。
〈學生在匯報時可邊講解邊示范〉
方法一:可以利用量杯。首先把圓錐體容器內裝滿水,然后把它倒入量杯內,我們看到水面的刻度就是水的體積也就是圓錐體的體積。
方法二:利用手中的一立方厘米的小木塊進行估算。
方法三:受《曹沖稱象》的啟示。利用一生的容器。把它裝滿水后將圓錐體放入,溢出水后拿出圓錐體。這時看容器空出來的地方為長方體,用一立方分米減去長方體的體積就可以得到圓錐體的體積了。
〈設計意圖:通過討論研究和動手操作,發展學生的創新能力,和解決實際問題的能力。〉
(2)學生再次在小組內操作探究。
(3)匯報結論。
(4)微機演示。
當等底不等高時,當等高不等底時,當底和高都不相等時,出現的結果是怎樣的。
4、評價以上各種辦法
同學們的結論是用公式計算比較方便。
三、解決實際問題
(問題一)
1、各小組量一量,算一算自己組內的圓錐體的體積。(測量,計算時都要保留整數)
2、匯報結果。
先測量出圓錐體的直徑,算出底面積。再測量出高,算出它的體積。算式:1/3x[3.14x(10/2)x10]≈262立方厘米(忽略厚度,即把溶劑可看作體積)
(問題二)
2、匯報結果。
用每立方厘米裝大米的克數乘圓錐的體積。算式:0.9x262≈236克
3、驗證計算結果
用稱稱一稱,比較一下結果。
4、討論兩次結果為什么不同。
由于測量時厚度不計,計算時是近似值。都存在誤差。
〈設計意圖:通過測量,計算等環節,發展學生的應用意識及估算的能力。〉
(問題三)
利用圓錐體積公式計算。
(1)r=2cm h=6cm v=?(2)d=6m h=5mv=?
(問題四)
計算不規則物體體積或容積。(直說出計算的方法即可)
1、用什么方法計算出葫蘆能裝多少水?
2、胡蘿卜的體積怎樣計算?
3、不規則的零件體積計算?
四、總結全課
說說你的收獲,鼓勵學生學習知識要活學活用,大膽動腦,勇于創新。
圓錐的體積教學方案(優秀15篇)篇七
教學過程:
一、情境引入:
(1)(老師出示鉛錘):你有辦法知道這個鉛錘的體積嗎?
(2)學生發言:(把它放進盛水的量杯里,看水面升高多少……)。
(3)教師評價:這種方法可行,你利用上升的這部分水的體積就是鉛錘的體積,間接地求出了鉛錘的體積。真是一個愛動腦筋的孩子。
(4)提出疑問:是不是每一個圓錐體都可以這樣測量呢?(學生思考后發言)。
(5)引入:如果每個圓錐都這樣測,太麻煩了!類似圓錐的麥堆也能這樣測嗎?(學生發表看法),那我們今天就來共同探究解決這類問題的普遍方法。(老師板書課題)。
設計意圖:情景的創設,激發了學生學習的興趣,使學生產生了自己想探索的需求,情緒高漲地積極投入到學習活動中去。
二、新課探究。
(一)、探究圓錐體積的計算公式。
1、大膽猜測:
(1)圓錐的體積該怎樣求呢?能不能通過我們已學過的圖形來求呢?(指出:我們可以通過實驗的方法,得到計算圓錐體積的公式)。
(2)圓錐和我們認識的哪種立體圖形有共同點?(學生答:圓柱)為什么?(圓柱的底面是圓,圓錐的底面也是圓……)。
(3)請你猜猜圓錐的體積和圓柱的體積有沒有關系呢?有什么關系?(學生大膽猜測后,課件出示一個圓錐與3個底、高都不同的圓柱,其中一個圓柱與圓錐等底等高),請同學們猜一猜,哪一個圓錐的體積與這個圓柱的體積關系最密切?(學生答:等底等高的)。
(4)老師拿教具演示等底等高。拿出等底等高的圓柱和圓錐各一個,通過演示,使學生發現“這個圓錐和圓柱是等底等高的。”
(5)學生用上面的方法驗證自己做的圓錐與圓柱是否等底等高。(把等底等高的放在桌上備用。)。
2、試驗探究圓錐和圓柱體積之間的關系。
我們通過試驗來研究等底等高的圓錐體積和圓柱體積的關系。
(1)課件出示試驗記錄單:
a、提問:我們做幾次實驗?選擇一個圓柱和圓錐我們比較什么?
b、通過實驗,你發現了什么?
(2)學生分組用等底等高的圓柱圓錐試驗,做好記錄。教師在組間巡回指導。
(3)匯報交流:
你們的試驗結果都一樣嗎?這個試驗說明了什么?
