作為一位兢兢業(yè)業(yè)的人民教師,常常要寫一份優(yōu)秀的教案,教案是保證教學(xué)取得成功、提高教學(xué)質(zhì)量的基本條件。那么我們?cè)撊绾螌懸黄^為完美的教案呢?以下是小編收集整理的教案范文,僅供參考,希望能夠幫助到大家。
圓錐的體積教案人教版 六年級(jí)下冊(cè)數(shù)學(xué)圓錐的體積教案篇一
1、使學(xué)生理解求圓錐體積的計(jì)算公式.
2、會(huì)運(yùn)用公式計(jì)算圓錐的體積.
圓錐體體積計(jì)算公式的推導(dǎo)過程.
正確理解圓錐體積計(jì)算公式.
一、鋪墊孕伏
1、提問:
(1)圓柱的體積公式是什么?
(2)投影出示圓錐體的圖形,學(xué)生指圖說出圓錐的底面、側(cè)面和高.
2、導(dǎo)入:同學(xué)們,前面我們已經(jīng)認(rèn)識(shí)了圓錐,掌握了它的特征,那么圓錐的體積怎樣計(jì)算呢?這節(jié)課我們就來研究這個(gè)問題.(板書:圓錐的體積)
二、探究新知
(一)指導(dǎo)探究圓錐體積的計(jì)算公式.
1、教師談話:
下面我們利用實(shí)驗(yàn)的方法來探究圓錐體積的計(jì)算方法.老師給每組同學(xué)都準(zhǔn)備了兩個(gè)圓錐體容器,兩個(gè)圓柱體容器和一些沙土.實(shí)驗(yàn)時(shí),先往圓柱體(或圓錐體)容器里裝滿沙土(用直尺將多余的沙土刮掉),倒人圓錐體(或圓柱體)容器里.倒的時(shí)候要注意,把兩個(gè)容器比一比、量一量,看它們之間有什么關(guān)系,并想一想,通過實(shí)驗(yàn)?zāi)惆l(fā)現(xiàn)了什么?
2、學(xué)生分組實(shí)驗(yàn)
3、學(xué)生匯報(bào)實(shí)驗(yàn)結(jié)果(課件演示:圓錐體的體積1、2、3、4、5) 下載1 下載2 下載3 下載4 下載5
①圓柱和圓錐的底面積相等,高不相等,圓錐體容器裝滿沙土往圓柱體容器里倒,倒了一次,又倒了一些,才裝滿.
②圓柱和圓錐的底面積不相等,高相等,圓錐體容器裝滿沙土往圓柱體容器里倒,倒了兩次,又倒了一些,才裝滿.
③圓柱和圓錐的底面積相等,高相等,圓錐體容器裝滿沙土往圓柱體容器里倒,倒了三次,正好裝滿.
……
4、引導(dǎo)學(xué)生發(fā)現(xiàn):
圓柱體的體積等于和它等底等高的圓錐體體積的3倍或圓錐的體積是和它等底等高圓柱體積的 .
板書:
5、推導(dǎo)圓錐的體積公式:用字母表示圓錐的體積公式.板書:
6、思考:要求圓錐的體積,必須知道哪兩個(gè)條件?
7、反饋練習(xí)
圓錐的底面積是5,高是3,體積是( )
圓錐的底面積是10,高是9,體積是( )
(二)教學(xué)例1
1、例1 一個(gè)圓錐形的零件,底面積是19平方厘米,高是12厘米.這個(gè)零件的體積是多少?
學(xué)生獨(dú)立計(jì)算,集體訂正.
板書:
答:這個(gè)零件的體積是76立方厘米.
2、反饋練習(xí):一個(gè)圓錐的底面積是25平方分米,高是9分米,她它的體積是多少?
3、思考:求圓錐的體積,還可能出現(xiàn)哪些情況?(圓錐的底面積不直接告訴)
(1)已知圓錐的底面半徑和高,求體積.
(2)已知圓錐的底面直徑和高,求體積.
(3)已知圓錐的底面周長(zhǎng)和高,求體積.
4、反饋練習(xí):一個(gè)圓錐的底面直徑是20厘米,高是8厘米,它的體積體積是多少?
