在日常學習、工作或生活中,大家總少不了接觸作文或者范文吧,通過文章可以把我們那些零零散散的思想,聚集在一塊。寫范文的時候需要注意什么呢?有哪些格式需要注意呢?以下是我為大家搜集的優質范文,僅供參考,一起來看看吧
分數的演講篇一
教學內容:人教版五年級數學下冊57頁內容。
教學目標:
知識與能力:使學生理解和掌握分數的基本性質,并能應用這一規律解決簡單的實際問題。
過程與方法:能在觀察、比較、猜想、驗證等學習活動的過程中,有條理、有根據地思考、探究問題,培養學生分析和抽象概括的能力。
情感態度價值觀:體驗數學驗證的思想,培養樂于探究的學習態度。
教學重點:使學生理解和掌握分數的基本性質。
教學難點:運用分數的基本性質解決相關的問題。
教學準備:多媒體課件、正方形紙、直尺、彩筆
教學過程:
一、鋪墊孕伏,溫故遷移
1.比一比:看誰算得又對又快。
2.說一說:商不變的性質是什么?
3.想一想:分數與除法有怎樣的關系?
4.猜一猜:除法中有商不變的規律,分數中是否具有類似的規律?
二、設疑激趣,探究新知
(一)故事激趣,引出分數。
說出自己從故事中聽到的分數。
(二)小組合作,直觀感知。
1.折一折:拿出三張同樣大小的正方形紙,分別用對折的方法平均分成2份、4份、8份。
2.畫一畫:畫出折痕所在的直線。
3.涂一涂:
(1)給平均分成2份的正方形紙的其中的1份涂上顏色。
(2)給平均分成4份的正方形紙的其中的2份涂上顏色。
(3)給平均分成8份的正方形紙的其中的4份涂上顏色。
4.比一比:比較3張正方形紙涂色部分的大小。
5.議一議:和同伴說說自己的想法。
(二)觀察比較,探究規律。
1.這三個分數的分子、分母都不同,分數的大小卻相等。你能找出它們之間的變化規律嗎?請同學們四人一組,討論這個問題。
2.匯報交流。
3.啟發點撥。
通過從左往右觀察、比較、分析,你發現了什么?
引導學生小結得出:分數的分子、分母同時乘相同的數,分數的大小不變。
那么,從右往左看呢?
讓學生再次歸納:分數的分子、分母同時除以相同的數,分數的大小不變。
4.歸納小結:引導學生概括出分數的基本性質。
(三)獨立嘗試,運用規律。
1.學生獨立思考,完成例2。
2.反饋交流,訂正點撥。
3.小結:我們可以運用分數的基本性質把一個分數化成分母不同但大小不變的分數。
三、達標檢測,內化提升(見《達標測試題》)
四、總結收獲,評價激勵
這節課你有什么收獲?你對自己的哪些表現比較滿意?
板書設計:
例1:
分數的分子、分母同時乘或者除以相同的數(0除外),分數的大小不變。
例2:
分數的演講篇二
1、經歷探索分數基本性質的過程,理解分數的基本性質。
2、能運用分數基本性質,把一個數化成指定分母(或分子)大小不變的分數。
3、經歷觀察、操作和討論等數學活動,體驗數學學習的樂趣及數學與日常生活密切聯系。
運用分數的基本性質,把一個數化成指定分母(或分子)而大小不變的分數。
聯系分數與除法的關系,理解分數的基本性質,溝通知識間的聯系。
多媒體課件 長方形白紙、圓片,彩色筆等。
一、 創設情境,激趣導入
生1:四、五、六年級分的地一樣多。
生2:……
師:到底校長分的公平不公平,我們來做個實驗吧?
