總結是對某一特定時間段內的學習和工作生活等表現情況加以回顧和分析的一種書面材料,它能夠使頭腦更加清醒,目標更加明確,讓我們一起來學習寫總結吧。那么我們該如何寫一篇較為完美的總結呢?以下我給大家整理了一些優質的總結范文,希望對大家能夠有所幫助。
關于數學必修一知識點總結怎么寫一
>高二數學必修四知識點>(借助多媒體)給出一張王小丫的圖片(學生情緒高漲),大家都知道王小丫是cctv-2“開心詞典”的欄目主持人,下面王小丫給大家出題啦!
觀察下列各數列,并填空,然后總結它們有什么共同的特點?具有什么性質?你能給它們起個名字嗎?
①1,2,3,4,5,6,7,8, ,…
②3,6,9,12,15, ,21,24,…
③-1,-3,-5,-7,-9,-11, ,-15,…
④2,2,2,2,2,2, ,2,2,…
設計思路:1.通過幾個具體的等差數列,為學習新知識創設問題情境,激發學生的求知欲。2.由學生觀察數列特點,初步認識等差數列的特征,為后面引出等差數列的概念學習建立基礎。3.學生已具備一定的觀察能力和抽象概括能力,完全有條件、有可能發現它們的共同特點和性質。4.對問題的總結可以培養學生由具體到抽象、由特殊到一般的認知能力。5.按照“觀察--猜想--證明”的思維模式設計問題,符合學生的認知規律,更培養學生完整地認識數學體系。
如果一個數列,從第二項開始它的每一項與前一項之差都等于同一常數,這個數列就叫等差數列, 這個常數叫做等差數列的公差,通常用字母d來表示。
思考并交流對概念的理解,并總結:
①“從第二項起”滿足條件;
②公差d一定是由后項減前項所得;
③每一項與它的前一項的差必須是同一個常數(強調“同一個常數”);
在理解概念的基礎上,由學生將等差數列的文字語言轉化為數學語言,歸納出數學表達式: (n≥1)
同時為了配合概念的理解,我找了5組數列,由學生判斷是否為等差數列,是等差數列的找出公差。
1). 9 ,8,7,6,5,4,……;√ d=-1
2). 0.70,0.71,0.72,0.73,0.74……;√ d=0.01
3). 0,0,0,0,0,0,…….; √ d=0
4). 1,2,3,2,3,4,……;×
5). 1,0,1,0,1,……×
其中第一個數列公差d0 d=""0,第三個數列公差d=0
由此強調:公差可以是正數、負數,也可以是0
a2-a1=d 即:a2=a1+d
a3-a2=d 即:a3=a2+d
……
猜想:
a40= a1+39d
進而歸納出等差數列的通項公式: an=a1+(n-1)d
設計思路:在歸納等差數列通項公式中,我采用討論式的教學方法。給出等差數列的首項,公差d,由學生研究分組討論的通項公式。通過總結的通項公式由學生猜想的通項公式,進而歸納 的通項公式。整個過程由學生完成,通過互相討論的方式既培養了學生的協作意識,又化解了教學難點。
a2-a1=d
a3=a2+d
……
an-an-1=d 將這n-1個等式左右兩邊分別相加,就可以得到 an–a1= (n-1) d即an=a1+(n-1) d ,當n=1時,此式也成立,所以對一切n∈n﹡,上面的公式都成立,因此它就是等差數列{an }的通項公式。
在迭加法的證明過程中,我采用啟發式教學方法。利用等差數列概念啟發學生寫出n-1個等式。將n-1個等式相加,證出通項公式。在這里通過該知識點引入迭加法這一數學思想,逐步達到“注重方法,凸現思想” 的教學要求。
例1 (1)求等差數列8,5,2,…的第20項;第30項;第40項
(2)-401是不是等差數列-5,-9,-13,…的項?如果是,是第幾項?