(三)教學(xué)例2
1、例2 在打谷場(chǎng)上,有一個(gè)近似于圓錐的小麥堆,測(cè)得底面直徑是4米,高是1.2米.每立方米小麥約重735千克,這堆小麥大約有多少千克?(得數(shù)保留整千克)
思考:這道題已知什么?求什么?
要求小麥的重量,必須先求什么?
要求小麥的體積應(yīng)怎么辦?
這道題應(yīng)先求什么?再求什么?最后求什么?
2、學(xué)生獨(dú)立解答,集體訂正.
板書:(1)麥堆底面積:
=3.14×4
=12.56(平方米)
(2)麥堆的體積:
12.56×1.2
=15.072(立方米)
(3)小麥的`重量:
735×15.072
=11077.92
≈11078(千克)
答:這堆小麥大約重11078千克.
3、教學(xué)如何測(cè)量麥堆的底面直徑和高.
(1)啟發(fā)學(xué)生根據(jù)自己的生活經(jīng)驗(yàn)來討論、談想法.
(2)教師補(bǔ)充介紹.
a.測(cè)量麥堆的底面直徑可以用繩子在麥堆底部圓周圍圈一圈,量得麥堆的周長(zhǎng),再算直徑.也可用兩根竹竿平行地放在麥堆的兩側(cè),量得兩根竹竿的距離,就是麥堆的直徑.
b.測(cè)量麥堆的高,可用兩根竹竿在麥堆旁邊組成兩個(gè)直角后量得.
三、全課小結(jié)
通過本節(jié)的學(xué)習(xí),你學(xué)到了什么知識(shí)?(從兩個(gè)方面談:圓錐體體積公式的推導(dǎo)方法和公式的應(yīng)用)
四、隨堂練習(xí)
1、求下面各圓錐的體積.
(1)底面面積是7.8平方米,高是1.8米.
(2)底面半徑是4厘米,高是21厘米.
(3)底面直徑是6分米,高是6分米.
2、計(jì)算并填表
3、判斷對(duì)錯(cuò),并說明理由.
(1)圓柱的體積相當(dāng)于圓錐體積的3倍.( )
(2)一個(gè)圓柱體木料,把它加工成最大的圓錐體,削去的部分的體積和圓錐的體積比是2 :1.( )
(3)一個(gè)圓柱和一個(gè)圓錐等底等高,體積相差21立方厘米,圓錐的體積是7立方厘米.( )
五、布置作業(yè)
一堆煤成圓錐形,底面半徑是1.5米,高是1.2米.這堆煤的體積有多少立方米?如果每立方米煤約重1.4噸,這堆煤約有多少噸?
六、板書設(shè)計(jì)
數(shù)學(xué)教案-圓錐的體積
圓錐的體積教案人教版 六年級(jí)下冊(cè)數(shù)學(xué)圓錐的體積教案篇二
1、知識(shí)目標(biāo):使學(xué)生理解和掌握求圓錐體積的計(jì)算公式,并能正確求出圓錐的體積。、
2、能力目標(biāo):培養(yǎng)學(xué)生初步的空間觀念,動(dòng)手操作能力和邏輯思維能力。
3、情感目標(biāo):向?qū)W生滲透知識(shí)間可以相互轉(zhuǎn)化的辯證唯物主義思想,讓學(xué)生學(xué)習(xí)將新知識(shí)轉(zhuǎn)化為原有知識(shí)的學(xué)習(xí)方法、
教學(xué)重點(diǎn):圓錐的體積計(jì)算。
教學(xué)難點(diǎn):圓錐的體積計(jì)算公式的推導(dǎo)。
ppt課件。
1、出示鉛錘
師:同學(xué)們,我們剛認(rèn)識(shí)了圓錐,在學(xué)習(xí)“圓錐的認(rèn)識(shí)”時(shí)認(rèn)識(shí)了這個(gè)物體―鉛錘。鉛錘的外形是圓錐形的,這個(gè)鉛錘所占空間的大小叫做這個(gè)鉛錘的體積。
問:你們有沒有辦法來測(cè)量這個(gè)鉛錘的體積?