二、動手操作,探究新知
1、小組合作,實驗探究。
師:請同學們拿出你們準備好的學具,按平時的分組習慣四人一組,用你們的學具來代替這塊地,像校長一樣來分地吧。
2、匯報結果
師生交流:你們是怎樣做的?誰能說一說,請幾個同學上臺演示并口述演示過程。
生1:用三張同樣的長方形的紙來代替這塊地,分別涂出其中的三分之一,六分之二,九分之三。經過對比發現三塊地一樣多。
生2:用三個同樣的圓片分別涂出其中的三分之一,六分之二,九分之三。經過對比發現三塊地一樣多。
生3:用三條線段分別畫出其中的三分之一,六分之二,九分之三。經過對比發現三塊地一樣多。
生4:把分數化成小數,他們的商也一樣,所以三塊地的面積一樣大 。
生5:……
3、課件展示,得出結論。師:校長分的和你們一樣嗎?我們再來看看小電腦是如何拼的,(利用優質資源課件演示分地的過程,師生共同觀察總結得到校長分的地一樣多。)
(設計意圖:這樣設計的目的是為了更有利于學生主體個性的發揮,在探究活動中充分發揮學生的個體的潛能,給學生足夠的時間和想象的空間,進行小組合作式的探究活動,讓學生自由的猜想,使實驗成為自己的需要,同時讓學生思考用什么方法驗證,使學生帶著濃濃的興趣進入探究新的學習活動之中。)
4、探索分數的基本性質。
師:三個年級分的地一樣多,那么你們覺得、 這三個分數的大小怎么樣?
生:相等。
師:同學們請看這組分數有什么特點?(板書 =)
生:分數的分子分母發生了變化分數的大小不變。
生:分子分母同時乘2,……
師:誰能用一句換來描述一下這個規律?
生:給分數的分子分母同時乘相同的數。(師隨著板書)
師:同學們在反過來從右往左觀察,分數的分子、分母有什么變化規律?
生:分數的分子分母同時除以相同的數。
師:像這樣給分數的分子分母同時乘或(除以)相同的數,分數的大小不變。就是我們這節課學習的新知識。(板書 分數的基本性質)。
師:結合我們的預習,對于分數的基本性質同學們還有什么不同的意見?
生:0除外。
師:為什么0要除外?
生:因為分數的分母不能為0.
師:(補充板書0除外)在分數的基本性質中,那幾個詞比較重要?
生:同時 相同 0除外
生:商不變的性質。
師:為什么?
生:我們學過分數與除法的關系,被除數相當于分子,除數相當于分母,所以他們是相通的。
師:數學知識中有許多知識如像商不變性質與分數的基本性質是一致的。因此平時學習中我們要觸類旁通,靈活運用,才會舉一反三。
三、應用新知,練習鞏固。
(一) 練一練
(二)摸球游戲。老師手中有一個箱子,里面裝有許多水果,水果上面寫著不同的分數,如果你摸到一個水果,說出一個與它大小相等,而分子分母不同的新分數,這個水果就獎勵給你。
(二) 判斷(搶答)
1、 分數的分子、分母都乘過或除以相同的數分數的大小不變。( )
2、 把的分子縮小5倍,分母也縮小5倍分數的大小不變。( )
3、 給分數的分子加上4,要是分數的大小,分母也要加上4。( )
(四)測一測
1、把和都化成分母是10而大小不變的分數。
2、把和都化成分子是4而大小不變的分數。
3、的分子增加2,要是分數大小不變,分母應增加幾?
四、總結。
1、這節課大家表現的都很棒,誰能說說你這節課你都知道哪些知識?