例2 在等差數列{an}中,已知a5=10, a20=31,求首項與公差d。
這一環節是使學生通過例題和練習,增強對通項公式含義的理解以及對通項公式的運用,提高解決實際問題的能力。通過例1和例2向學生表明:要用運動變化的觀點看等差數列通項公式中的a1、d、n、an這4個量之間的關系。當其中的三個量已知時,可根據該公式求出第四個量。
例3 梯子的最高一級寬33cm,最低一級寬110cm,中間還有10級,各級的寬度成等差數列。計算中間各級的寬度。
設置此題的目的:1.加強同學們對應用題的綜合分析能力,2.通過數學實際問題引出等差數列問題,激發了學生的興趣;3.再者通過數學實例展示了“從實際問題出發經抽象概括建立數學模型,最后還原說明實際問題的“數學建模”的數學思想方法。
1、課后的練習中的第1題和第2題(要求學生在規定時間內完成)。
目的:使學生熟悉通項公式,對學生進行基本技能訓練。
2、課后習題第3題和第4題。
目的:對學生加強建模思想訓練。
1.等差數列的概念及數學表達式an-an-1=d (n≥1)。
強調關鍵字:從第二項開始它的每一項與前一項之差都等于同一常數。
2.等差數列的通項公式會知三求一。
3.用“數學建模”思想方法解決實際問題。
必做題:課本習題第2,6 題
選做題:已知等差數列{an}的首項= -24,從第10項開始為正數,求公差d的取值范圍。(目的:通過分層作業,提高同學們的求知欲和滿足不同層次的學生需求)
關于數學必修一知識點總結怎么寫四
教學準備
教學目標
1、應用正弦余弦定理解斜三角形應用題的一般步驟及基本思路
(1)分析,(2)建模,(3)求解,(4)檢驗;
2、實際問題中的有關術語、名稱:
(1)仰角與俯角:均是指視線與水平線所成的角;
(2)方位角:是指從正北方向順時針轉到目標方向線的夾角;
(3)方向角:常見的如:正東方向、東南方向、北偏東、南偏西等;
3、用正弦余弦定理解實際問題的常見題型有:
測量距離、測量高度、測量角度、計算面積、航海問題、物理問題等;
教學重難點
1、應用正弦余弦定理解斜三角形應用題的一般步驟及基本思路
(1)分析,(2)建模,(3)求解,(4)檢驗;
2、實際問題中的有關術語、名稱:
(1)仰角與俯角:均是指視線與水平線所成的角;
(2)方位角:是指從正北方向順時針轉到目標方向線的夾角;
(3)方向角:常見的如:正東方向、東南方向、北偏東、南偏西等;
3、用正弦余弦定理解實際問題的常見題型有:
測量距離、測量高度、測量角度、計算面積、航海問題、物理問題等;
教學過程
一、知識歸納
1、應用正弦余弦定理解斜三角形應用題的一般步驟及基本思路
(1)分析,(2)建模,(3)求解,(4)檢驗;
2、實際問題中的有關術語、名稱:
(1)仰角與俯角:均是指視線與水平線所成的角;
(2)方位角:是指從正北方向順時針轉到目標方向線的夾角;
(3)方向角:常見的如:正東方向、東南方向、北偏東、南偏西等;
3、用正弦余弦定理解實際問題的常見題型有:
測量距離、測量高度、測量角度、計算面積、航海問題、物理問題等;
二、例題討論
一)利用方向角構造三角形
四)測量角度問題
例4、在一個特定時段內,以點e為中心的7海里以內海域被設為警戒水域.點e正北55海里處有一個雷達觀測站a.某時刻測得一艘勻速直線行駛的船只位于點a北偏東。
高中數學教案 | 高三數學教案 | 高三數學教學計劃
關于數學必修一知識點總結怎么寫五
一、定義與定義式:
自變量x和因變量y有如下關系:
y=kx+b
則此時稱y是x的一次函數。
特別地,當b=0時,y是x的正比例函數。
即:y=kx(k為常數,k≠0)
二、一次函數的性質:
1.y的變化值與對應的x的變化值成正比例,比值為k
即:y=kx+b(k為任意不為零的實數b取任何實數)
2.當x=0時,b為函數在y軸上的截距。
三、一次函數的圖像及性質:
1.作法與圖形:通過如下3個步驟
(1)列表;
(2)描點;
(3)連線,可以作出一次函數的圖像——一條直線。因此,作一次函數的圖像只需知道2點,并連成直線即可。(通常找函數圖像與x軸和y軸的交點)
2.性質:(1)在一次函數上的任意一點p(x,y),都滿足等式:y=kx+b.(2)一次函數與y軸交點的坐標總是(0,b),與x軸總是交于(-b/k,0)正比例函數的圖像總是過原點。
3.k,b與函數圖像所在象限:
當k0時,直線必通過一、三象限,y隨x的增大而增大;
當k0時,直線必通過二、四象限,y隨x的增大而減小。
當b0時,直線必通過一、二象限;
當b=0時,直線通過原點
當b0時,直線必通過三、四象限。
特別地,當b=o時,直線通過原點o(0,0)表示的是正比例函數的圖像。
這時,當k0時,直線只通過一、三象限;當k0時,直線只通過二、四象限
四、確定一次函數的表達式:
已知點a(x1,y1);b(x2,y2),請確定過點a、b的一次函數的表達式。
(1)設一次函數的表達式(也叫解析式)為y=kx+b.