(4)老師用等底等高的圓柱圓錐裝紅色水演示。
(教師讓學生注意記錄幾次,使學生清楚地看到倒3次正好把圓柱裝滿。)。
(5)學生拿小組內不等底等高的圓錐,換圓錐做這個試驗幾次,看看有沒有這樣的關系?(學生匯報,有的說我用自己的圓錐裝了5次,才把圓柱裝滿;有的說,我裝了2次半……)。
(6)試驗小結:上面的試驗說明了什么?(學生小組內討論后交流)。
(這說明圓柱的體積是與它等底等高圓錐體積的3倍.也可以說成圓錐的體積是和它等底等高的圓柱的體積的三分之一。)。
3、公式推導。
(1)你能把上面的試驗結果用式子表示嗎?(學生嘗試)。
(2)老師結合學生的回答板書:
(3)在探究圓錐體積公式的過程中,你認為哪個條件最重要?(等底等高)。
進一步強調等底等高的圓錐和圓柱才存在這種關系。
設計意圖:放手讓學生自主探究,在實踐中真正去體驗圓柱和圓錐之間的關系。
(1)出示例2:現在你能求出老師手中的鉛錘的體積嗎?(已知鉛錘底面積24平方厘米,高8厘米)學生嘗試解決。
(2)提問:已知圓錐的底面積和高應該怎樣計算?
(3)引導學生對照圓錐體積的計算公式代入數據,然后讓學生自己進行計算。
(1)出示例題:
底面半徑是3平方厘米,高12厘米的圓錐的體積。
(2)學生嘗試解答。
(3)提問:已知圓錐的底面半徑和高,可以直接利用公式。
(1)出示例3:
工地上有一些沙子,堆起來近似于一個圓錐,這堆沙子大約多少立方米?(得數保留兩位小數)。
(2)要求沙堆的體積需要已知哪些條件?(由于這堆沙堆近似圓錐形,所以可利用圓錐的體積公式來求,需先已知沙堆的底面積和高)。
(3)題目的條件中不知道圓錐的底面積,應該怎么辦?(先算出沙堆的底面半徑,再利用圓的面積公式算出麥堆的底面積,然后根據圓錐的體積公式求出沙堆的體積)。
(4)分析完后,指定兩名學生板演,其余學生將計算步驟寫在教科書第26頁上.做完后集體訂正。(注意學生最后得數的取舍方法是否正確)。
(5)提問。
:已知圓錐的底面直徑和高,可以直接利用公式。
設計意圖:公式的延伸讓學生對所學知識做到靈活應用,培養了學生活學活用的本領。
圓錐的體積教學方案(優秀15篇)篇八
圓錐的體積是在學習了圓錐的認識的基礎上進行教學的。
這節課我是這樣設計的:第一部分,復習圓錐的特征和圓柱的體積=底面積×高。反思:復習舊知識之間的聯系,便于運用已學知識推動新知識的學習,為學習新知識做準備。
第二部分,便于圓柱體積的計算公式,先讓學生用轉化的思想大膽猜測,能否把體積計算方法轉化成已學過的立體圖形來推導圓錐體積公式呢?學生猜測之后,讓學生拿出手中等底等高的圓柱體,然后同桌討論得出結論,全班交流。再進行第二次實驗,同桌交換圓柱或圓錐倒進沙子之后,同桌討論,全班交流,老師引導學生兩次實驗的結論有什么不同,經過學生的討論,師生歸納出:圓錐的體積等于等底等高的圓柱體積的三分之一。并強調v=3sh的前提條件是等底等高。
反思:這一環節讓學生用轉化的思想猜測,激發學生的學習興趣,調動學生的探究欲望。緊接著讓學生兩次動手實驗,親自體驗知識的探究過程。符合小學生的認知規律,便于學生主動地獲取知識,掌握正確的學習方法。通過實驗,學生參與了知識的形成過程,得出了只有在等底等高的情況下圓錐的體積是圓柱的三分之一,否則這個結論不成立。
圓錐的體積教學方案(優秀15篇)篇九
人教版九年義務教育小學數學教科書第十二冊。
這部分知識是學生在有了圓錐的認識和圓柱體積相關知識的基礎上進行教學的。在知識與技能上,通過對圓錐體的研究,經歷并理解圓錐體積公式的推導過程,會計算圓錐的體積;在方法的選擇上,抓住新舊知識間的聯系,通過猜想、課件演示、實踐操作,從經歷和體驗中驗證,讓學生在自主探索與合作交流過程中真正理解和掌握基本的數學知識與技能,數學思想和方法,使學生真正成為學習的主人。
1、使學生掌握圓錐體積的計算公式,會用公式計算圓錐的體積,解決日常生活中有關簡單的實際問題。