2、把板書最后補充成一條魚,希望大家擁有一雙明亮的眼睛,肚子里裝滿知識,在知識的海洋里遨游。(完成板書)
五、作業
練習冊2、4題
板書設計:
給分數的分子分母同時乘或除以相同的數(0除外)分數的大小不變。
分數的演講篇三
1、教材內容
《分數的基本性質》這一課是課改版小學數學教材第十冊的教學內容,學習本內容之前,學生已清楚理解分數的意義,明確分數與除法的關系,商不變性質等知識,這些都為本課學習做了知識上的鋪墊。分數的基本性質是一種規律性知識,分數的分子分母變了,分數的大小會變嗎?分數的分子分母如何變化,分數的大小不變呢?學生在這種變與不變中發現規律。
2、知識間的聯系:
七冊:商不變性質 十冊:分數的基本性質 十二冊:比的基本性質
同時《分數的基本性質》也是學生學習分數加減法的基礎。所以,本節課的教學內容具有比較重要的地位。
新的課程標準提出:教師應向學生提供充分從事數學活動的機會,幫助他們在自主探索和合作交流的過程中真正理解和掌握基本的數學知識與技能、數學思想和方法。
根據這一新的理念,我認為教師可以為學生創設一種大問題背景下的探索活動,使學生在一種動態的探索過程中自己發現分數的基本性質,從而體驗發現真理的曲折和快樂,感受數學的思想方法,體會科學的學習方法。所以,教師的著眼點,不能只是規律的結論和應用,而應有意識地突出思想和方法。基于以上思考,本課讓學生經歷:舊知喚醒(復習商不變性質與分數與除法的關系)新知猜想(分數中是否有類似的性質,如果有,是一個什么樣的性質?)實踐探究(看圖分類)得出結論(研究卡)深化認識(對結論的理解,嘗試練習,理解其中的變與不變,能用字母來表示式子)練習提高(基本題、綜合題、加深題)數學建模(用字母來表示分數的基本性質)建立聯系(分數的基本性質與商不變性質的聯系)。讓學生對于分數的基本性質能在數學的層面上有一個較為完整、清晰與明確的掌握。
前測:(問卷形式)
問題1:你知道分數的基本性質嗎?你是怎樣理解的,試著舉例說明。
2:試著做一做下面這些題比較大小:
4/7○2/7 1/2○2/4 3/5○9/15
分析:暫無
結論:暫無
教學目標:
1、讓學生經歷分數基本性質的探究過程,理解和掌握分數的基本性質,初步建立數學模型。
2、利用分數的基本性質把一個分數化為指定分母(或分子)而大小不變的分數。
3、培養學生的觀察、概括等思維能力及(滲透變與不變)數學學習興趣。
教學重點:
理解掌握分數的基本性質,它是約分,通分的依據
解決策略:通過讓學生經歷猜想驗證得出結論實踐練習這樣的學習過程,掌握知識的要點:什么是同時?方法是:乘或除以,要點:相同的數(0除外),最終:分數的大小不變。
教學難點:
理解和掌握分數的基本性質。
解決策略:通過初步建立數學模型,使學生對分數的基本性質這個結論能夠擺脫表象的依賴,即對具體事物或圖例,從而從而成熟地思考、理解。
教法:樹立以以學生發展為本、以學定教的思想,為實現教學目標,有效地突出重點、突破難點,我遵循學生的認知規律,以建構主義學習理論為指導,在探究分數的基本性質過程中,采取學生動手操作、小組討論、合作探究等方式,引導學生進行比較、觀察、分析,充分運用知識遷移的規律,在感知的基礎上加以抽象、概括,進行歸納整理,采取遷移教學法、引導發現法組織教學。
學法:有效的數學學習活動,不能單純模仿與記憶,動手實踐、自主探索與合作交流是學生學習數學的重要方式。在學習例題的過程中學生主要采用自學嘗試法,獨立自主地學習將分數化成分母不同但大小相同的分數,并嘗試完成做一做,達到檢驗自學的目的。通過觀察、比較、提出問題并解決問題來進行自主探索與合作交流,充分發揮學生主體參與作用、激發學生學習愛好,同時讓學生獲得成功體驗。
一、遷移舊知.提出猜想
1回憶舊知
被除數除數=
被除數和除數同時乘或除以相同的數(零除外),商不變。
2、提出猜想:
既然分數與除法的關系這么緊密.除法有商不變性質,那分數是否也會有這樣的性質,請大家大膽猜想一下。學生匯報后投影出示:分數的分子和分母同時乘或除以相同的數(零除外),分數的大小不變。
二、驗證猜想,建構新知
環節1、看圖分類
下面是一組相等的正方形,請寫出每個圖形陰影部分所表示的分數,并把相同的分數分在一起。
通過動手操作,使學生不僅明白它們相等,滲透它們是因為什么而相等的為后面的實驗做好準備,避免學生出現盲目行動,同時也是為學生探究方法的多元化創造條件。
環節2、討論方法
師:你是怎么判斷它們相等的?