(2)因為在一次函數上的任意一點p(x,y),都滿足等式y=kx+b.所以可以列出2個方程:y1=kx1+b……①和y2=kx2+b……②
(3)解這個二元一次方程,得到k,b的值。
(4)最后得到一次函數的表達式。
五、一次函數在生活中的應用:
1.當時間t一定,距離s是速度v的一次函數。s=vt.
2.當水池抽水速度f一定,水池中水量g是抽水時間t的一次函數。設水池中原有水量s.g=s-ft.
六、常用公式:(不全,希望有人補充)
1.求函數圖像的k值:(y1-y2)/(x1-x2)
2.求與x軸平行線段的中點:|x1-x2|/2
3.求與y軸平行線段的中點:|y1-y2|/2
4.求任意線段的長:√(x1-x2)’2+(y1-y2)’2(注:根號下(x1-x2)與(y1-y2)的平方和)
高一數學函數知識點
1.拋物線是軸對稱圖形。對稱軸為直線
x=-b/2a。
對稱軸與拋物線的交點為拋物線的頂點p。
特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)
2.拋物線有一個頂點p,坐標為
p(-b/2a,(4ac-b’2)/4a)
當-b/2a=0時,p在y軸上;當δ=b’2-4ac=0時,p在x軸上。
3.二次項系數a決定拋物線的開口方向和大小。
當a0時,拋物線向上開口;當a0時,拋物線向下開口。
|a|越大,則拋物線的開口越小。
4.一次項系數b和二次項系數a共同決定對稱軸的位置。
當a與b同號時(即ab0),對稱軸在y軸左;
當a與b異號時(即ab0),對稱軸在y軸右。
5.常數項c決定拋物線與y軸交點。
拋物線與y軸交于(0,c)
6.拋物線與x軸交點個數
δ=b’2-4ac0時,拋物線與x軸有2個交點。
δ=b’2-4ac=0時,拋物線與x軸有1個交點。
δ=b’2-4ac0時,拋物線與x軸沒有交點。x的取值是虛數(x=-b±√b’2-4ac的值的相反數,乘上虛數i,整個式子除以2a)
關于數學必修一知識點總結怎么寫六
課題名稱
《2.1空間點、直線與平面之間的位置關系》
科 目
高中數學
教學時間
1課時
學習者分析
通過第一章《空間幾何體》的學習,學生對于立體幾何已經有了初步的認識,能夠識別棱柱、棱錐、棱臺、圓柱、圓錐、圓臺、球,并理解它們的幾何特征。但是這種理解還只是建立在觀察、感知的基礎上的,對于原理學生是不明確的,所以學生此時有很強的求知欲,急于想搞清楚為什么;同時學生經過高中一年的學習,已經具備了一定的邏輯推理能力,只是缺乏訓練,不夠嚴密,不夠清晰;有一定的自主探究和合作學習的能力,但有待提高,并愿意動手并參與分組討論。
教學目標
一、知識與技能
1.理解空間點、直線、平面的概念,知道空間點、直線、平面之間存在什么樣的關系;
2.記憶三公理三推論,能夠用簡單的語言概括三公理三推論,會用圖形表示三公理三推論,并將其轉化成數學符號語言;
3. 明確三公理三推論的功能,掌握使用三公理三推論解決立體幾何問題的方法。
二、過程與方法
1.通過自己動手制作模型,直觀地感知空間點、直線與平面之間的位置關系,以及三公理三推論;
2. 通過思考、討論,發現三公理三推論的條件和結論;
3.通過例題的訓練,進一步理解三公理三推論,明確三公理三推論的功能。
三、情感態度與價值觀
1.通過操作、觀察、討論培養對立體幾何的興趣,建立合作的意識;
2.感受立體幾何邏輯體系的嚴密性,培養學生細心的學習品質。
教學重點、難點
1.理解三公理三推論的概念及其內涵;
2.使用三公理三推論解決立體幾何問題。