2、讓學生經歷猜想——驗證,合作——探究的教學過程,理解圓錐體積公式的推導過程,體驗轉化的思想。
3、培養學生動手操作、觀察、分析、推理能力,發展空間觀念,滲透事物是普遍聯系的唯物辯證思想。
[點評:知識與技能目標的設計全面、具體、有針對性。不但使學生掌握圓錐體積的計算公式,而且培養了學生運用圓錐體積公式解決生活中的實際問題的能力,使學生體會到數學與生活的密切聯系注。并注重對學生“猜想——————驗證”、“合作——————探究”等學習方式的培養及“轉化”數學思想方法的滲透;同時關注學生空間觀念的培養及唯物辯證思想的滲透。
掌握圓錐體積的計算公式,并能靈活利用公式求圓錐的體積。
理解圓錐體積公式的推導過程及解決生活中的實際問題。
一、 創設情境導入新課。
2、引導學生自己想辦法用多種方法來求這個圓錐體容器的體積,有困難的同學可以同桌交流,共同研究。(組織學生先獨立思考,然后同桌討論交流,最后匯報自己的想法。)
3、教師出示一個圓錐體的木塊引導學生明確前面所想的方法太麻繁、不實用。并鼓勵學生研究出一種簡便快捷的方法來求圓錐的體積。
二、經歷體驗,探究新知
(一)滲透轉化,幫助猜想
1、先組織學生自由暢談圓錐的體積可能會與誰有關(圓柱)。先給學生獨立思考的時間,然后匯報。匯報時要闡述自己的理由。教師引導學生回憶圓柱體積公式的推導過程。
2、組織學生拿出準備好的圓柱體鉛筆和轉筆刀來削鉛筆,同時教師也隨著學生一起來做。教師做好后要及時巡視,直到學生將鉛筆削得尖尖的為止。然后引導學生認真觀察削好后的鉛筆是什么形體的?(此時的鉛筆是由圓柱和圓錐兩部分組成的)并組織學生通過觀察比較、討論交流得出兩種形體的底與高及體積之間的關系。(削好后的圓柱與圓錐等底不等高,體積無關。)此時,教師要參與到小組討論中,及時引導學生發現削好后的圓錐的體積與未削之前的這部分圓柱等底等高,并且體積也有關。組織學生自己的話來總結。最后,將自己的發現進行匯報。
(二)小組合作,實驗驗證。
1、教師發給每組學生一個準備好的等底等高的圓柱和圓錐、沙了,組織學生拿出等底等高的圓柱和圓錐進行實驗。實驗前小組成員進行組內分工,有的進行操作,有的記錄……實驗中教師要及時巡視指導并參與到小組實驗中去及時了解學生實驗的進展情況。并指導幫助學生順利完成實驗。
2、實驗后組內成員進行交流。交流的過程中,要引導學生注重傾聽別人的想法,并說出自己不同的見解。
3、首先各小組派代表進行匯報,其它小組可以補充。然后全班進行交流實驗結果:得出等底等高的圓錐的體積是圓柱體積的1/3,圓柱的體積是圓錐體積的3倍。由圓柱體的體積公式推導出圓錐的體積公式。預設板書如下:
概括板書:
等底到高
v圓柱=sh v圓錐= 1/3sh
4、深化公式。組織學生討論給出不同的條件求圓錐的體積,如:半徑、直徑、周長。預設板書如下:
v =1/3πr2h v =1/3(c/2π)2h v =1/3(d/2)2h
5、教師組織學生獨立完成書中例題后集體訂正。
(三)看書質疑:你還有哪些不懂的問題或不同的見解可以提出來我們共同研究。
三、鞏固新知,拓展應用。
1、判斷并說明理由
(1)圓柱體積是圓錐體積的3倍( )
(2)一個圓錐的高不變,底面積越大,體積越大。( )
(3)一個圓錐體的高是3分米,底面積10平方分米,它的體積是30立方分米。( )
組織學生打手勢判斷后說明理由,并強調圓錐的體積是圓柱體積的1/3是以等底等高為前提的。
2、求下列圓錐的體積(口答,只列式,不計算)
s=4平方米,h=2平方米
r=2分米,h=3分米
d=6厘米,h=5厘米
組織學生根據圓錐體積公式解答。
3、實踐與應用:
學校操場有一堆圓錐沙子,求它的體積需要什么條件,你有什么好辦法?
組織學生進行討論,求圓錐體的沙堆的體積需要什么條件后并談如何來測量這些所需條件,有條件的可領學生實地操作一下。再求體積。
四、課后總結,感情升華。
這節課你有什么收獲?你是怎樣獲得的?