師:它們相等,用算式可以怎么表示?
1/2 = 2/4 = 4/8
通過讓學生表述怎么判斷它們相等的鍛煉學生的'表達能力。
3、研究規律
利用研究卡進行研究。
確定的研究對象
分子和分母同時乘上或者
除以一個相同的數
得到的分數
研究對象與得到的分數相等嗎?
相等( )不相等()
猜想是否成立?
成立( )不成立( )
充分利用學生的生成資源:揭示課題:分數的分子和分母同時乘或除以相同的數(0除外),分數的大小不變。
第二層:教師通過追問和簡單的練習重點處理分數基本性質的關鍵詞,滲透變與不變的數學思想。
師:為什么要0除外?
師:對于這句話,你是怎么理解的?(讓學生互相討論,并進行說明。)
師:這里面什么變了,什么不變?(生:分子和分母變了,但分數的大小不變)
師:分子與分母是怎樣變化的?(同時乘或除以相同的數,0除外)
師:分數的基本性質與商不變性質有什么聯系?
環節4、質疑完善
3/4 = 3( )/ 4( )
師:括號中可以填哪些數?
預設:可以填無數個數
師:如果只用一個數來表示,填什么數好?
預設:字母
師:這個字母有什么特殊要求嗎?(0除外)
得到一個初級的數學模型。3/4= 3x/ 4x(x0)
讓學生打開課本進行閱讀、內化,并想一想還有什么問題嗎?
通過這個環節的練習,進行第一次數學建構。
三、練習升華
通過以下練習進一步鞏固分數的基本性質,使學生初步利用分數的基本性質把一個分數化為指定分母(或分子)而大小不變的分數。
2、把5/6和1/4都化為分母為12而大小不變的分數。
3、把2/3和3/4都化為分子為6而大小不變的分數。
4、把2/5的分子加上2以后,要使分數的大小不變,分母應加上多少?
5、和 哪一個分數大,你能講出判斷的依據嗎?
四、總結延伸
師:這節課學了什么?
師:如果一個分數為a/b,你能用一個式子來表示分數的基本性質嗎?
a/b=ax/ 4x(x0)或a/b=ax/ 4x(x0)
在這個環節中,數學的模型才真正的建立。模型一方面便于學生記憶,便于學生理解意義,而且數學化地表示數學也是高年級學生所必備的。
五、作業p87-1、2
板書設計
分數基本性質
分數的分子和分母同時乘或除以相同的數(0除外),分數的大小不變。
68
34
1216
分數的演講篇四
無私的愛可以點燃生活的希望,溫暖的心可以慰藉困苦的生命。伸出熱情的雙手,幫助那些在貧困中掙扎的人們,讓他們在不幸的嚴寒中,可以沐浴著縷縷的春風;在重重的艱難中,胸中蕩漾著陣陣暖流。
原工學院有一個扶貧助教活動,扶助對象是__區二段__里__門__號的__和__姐弟倆,自原工學院分成生物工程與食品科學學院和機械學院,我們生食學院主動接過這個活動,一直堅持到現在,從未間斷,并且在__年被團市委評為市級“學雷鋒志愿服務先進集體”。
自從原工學院分團委手中接過這個“愛心火炬”,我們就決心要把這個“火炬”傳下去,并且要越做越好。在這一年多里,我們積累經驗,在活動形式上創新,活動開展越來越細,責任到人,贏得了廣大師生的支持和贊許。
一、根據扶助對象的要求,我們開展了義務家教工作。每次活動的班級挑出兩到三名學習成績優秀的同學,由青年志愿者協會的干事帶領給孩子進行家教,每班一周,一周兩到三次。
二、為了使工作更加完善,我們生食學院組織了各年級同學進行了“扶貧捐款”活動,同學們積極參加、踴躍捐款。到目前為止,我們共集到捐款近千元,并且我們實行帳目公開,捐款由專人保管等措施,保證捐款都用到扶助對象身上。