教學資源
(1)每位同學準備兩張硬紙板,其中一張中間用小刀劃條縫,鉛筆三根;
(2)教師自制的多媒體課件。
《2.1空間點、直線與平面之間的位置關系》教學過程的描述
教學活動1
一、導入新課
1. ?回憶構成平面圖形的基本元素:點、直線。①兩者都是最原始的概念,點沒有大小、面積、厚度,直線是向兩側無限延伸的;②點用大寫英文字母表示,直線用小寫英文字母表示;③ ?如果將點看作元素,則直線是一系列點構成的集合,所以點在直線上記作,點不在直線上記作;
2. 提出問題:構成空間幾何體有哪些基本元素?(大屏幕出示棱柱、棱錐、棱臺)學生很快得到答案:點、直線、平面。
3. 引入課題:什么是平面?點、直線、平面之間有什么樣的位置關系?平面有什么性質?這就是我們這堂課要研究的問題。
教學活動2
二、觀察操作,合作探究
1. 理解平面的概念
平面也是一個最原始的概念,是向四周無限延伸的,沒有邊界。一般用希臘字母、、,…表示平面,或者記為平面abc,平面abcd等等。
2. 明確空間點、直線、平面之間存在的位置關系
①點與直線;②點與平面;③直線與平面。
3. 探究平面的性質
⑴ 公理一
① 學生操作,研究如何將鉛筆放置到硬紙板內
問題一:鉛筆與硬紙板只有一個公共點可以么?
問題二:要將鉛筆放置到硬紙板內至少需要幾個公共點?
學生通過操作,體會到要將鉛筆放置到硬紙板內,只需將鉛筆上兩點放置到硬紙板內。
② 抽象出公理一
問題一:如何用圖形表示公理一?
問題二:要求學生將公理一表示成數學符號的形式;
問題三:公理一有什么功能?
③ 動畫演示公理一
⑵ 公理二
① 學生操作,研究過空間中三點能確定幾個平面
問題一:若三點共線,能確定幾個平面?
問題二:要確定一個平面,需要三點滿足什么條件?
學生通過操作,體會公理二所表達的含義。
② 抽象出公理二
問題一:如何用圖形表示公理二?
問題二:要求學生將公理二表示成數學符號的形式;
問題三:還能根據什么條件確定一個平面?引出三推論。
問題四:公理二及三推論有什么功能?
③ 動畫演示公理二及三推論
⑶ 公理三
① 學生操作,展示兩個平面只有一個公共點
問題一:兩個平面真的只有一個公共點么?
問題二:這個公共點與這條公共直線有什么關系?
學生通過操作,體會公理三所表達的含義。
② 抽象出公理三
問題一:如何用圖形表示公理三?
問題二:要求學生將公理三表示成數學符號的形式;
問題三:公理三有什么功能?
③ 動畫演示公理三
教學活動3
三、歸納總結,加深理解
⒈ 平面具有無限延展性;
⒉ 公理一有什么功能?條件是什么?
⒊ 公理二有什么功能?條件是什么?
⒋ 公理三有什么功能?條件是什么?
教學活動4
四、布置作業,課外研討
⒈ 課后練習p43:1、2、3、4;
⒉ 平面幾何中證明平行四邊形有哪些定理?這些定理在空間中能否成立?說明理由。
關于數學必修一知識點總結怎么寫七
教學類型:探究研究型
設計思路:通過一系列的猜想得出德。摩根律,但是這個結論僅僅是猜想,數學是一門科學,所以需要論證它的正確性,因此本節通過剖析維恩圖的四部分來驗證猜想的正確性,并對德摩根律進行簡單的應用,因此我們制作了本微課。
教學過程:
一、片頭
(20秒以內)
內容:你好,現在讓我們一起來學習《集合的運算——自己探索也能發現的數學規律(第二講)》。
第 1 張ppt
12秒以內
二、正文講解
(4分20秒左右)
1、引入:牛頓曾說過:“沒有大膽的猜測,就做不出偉大的發現。”
上節課老師和大家學習了集合的運算,得出了一個有趣的規律。課后,你舉例驗證了這個規律嗎?