[總評:
1、鉆研教材,創造性地使用教材。
教師在充分了解學生、把握課程標準、教學目標、教材編寫意圖的基礎上,根據學生生活實際和學習實際,有目的地對教材內容進行改編和加工。如學生削鉛筆這一活動的設計,學生從“削”的過程中體驗到圓柱與圓錐的聯系;再如動手實驗這一環節的設計,使學生在觀察、比較、動手操作,合作交流中理解掌握新知。創造性地融入一些生活素材,加強了數學與生活的密切聯系。
2、注重數學思想方法的滲透。
數學思想方法是數學知識的精髓,又是知識轉化為能力的橋梁。新課伊始,便讓學生自己想辦法求圓錐的體積,此時學生便想辦法將圓錐體的容器裝滿水后倒入圓柱或長(正)方體的容器中,從而求出圓錐的體積。這一過程潛移默化地滲透“轉化”的數學思想方法。再如:讓學生將圓柱體的鉛筆削成圓錐體的這一活動,也同樣滲透了轉化的思想方法。
3、猜想—————驗證、合作交流等學習方式體現了學生的主體地位。
圓錐的體積教學方案(優秀15篇)篇十
圓錐的體積是在學生掌握了圓柱的特征及圓柱的體積等有關知識的基礎上進行教學的。
1。讓學生經歷圓錐體積計算公式的推導過程,弄清來龍去脈。在教學中,我讓學生在課前自己先制作出等底等高的圓柱和圓錐型容器教具,讓學生通過倒水,發現在等底等高的圓柱和圓錐中,用圓錐容器裝水倒入等底等高的圓柱容器中,剛好倒三次,即圓錐的體積是與它等底等高圓柱體積的三分之一,由此通過公式可以得出:
v圓錐=1/3圓柱=1/3sh(知道底面積和高)。
=1/3πr2h(知道半徑和高)。
=1/3π(d*2)2h(知道直徑和高)。
=1/3π(c*2*π)2h(知道周長和高)。
2。加強學生的實踐,培養學生的動手操作能力與自主解決問題的能力。在教學中,我讓學生自己制作學具,目的是讓學生通過自己的親身實踐,親自動手,親身體會圓柱與圓錐體積之間的關系,這樣利于培養學生自主探索,與同學之間合作學習,共同解決問題的能力。學生在此項活動中,不僅收獲了知識的來龍去脈,還體會到了與同學合作,共享成果的幸福喜悅。
沒有在制作學具時候,制作出等底不等高的圓柱和圓錐型容器教具,然后挑一組學生實驗,得不出圓錐的體積是與它等底等高圓柱體積的三分之一的結論。所以,缺乏對比性,如果加入這個教具的話,更能讓學生深知等底等高的重要性。
圓錐的體積教學方案(優秀15篇)篇十一
1、通過實驗發現等底等高的圓柱和圓錐體積之間的關系,從而得出體積的計算公式,能運用公式解答有關實際問題。
2、通過動手操作參與實驗,發現等底等高的圓柱和圓錐體積之間的關系,并通過猜想、探索和發現的過程,推導出圓錐的體積公式。
3、通過實驗,引導學生探索知識的內在聯系,滲透轉化思想,感受數學方法的內在魅力,激發學生參加探索的興趣。
教學重點: 通過實驗的方法,得到計算圓錐的體積。
教學難點:運用圓錐的體積公式進行正確地計算。
教學準備:等底等高的圓柱和圓錐容器模型各一個。
一、復習導入
師:同學們,請看大屏幕(課件出示圓柱削成最大圓錐)。
1、圓柱體積的計算公式是什么? (指名學生回答)
2、圓錐有什么特征?
同學們,圓柱的體積我們已經知道怎么求,那與它等底等高的圓錐的體積同學們知道怎么求嗎?讓我們一同走進圓錐的體積與等底等高的圓柱體體積有什么關系的知識課堂吧!(板書:圓錐的體積)
二、探究新知
課件出示等底等高的圓柱和圓錐
1、引導學生觀察:這個圓柱和圓錐有什么相同的地方?
學生回答:它們是等底等高的。
猜想:
(1)、你認為圓錐體積的大小與它的什么有關?
(2)、你認為圓錐的體積和什么圖形的體積關系最密切?猜一猜它們的體積有什么關系?
2、學生動手操作實驗
(1)、用圓錐裝滿水(要裝滿但不能溢出來)往圓柱倒,倒幾次才把圓柱倒滿?
(2)、通過實驗,你發現了什么?
小結:通過實驗我們發現圓柱的體積是與它等底等高圓錐體積的3倍。也可以說成圓錐的體積是與它等底等高圓柱體積的三分之一 。
問:把圓柱裝滿一共倒了幾次?
生:3次。
師:這說明了什么?
生:這說明圓錐的體積是和它等底等高的圓柱體積的三分之一。(板書:圓錐的體積= 1/3×圓柱體積 )
師:圓柱的體積等于什么?