三、我們還不定期給扶助對象帶去作文本、課外練習冊、書包、鉛筆盒等與學習密切相關的禮物,這些物品都是由同學們的愛心捐款購買的,代表了同學們的一片心意。
四、為了豐富孩子的課余生活,我們在05年每星期日帶張志斌來學校參觀,并且教其電腦的基本知識。
五、扶貧形式多種多樣,有家教、聊天等,在節假日我們還會帶孩子游玩天津。
六、每逢過節,我們都會為扶助對象送去節日的祝福并且給他們帶去節日禮物,讓他們充分感受到我們對他們的關懷,比如我們每年中秋節給他們家送去中秋月餅及節日的問候。
七、為了不斷提高活動質量,在各班扶貧助教結束后,每班要求寫一份扶貧助教總結,談談自己的感想和認識。我們會選出優秀的文章推薦到宣傳中心發表。
我們生食學院分團委和青年志愿者協會對此工作傾注了不少心血,同時也達到了發揚雷鋒精神、調動同學獻愛心積極性的目的,使同學們體會到幫助別人的樂趣,切切實實的體會到了雷鋒精神的深刻含義。
從原工學院到現在,我們的扶貧活動已經有五年了,雖然人員有些變動,但是我們的活動從來沒有間斷過,證明了雷鋒精神并不是一句空口號,也不是在新世紀被人們恥笑的唱高調,而是我們青年志愿者們的一份關懷,一份愛心,一份祝福。我們的愛心無怨無悔,我們會把這“愛心火炬”繼續傳遞下去。
分數的演講篇五
1、以學生發展為本,著力強化個人主體意識,同時關注學生學習動機、興趣等情感態度。
2、從學生已有的認知發展水平和知識經驗出發,為學生提供充分從事數學活動的機會和充分的'練習空間。
3、致力于改變學生的學習方式,關注過程,讓學生經歷知識的形成過程,感受驗證、轉化,以及“用數學學數學”等數學思想方法。
1、教學內容
《分數的基本性質》一課是五年級下冊第四單元的一個內容。這部分內容是在學生學習了分數的意義、分數與除法的關系、商不變性質等知識的基礎上進行教學的,它是以后學習約分、通分的依據。因此,分數的基本性質是本單元的教學重點之一。在講解這一知識點時,應注意加強整數商不變性質的回顧,這樣既幫助學生理解了分數的基本性質,又溝通了新舊知識的內在聯系。
2、學情分析
學生在三年級上學期已經初步認識了分數,知道分數各個部分的名稱,會讀、寫簡單的分數,會比較分子是1的分數,以及同分母分數的大小。還學習了簡單的同分母分數的加、減法。在本學期又學習了因數、倍數等概念,掌握了2、3、5的倍數的特征,為學習本單元知識打下了基礎。另外,本單元的知識內容概念較多,比較抽象,學生的抽象邏輯思維在很大程度上還需要直觀形象思維的支撐。在數學教學中,化抽象為具體、直觀,對于順利開展教學是十分必要的。
3、教學目標:
(1)通過教學使學生理解和掌握分數的基本性質,能運用分數的基本性質,把一個分數化成指定分母(或分子)而大小不變的分數,再應用這一規律解決簡單的實際問題。
(2)引導學生在參與觀察、比較、猜想、驗證等學習活動過程中,有條件、有根據的思考、探究問題,培養學生的抽象概括能力。
(3)滲透初步的辨證唯物主義思想教育,使學生受到數學思想方法的熏陶,培養樂于探究的學習態度。
教學重點:
理解和掌握分數的基本性質
教學難點:
學習自主探索,發現和歸納分數基本性質,以及應用它解決相應的問題。
教具學具:
課件,三張同樣大小的長方形紙條、彩筆。
1、實際操作法
指導學生親自動手折一折,涂一涂,比一比,從這些實踐活動中加深學生對分數基本性質的理解,促使學生的感性認識逐步理性化。