那么,這個規律是偶然的,還是一個恒等式呢?
第 2 張ppt
28秒以內
2、規律的驗證:
試用集合a,b的交集、并集、補集分別表示維恩圖中1,2,3,4及彩色部分的集合,通過剖析維恩圖來驗證猜想的正確性使用
第 3 張ppt
2分10 秒以內
3、抽象概括: 通過我們的觀察和驗證,我們發現這個規律是一個恒等式。
而這個規律就是180年前著名的英國數學家德摩根發現的。
為了紀念他,我們將它稱為德摩根律。
原來我們通過自己的探索也能發現這么偉大的數學規律。
第 4 張ppt
30秒以內
4、例題應用:使用例題形式,將的德摩根定律的結論加以應用,讓學生更加熟悉集合的運算
第 5 張ppt
1分20秒以內
三、結尾
(20秒以內)
通過這在道題的解答,我們發現德摩根律為解答集合運算問題提供了更為簡便的方法。
希望你在今后的學習中,勇于探索,發現更多有趣的規律。
第 6 張ppt
10秒以內
教學反思(自我評價)
學生在學習集合時會接觸到很多的集合運算,往往學生覺得這是集合中的難點,因此本節課通過一系列的猜想,以精彩的動畫展示,讓學生在直觀的環境下輕松的學習,提高學生學習數學的興趣,并通過層層深入的講解,讓學生進一步加強對集合運算的理解和應用能力,效果非常好。
關于數學必修一知識點總結怎么寫八
課題名稱
《2.1空間點、直線與平面之間的位置關系》
科 目
高中數學
教學時間
1課時
學習者分析
通過第一章《空間幾何體》的學習,學生對于立體幾何已經有了初步的認識,能夠識別棱柱、棱錐、棱臺、圓柱、圓錐、圓臺、球,并理解它們的幾何特征。但是這種理解還只是建立在觀察、感知的基礎上的,對于原理學生是不明確的,所以學生此時有很強的求知欲,急于想搞清楚為什么;同時學生經過高中一年的學習,已經具備了一定的邏輯推理能力,只是缺乏訓練,不夠嚴密,不夠清晰;有一定的自主探究和合作學習的能力,但有待提高,并愿意動手并參與分組討論。
教學目標
一、知識與技能
1.理解空間點、直線、平面的概念,知道空間點、直線、平面之間存在什么樣的關系;
2.記憶三公理三推論,能夠用簡單的語言概括三公理三推論,會用圖形表示三公理三推論,并將其轉化成數學符號語言;
3. 明確三公理三推論的功能,掌握使用三公理三推論解決立體幾何問題的方法。
二、過程與方法
1.通過自己動手制作模型,直觀地感知空間點、直線與平面之間的位置關系,以及三公理三推論;
2. 通過思考、討論,發現三公理三推論的條件和結論;
3.通過例題的訓練,進一步理解三公理三推論,明確三公理三推論的功能。
三、情感態度與價值觀
1.通過操作、觀察、討論培養對立體幾何的興趣,建立合作的意識;
2.感受立體幾何邏輯體系的嚴密性,培養學生細心的學習品質。
教學重點、難點
1.理解三公理三推論的概念及其內涵;
2.使用三公理三推論解決立體幾何問題。
教學資源
(1)每位同學準備兩張硬紙板,其中一張中間用小刀劃條縫,鉛筆三根;
(2)教師自制的多媒體課件。
《2.1空間點、直線與平面之間的位置關系》教學過程的描述
教學活動1
一、導入新課
1. ?回憶構成平面圖形的基本元素:點、直線。①兩者都是最原始的概念,點沒有大小、面積、厚度,直線是向兩側無限延伸的;②點用大寫英文字母表示,直線用小寫英文字母表示;③ ?如果將點看作元素,則直線是一系列點構成的集合,所以點在直線上記作,點不在直線上記作;
2. 提出問題:構成空間幾何體有哪些基本元素?(大屏幕出示棱柱、棱錐、棱臺)學生很快得到答案:點、直線、平面。
3. 引入課題:什么是平面?點、直線、平面之間有什么樣的位置關系?平面有什么性質?這就是我們這堂課要研究的問題。
教學活動2
二、觀察操作,合作探究
1. 理解平面的概念
平面也是一個最原始的概念,是向四周無限延伸的,沒有邊界。一般用希臘字母、、,…表示平面,或者記為平面abc,平面abcd等等。
2. 明確空間點、直線、平面之間存在的位置關系
①點與直線;②點與平面;③直線與平面。
3. 探究平面的性質
⑴ 公理一
① 學生操作,研究如何將鉛筆放置到硬紙板內
問題一:鉛筆與硬紙板只有一個公共點可以么?