生:等于“底面積×高”。
師:那么,圓錐的體積可以怎樣表示呢? (板書:圓錐的體積= 1/3×底面積×高)
師:用字母應該怎樣表示? (v=1/3sh)
師:在這個公式里你覺得哪里最應該注意?
三、教學試一試
四、鞏固練習
1、計算圓錐的體積
2、判一判
3、算一算
4、拓展延伸
五、總結
通過這節課的學習,你有什么收獲呢?
六、板書:
圓錐的體積=圓柱的體積×1/3
圓錐的體積=底面積×高×1/3
用字母表示v=1/3sh
圓錐的體積教學方案(優秀15篇)篇十二
并能運用公式正確地計算圓錐的體積,發展學生的空間觀念。
教學難點:圓錐的體積應用
學具準備:等底等高的圓柱和圓錐,水和沙,多媒體課件
教學時間:一課時
教學過程:
一、復習
1、圓錐有什么特征?(課件出示)
使學生進一步熟悉圓錐的特征:底面,側面,高和頂點。
2、圓柱體積的計算公式是什么?
指名學生回答,并板書公式:“圓柱的體積=底面積×高”。同時滲透轉化方法在數學學習中的應用。
二、導人新課
出示一個圓錐形的谷堆,給出底面直徑和高,讓學生思考如何求它的體積。
板書課題:圓錐的體積
三、新課
1、教學圓錐體積的計算公式。
師:請大家回億一下,我們是怎樣得到圓柱體積的計算公式的?
指名學生敘述圓柱體積計算公式的推導過程,使學生明確求圓柱的體積是通過切拼成長方體來求得的。
師:那么圓錐的體積該怎樣求呢?能不能也通過已學過的圖形來求呢?
先讓學生討論一下用什么方法求,然后指出:我們可以通過實驗的方法,得到計算圓錐體積的公式。
教師拿出等底等高的圓柱和圓錐各一個,“大家看,這個圓錐和圓柱有什么共同的地方?”
然后通過演示后,指出:“這個圓錐和圓柱是等底等高的,下面我們通過實驗,看看它們之間的體積有什么關系?”
學生分組實驗。
匯報實驗結果。先在圓錐里裝滿水,然后倒入圓柱。正好3次可以倒滿。
多指名說
問:把圓柱裝滿一共倒了幾次?
生:3次。
師:這說明了什么?
生:這說明圓錐的體積是和它等底等高的圓柱的體積的。
多找幾名同學說。
板書:圓錐的體積=1/3 ×圓柱體積
師:圓柱的體積等于什么?
生:等于“底面積×高”。
師:那么,圓錐的體積可以怎樣表示呢?
引導學生想到可以用“底面積×高”來替換“圓柱的體積”,于是可以得到圓錐體積的計算公式。
板書:圓錐的體積= 1/3 ×底面積×高
師:用字母應該怎樣表示?
然后板書字母公式:v=1/3 sh
師:在這個公式里你覺得哪里最應該注意?
1/3×19×12=76((立方厘米))
答:這個零件體積是76立方厘米。
做一做:課件出示,學生回答后,教師訂正。
1、一個圓錐的底面積是25平方分米,高是9分米,它的體積是多少?
2、已知圓錐的底面半徑r和高h,如何求體積v?
3、已知圓錐的底面直徑d和高h,如何求體積v?
4、已知圓錐的底面周長c和高h,如何求體積v?
5、一個圓錐的底面直徑是20厘米,高是9厘米,它的體積是多少?
例2課件出示)在打谷場上,有一個近似于圓錐的小麥堆,測得底面直徑是4米,高是1.2米。每立方米小麥約重735千克,這堆小麥大約有多少千克?(得數保留整千克)
判斷:課件出示,學生回答后,教師訂正。
1、圓柱體的體積一定比圓錐體的體積大( )
2、圓錐的體積等于和它等底等高的圓柱體積的 ( ) 。
3、正方體、長方體、圓錐體的體積都等于底面積×高。 ( )
4、等底等高的圓柱和圓錐,如果圓柱體的體積是27立方米,那么圓錐的體積是9立方米( )
四、教師小結。
這節課我們學習了哪些知識?你還有什么問題嗎?
五、作業。課本練習
圓錐的體積教學方案(優秀15篇)篇十三
本節課屬于空間與圖形知識的教學,是小學階段幾何知識的重難點部分,是小學學習立體圖形體積計算的飛躍,通過這部分知識的教學,可以發展學生的空間觀念、想象能力,較深入地理解幾何體體積推導方法的新領域,為學生進一步學習幾何知識奠定良好的基礎。
本節內容是在學生了解了圓錐的特征,掌握了圓柱體積的計算方法基礎上進行教學的,教材重視類比,轉化思想的滲透,直觀引導學生經歷“猜測、類比、觀察、實驗、探究、推理、總結”的探索過程,理解掌握求圓錐體積的計算公式,會運用公式計算圓錐的體積。這樣不僅幫助學生建立空間觀念,還能培養學生抽象的邏輯思維能力,激發學生的想象力.