2、直觀演示法
先讓學生充分感知,發現規律,然后比較歸納,最后概括出分數的基本性質,從而使學生的思維從形象思維過渡到抽象思維。
3、啟發式教學法
運用知識遷移規律組織教學,用數學學數學,層層深入,促使學生在積極的思維中獲取新知。
1、學生在學習分數的基本性質時,引導學生采用自主發現法、操作體驗法,學生在紙條上涂出相應的陰影部分后,必然會對那三個圖形進行觀察和比較,從中有所發現。之后老師通過啟發學生運用分數的基本性質,證明那三個分數大小相等,在嘗試中發現,在實踐中體驗,從而加深學生對分數基本性質的理解。
的分數,并嘗試完成練習題,達到檢驗自學的目的。
(一)、創設情境激趣引新
(二)、新知探索
動手操作、形象感知
觀察比較、探究規律
首尾照應、釋疑解惑
(三)、鞏固新知
判一判填一填找一找
(四)、擴展延伸
1、創設情境,激發興趣,揭示課題。
上課伊始我利用阿凡提為三兄弟分地的故事來激發學生的學習興趣,讓學生親自動手折一折、分一分、比一比,從直觀上讓學生感受到這幾個分數大小是相等的,而這幾個分數的分子和分母都不相等,這其中有什么規律呢?繼而揭示課題。
(設計意圖)好奇是學生的天性,通過分地故事能快抓住學生的好奇心,使他們在心理上產生懸念,帶著疑問迅速切入正題。
2、探索新知
(1)、動手操作、形象感知
首先讓學生用三張同樣大小的長方形紙條折一折,再涂色表示出每張紙的1/3,2/6,4/8。觀察涂色部分,說說發現了什么?在學生匯報時,說出:涂色部分面積相等,也就說明這三個分數大小相等。然后通過電腦再進一步證實學生的發現:通過觀察,我們發現三個陰影部分大小相等,說明三個分數大小相等。
(設計意圖)主要是利用學生愛動手以及直觀思維的特點,讓學生在動手操作過程中不僅復習了分數的意義,為下面導入新知識作好遷移,而且激活了課堂氣氛,營造了良好的學習開端。
(2)、觀察比較,探究規律
首先,在學生折紙的基礎上,通過小組討論交流總結出分數的基本性質,讓學生理解“同時乘上或者除以”的意義,以及為什么要強調“0除外”這個條件。其次,總結出分數的基本性質后,要和以前學過的商不變規律進行對比,找出二者間的聯系,使學生更好的理解、運用性質。
(設計意圖)這一環節重在培養了學生大膽交流、語言表達的能力,同時學生在匯報交流中使問題逐漸明朗化,最終驗證了自己的猜想。要充分放手,讓學生暢所欲言。
3、鞏固新知
在鞏固階段,我安排了三個不同層次的習題。其中“填一填”是基礎練習,但也包含有6/12=()/()的發散題?!芭幸慌小币彩菍Α胺謹档幕拘再|”做進一步的詮釋?!罢f一說”是一種變換了形式的習題,難度不大,只不過說法不同,最后還安排了“想一想”環節,解決的方法已經蘊含在前面的“聽一聽”環節中。整個習題設計部分,題目呈現方式的多樣,吸引了學生的注意力,激發了學生興趣。同時練習題排列遵循由易到難的原則,層層深入,也有效的培養了學生創新意識和解決問題的能力。
4、拓展延伸
通過質疑反思、步步深入的交流活動,學生對分數的基本性質探究更深入,理解更完善。此時學生的視野已不盡限于分數的基本性質,而是擴展到研究分數大小變化的規律;最后的拓展性提問,使學生思維發散,聯系實際,運用規律,并自然引出以后的學習內容,激發學生不斷探索新知的欲望。
分數的分子、分母同時乘以或除以相同的數。
分數的大小不變。