問題二:要將鉛筆放置到硬紙板內至少需要幾個公共點?
學生通過操作,體會到要將鉛筆放置到硬紙板內,只需將鉛筆上兩點放置到硬紙板內。
② 抽象出公理一
問題一:如何用圖形表示公理一?
問題二:要求學生將公理一表示成數學符號的形式;
問題三:公理一有什么功能?
③ 動畫演示公理一
⑵ 公理二
① 學生操作,研究過空間中三點能確定幾個平面
問題一:若三點共線,能確定幾個平面?
問題二:要確定一個平面,需要三點滿足什么條件?
學生通過操作,體會公理二所表達的含義。
② 抽象出公理二
問題一:如何用圖形表示公理二?
問題二:要求學生將公理二表示成數學符號的形式;
問題三:還能根據什么條件確定一個平面?引出三推論。
問題四:公理二及三推論有什么功能?
③ 動畫演示公理二及三推論
⑶ 公理三
① 學生操作,展示兩個平面只有一個公共點
問題一:兩個平面真的只有一個公共點么?
問題二:這個公共點與這條公共直線有什么關系?
學生通過操作,體會公理三所表達的含義。
② 抽象出公理三
問題一:如何用圖形表示公理三?
問題二:要求學生將公理三表示成數學符號的形式;
問題三:公理三有什么功能?
③ 動畫演示公理三
教學活動3
三、歸納總結,加深理解
⒈ 平面具有無限延展性;
⒉ 公理一有什么功能?條件是什么?
⒊ 公理二有什么功能?條件是什么?
⒋ 公理三有什么功能?條件是什么?
教學活動4
四、布置作業,課外研討
⒈ 課后練習p43:1、2、3、4;
⒉ 平面幾何中證明平行四邊形有哪些定理?這些定理在空間中能否成立?說明理由。
關于數學必修一知識點總結怎么寫九
1.函數的定義
函數是高考數學中的重點內容,學習函數需要首先掌握函數的各個知識點,然后運用函數的各種性質來解決具體的問題。
設a、b是非空的數集,如果按照某種確定的對應關系f,使對于集合a中的任意一個數x,在集合b中都有唯一確定的數f(x)和它對應,那么就稱f:a-b為從集合a到集合b的一個函數,記作y=f(x),xa
2.函數的定義域
函數的定義域分為自然定義域和實際定義域兩種,如果給定的函數的解析式(不注明定義域),其定義域應指的是使該解析式有意義的自變量的取值范圍(稱為自然定義域),如果函數是有實際問題確定的,這時應根據自變量的實際意義來確定,函數的值域是由全體函數值組成的集合。
3.求解析式
求函數的解析式一般有三種種情況:
(1)根據實際問題建立函數關系式,這種情況需引入合適的變量,根據數學的有關知識找出函數關系式。
(2)有時體中給出函數特征,求函數的解析式,可用待定系數法。
(3)換元法求解析式,f[h(x)]=g(x)求f(x)的問題,往往可設h(x)=t,從中解出x,代入g(x)進行換元來解。掌握求函數解析式的前提是,需要對各種函數的性質了解且熟悉。
目前我們已經學習了常數函數、指數與指數函數、對數與對數函數、冪函數、三角函數、反比例函數、二次函數以及由以上幾種函數加減乘除,或者復合的一些相對較復雜的函數,但是這種函數也是初等函數。