數學課程標準中指出:應放手讓學生經歷探索的過程,在觀察、操作、推理、歸納、總結過程中掌握知識、發展空間觀念,從而提高學生自主解決問題的能力。
1、知識與技能:掌握圓錐的體積計算公式,能運用公式求圓錐的體積,并且能運用這一知識解決生活中一些簡單的實際問題。
2、過程與方法:通過“直覺猜想——試驗探索——合作交流——得出結論——實踐運用”探索過程,獲得圓錐體積的推導過程和學習的方法。
3、情感、態度與價值觀:培養學生勇于探索的求知精神,感受到數學來源于生活,能積極參與數學活動,自覺養成與人合作交流與獨立思考的良好習慣。
圓錐體積公式的理解,并能運用公式求圓錐的體積。
圓錐體積公式的推導
學生已學習了圓柱的體積計算,在教學中采用放手讓學生操作、小組合作探討的形式,讓學生在研討中自主探索,發現問題并運用學過的圓柱知識遷移到圓錐,得出結論。所以對 于新的知識教學,他們一定能表現出極大的熱情。
試驗探究法 小組合作學習法
多媒體課件,等底等高圓柱圓錐各6個,水槽6個(裝有適量的水)
1課時
一、回顧舊知識
1、你能計算哪些規則物體的體積?
2、你能說出圓錐各部分的名稱嗎?
設計意圖通過對舊知識的回顧,進一步為學習新知識作好鋪墊。
二、創設情景 激發激情
展示磚工師傅使用的鉛錘體(圓錐),你能測試出它的體積嗎?
設計意圖以生活中的數學的形式進行設置情景,引疑激趣遷移,激發學生好奇心和求知欲。(揭示課題:圓錐的體積)
三、試驗探究 合作學習(探討圓柱與圓錐體積之間的關系)
探究一:(分組試驗)圓柱與圓錐的底和高各有什么關系?
1、猜想:猜想它們的底、高之間各有什么關系?
2、試驗驗證猜想:每組拿出圓柱、圓錐各1個,分組試驗,試驗后記錄結果;
3、小組匯報試驗結論,集體評議:(注意匯報出試驗步驟和結論)
4、教師介紹數學專用名詞:等底 等高
設計意圖通過探究一活動,初步突破了本課的難點,為探究二活動活動開展作好了鋪墊。
探究二:(分組試驗)研討等底等高圓柱與圓錐的體積之間有什么關系?
1、大膽猜想:等底等高圓柱與圓錐體積之間的關系
2、試驗驗證猜想:每組拿出水槽(裝有適量的水),通過試驗,你發現了圓柱的體積和圓錐的體積有什么關系?邊試驗邊記錄試驗數據(教師巡視指導每組的試驗)
3、小組匯報試驗結論(提醒學生匯報出試驗步驟)
(1)圓椎的體積是圓柱體積的3倍;
(2)圓錐的體積是圓柱體積的三分之一;
(3)當等底等高時,圓柱體積是圓錐體積的3倍,或圓錐的體積是圓柱體積的三分之一等等。
4、通過學生匯報的試驗結論,分析歸納總結試驗結論。
5、你能用字母表示出它們的關系嗎?要求圓錐的體積必須知道什么條件呢?(學生反復朗讀公式)
通過學生分組試驗探究,在實驗過程中自主猜想、感知、驗證、得出結論的過程,充分調動學生主動探索的意識,激發了學生的求知欲,培養了學生的動手能力,突破了本課的難點,突出了教學的重點。
探究三:(伸展試驗---演示試驗)研討不等底等高圓柱與圓錐題的體積是否具有三分之一的關系。
1、觀察老師的試驗,你發現了圓柱與圓錐的底和高各有什么關系?
3、學生通過觀看試驗匯報結論。
4、教師引導學生分析歸納總結圓錐體積是圓柱體積的三分之一所存在的條件。
5、結合探究二和探究三,進一步引導學生掌握圓錐的體積公式。
通過教師課件演示試驗,進一步讓學生明白圓錐體積是圓柱體積的三分之一所存在的條件,更進一步加強學生對圓錐體積公式理解,再次突出了本課的難點,培養了學生的觀察能,分析能力,邏輯思維能力等,進一步讓學生從感性認識上升到了理性認識。
四、實踐運用 提升技能
2、口答題:題目內容見多媒體展示獨立思考---抽生匯報---學生評議
設計意圖通過判斷題、口答題題型的訓練,及時檢查學生對所學知識的理解程度,鞏固了圓錐體的體積公式。而拓展題型具有開放性給學生提供思維發展的空間,讓他們有跳起來摘果子的機會,以達到培養能力、發展個性的目的。
五、談談收獲:這節課你學到了什么呢?
六、課堂作業:
1、做在書上作業:練習四 第4、7題
2、坐在作業本上作業:練習四 第3題
圓錐的體積教學方案(優秀15篇)篇十四
1、知識與技能:掌握圓錐的體積計算公式,能運用公式求圓錐的體積,并且能運用這一知識解決生活中一些簡單的實際問題。
2、過程與方法:通過“直覺猜想——試驗探索——合作交流——得出結論——實踐運用”探索過程,獲得圓錐體積的推導過程和學習的方法。
3、情感、態度與價值觀:培養學生勇于探索的求知精神,感受到數學來源于生活,能積極參與數學活動,自覺養成與人合作交流與獨立思考的良好習慣。
【教學重點】圓錐體積公式的理解,并能運用公式求圓錐的體積。
【教學難點】圓錐體積公式的推導
學生已學習了圓柱的體積計算,在教學中采用放手讓學生操作、小組合作探討的形式,讓學生在研討中自主探索,發現問題并運用學過的圓柱知識遷移到圓錐,得出結論。所以對于新的知識教學,他們一定能表現出極大的熱情。
【教法學法】試驗探究法 小組合作學習法
【教具學具準備】多媒體課件,等底等高圓柱圓錐各6個,水槽6個(裝有適量的水)
【教學課時】 1課時
1、你能計算哪些規則物體的體積?
2、你能說出圓錐各部分的名稱嗎?
【設計意圖】通過對舊知識的回顧,進一步為學習新知識作好鋪墊。
展示磚工師傅使用的鉛錘體(圓錐),你能測試出它的體積嗎?
【設計意圖】以生活中的數學的形式進行設置情景,引疑激趣遷移,激發學生好奇心和求知欲。(揭示課題:圓錐的體積)
探究一:(分組試驗)圓柱與圓錐的底和高各有什么關系?
1、猜想:猜想它們的底、高之間各有什么關系?
2、試驗驗證猜想:每組拿出圓柱、圓錐各1個,分組試驗,試驗后記錄結果;
3、小組匯報試驗結論,集體評議:(注意匯報出試驗步驟和結論)
4、教師介紹數學專用名詞:等底 等高
【設計意圖】通過探究一活動,初步突破了本課的難點,為探究二活動活動開展作好了鋪墊。
探究二:(分組試驗)研討等底等高圓柱與圓錐的體積之間有什么關系?
1、大膽猜想:等底等高圓柱與圓錐體積之間的關系
2、試驗驗證猜想:每組拿出水槽(裝有適量的水),通過試驗,你發現了圓柱的體積和圓錐的體積有什么關系?邊試驗邊記錄試驗數據(教師巡視指導每組的試驗)
3、小組匯報試驗結論(提醒學生匯報出試驗步驟)
教學預設:(1)圓椎的體積是圓柱體積的3倍;(2)圓錐的體積是圓柱體積的三分之一;(3)當等底等高時,圓柱體積是圓錐體積的3倍,或圓錐的體積是圓柱體積的三分之一等等。
4、通過學生匯報的試驗結論,分析歸納總結試驗結論。
5、你能用字母表示出它們的關系嗎?要求圓錐的體積必須知道什么條件呢?(學生反復朗讀公式)
【設計意圖】通過學生分組試驗探究,在實驗過程中自主猜想、感知、驗證、得出結論的過程,充分調動學生主動探索的意識,激發了學生的求知欲,培養了學生的動手能力,突破了本課的難點,突出了教學的重點。
探究三:(伸展試驗---演示試驗)研討不等底等高圓柱與圓錐題的體積是否具有三分之一的關系。
1、觀察老師的試驗,你發現了圓柱與圓錐的底和高各有什么關系?
3、學生通過觀看試驗匯報結論。
4、教師引導學生分析歸納總結圓錐體積是圓柱體積的三分之一所存在的條件。
5、結合探究二和探究三,進一步引導學生掌握圓錐的體積公式。
【設計意圖】通過教師課件演示試驗,進一步讓學生明白圓錐體積是圓柱體積的三分之一所存在的條件,更進一步加強學生對圓錐體積公式理解,再次突出了本課的難點,培養了學生的觀察能,分析能力,邏輯思維能力等,進一步讓學生從感性認識上升到了理性認識。
2、口答題:【題目內容見多媒體展示】獨立思考---抽生匯報---學生評議
【設計意圖】通過判斷題、口答題題型的訓練,及時檢查學生對所學知識的理解程度,鞏固了圓錐體的體積公式。而拓展題型具有開放性給學生提供思維發展的空間,讓他們有跳起來摘果子的機會,以達到培養能力、發展個性的目的。
這節課你學到了什么呢?
1、做在書上作業:練習四 第4、7題
2、坐在作業本上作業:練習四 第3題
圓錐的體積教學方案(優秀15篇)篇十五
圓錐的體積是在學生直觀認識圓錐的特征,會算圓的面積,以及長方體、正方體、圓柱體的體積的基礎上安排教學的。因此,我有針對性地設計、制作了本節課的輔助教學課件,既突出重點、突破難點,又激發學生的學習興趣,優化教學過程,提高課堂教學質量。
由于圓錐體的體積是在學生學過圓柱體的體積的基礎上安排教學的,為了讓學生回憶圓柱體的體積計算公式,以便為知識的遷移和新知識的學習做好鋪墊,我制作了一張圖文并茂的圖文片向學生展示了一個圓柱體圖形,并在圖形下面用醒目的文字向學生提出問題:這是什么形體?它的體積應怎樣計算?這樣一張集文字、圖形、聲音于一體的圖文片,很容易引起學生注意,營造學習氣氛。
數學來源于生活,我取材于生活以創設情境,使教學過程與生活實際密聯系起來,我制作了一張圖文并茂的圖文片向學生展示了曬谷場上一堆圓錐形的谷子,并在顯眼的位置向學生巧設問題:這堆谷成什么形體?你們能求出這堆谷的體積嗎?這樣,激發了學生的求知欲望,把學生引入到新課探索的活動中。
圓錐體積的推導,是本節課的教學難點,為了讓學生直觀感知圓錐的體積與它等底等高的圓柱的體積的關系。首先讓學生用工具做實驗,初步感知,再呈現我制作的圖文片向學生演示:用圓錐裝滿水倒入和它等底等高的圓柱里的過程。并在動畫下面巧設問題:用圓錐裝滿水倒入和它等底等高的空圓柱里,倒幾次正好倒滿?每次水的高度是圓柱高度的幾分之幾?有層次的教學設計,豐富多彩的教學活動,充分體現以教師為主導,以學生為主體的教與學的雙邊活動。學生通過認真操作實驗,觀察思考,都明白了圓錐的體積等于和它等底等高的圓柱體積的1/3,從而推導出圓錐體積的計算公式。
為了提高學生解決實際問題的能力,我把課本上的例1制成一張圖文片,配上悠閑的樂曲,讓學生嘗試解答。試做時,我則進行巡視,如有問題,個別輔導,接著指名回答。這樣,能夠把較多的時間留給學生,培養學生的自學能力,使他們從中體驗到學習的成功的樂趣。
本節課《圓錐的體積》以談話法、實驗法為主,討論法、練習法為輔,實現教學目標。教學中,既充分發揮學生的主體作用,調動學生積極主動地參與教學的全過程。小學階段學習的幾何知識是直觀幾何。小學生學習幾何知識不是靠嚴格的論證,而主要是通過觀察、操作。根據課題的特點,主要采取讓學生做實驗的方法主動獲取知識,而且在教學中我注重如何有效的引導學生探究。
例如,在上課開始,我是讓學生回憶圓柱體積公式的推導過程,
讓學生猜測圓錐的體積也可以借助我們已經學過的圖形來驗證,培養學生的遷移類推能力。到學生猜測出用圓柱的體積來幫助研究圓錐時,再進一步讓學生猜測圓柱與圓錐之間的關系,激起學生的學習興趣,然后馬上讓學生自己以小組為單位去驗證自己的猜測是否正確,讓每個學生都經歷一次探究學習的過程。每個學生都經歷了“猜想估計---設計實驗驗證---發現算法”的自主探究學習的過程,按自己的設想自由探究等底等高的圓錐體和圓柱體體積之間的關系,圓錐體體積的計算方法。
在探究圓錐體積計算方法的學習過程中,學生不再是實驗演示的被動的觀看者,而是參與操作的主動探索者,真正成為學習的主人。在整個學習過程中,學生獲得的不僅是新活的數學知識,獲得更多的是探究學習的科學方法,探究成功的喜悅以及探究失敗的深刻反思,在這樣的學習中,學生會逐步變的有思想、會思考、會逐漸發現自身的價值。而且在探究出圓錐體積公式的基礎上,再讓他們想辦法計算出他們小組實驗用的圓錐的體積,又一次給了學生探究的空間,使他們對不光能得出圓錐的體積公式,而且知道怎么應用它。
充分發揮了學生的個性潛能。在學習中充分發揮學生的潛能,讓他們按自己的觀察進行猜測估計,按自己的設想操作學習,對自己學習情況進行總結,反思,在全體學生思維火花的相互碰撞中,出現了驗證等底等高的圓錐體和圓柱體體積的方法。涌現出了對圓錐體體積計算公式中“1/3”的不同理解,實現了學習策略的多樣化,豐富了學生的學習資源。