生:排水法
師:同學(xué)們回答很積極,想到了之前學(xué)過的排水法,那咱們對(duì)這個(gè)方法進(jìn)行一下評(píng)價(jià)(學(xué)生想到了,并不是所有的圓錐都可以用排水法來測(cè)量體積。比如一些龐大的圓錐形物體)
2、ppt出示圓錐形麥堆和圓錐形的高大的建筑物
像這種比較大的圓錐形的物體就不適合用排水法測(cè)量體積,所以我們需要找到一個(gè)解決此類問題的普遍的方法。
出示課題圓錐的體積
1、回憶
師:我們學(xué)過那些形狀的物體的體積的.計(jì)算方法
生:長(zhǎng)方體正方體圓柱體(學(xué)生邊說,師邊ppt出示圖片)
師:我們?cè)谕茖?dǎo)圓柱體體積的計(jì)算方法的時(shí)候是將圓柱體轉(zhuǎn)化長(zhǎng)方體或者正方體,轉(zhuǎn)化前后體積不變,你覺得圓錐體和哪種形狀的物體有關(guān)系呢?
生:圓柱體
師:為什么?
生:圓錐體和圓柱體都有圓形的底面
2、猜測(cè)
師:既然大家都認(rèn)為圓錐體和圓柱體由一定的關(guān)系,你能大膽猜測(cè)一下,圓錐體和圓柱體的體積之間有怎樣的關(guān)系么?
(學(xué)生猜測(cè),找學(xué)生說說猜測(cè)的結(jié)果)
3、驗(yàn)證
師:有了猜測(cè)我們就通過實(shí)驗(yàn)來驗(yàn)證咱們的猜測(cè)(利用學(xué)具進(jìn)行驗(yàn)證,一邊實(shí)驗(yàn),一邊填寫實(shí)驗(yàn)記錄單)
(找學(xué)生讀一讀表格中需要填寫的內(nèi)容,并提問,比較圓柱和圓錐的時(shí)候,是比較的什么?為學(xué)生的實(shí)驗(yàn)操作做一個(gè)引領(lǐng)。操作過程6―8分鐘)
4、實(shí)驗(yàn)后討論,并分組匯報(bào)實(shí)驗(yàn)結(jié)果
(在實(shí)驗(yàn)中我設(shè)置了兩次不同的實(shí)驗(yàn),第一次是等底等高的圓柱和圓錐,第二次是等底不等高的圓柱和圓錐,以便對(duì)比得出結(jié)論,并不是所有的圓柱和圓錐都符合3倍關(guān)系,是有前提條件的)
5、結(jié)論
通過操作發(fā)現(xiàn):圓錐的體積是同它等底等高的圓柱體積的1/3
板書:圓柱的體積=底面積×高
圓錐的體積=底面積×高÷3
1、ppt出示填空和判斷
師:我們學(xué)會(huì)了求圓錐的體積的計(jì)算方法,現(xiàn)在我們利用所學(xué)知識(shí)來解決生活中的實(shí)際問題。
2、ppt出示例題3
(學(xué)生計(jì)算,計(jì)算過程中巡視學(xué)生解題情況,挑選兩種不同的解題方法展示)
ppt出示拓展題
通過本節(jié)課的學(xué)習(xí),你有哪些收獲?
圓錐的體積教案人教版 六年級(jí)下冊(cè)數(shù)學(xué)圓錐的體積教案篇三
教材第11~17頁(yè)圓錐的認(rèn)識(shí)和體積計(jì)算、例1。
l.使學(xué)生認(rèn)識(shí)圓錐的特征和各部分名稱,掌握高的特征,知道測(cè)量圓錐高的方法。
2.使學(xué)生理解和掌握?qǐng)A錐體積的計(jì)算公式,并能正確地求出圓錐的體積。
3.培養(yǎng)學(xué)生初步的空間觀念和發(fā)展學(xué)生的思維能力。
長(zhǎng)方體、正方體、圓柱體等,根據(jù)教材第167頁(yè)自制的圓錐,演示測(cè)高、等底、等高的教具,演示得出圓錐體積等于等底等高圓柱體積的 的教具。
掌握?qǐng)A錐的特征。
理解和掌握?qǐng)A錐體積的計(jì)算公式。
一、鋪墊孕伏:
1. 說出圓柱的體積計(jì)算公式。
2. 我們已經(jīng)學(xué)過了長(zhǎng)方體、正方體及圓柱體(邊說邊出示實(shí)物圖形)。在日常生活和生產(chǎn)中,我們還常常看到下面一些物體(出示教材第16頁(yè)插圖)。這些物體的形狀都是圓錐體,簡(jiǎn)稱圓錐。我們教材中所講的圓錐,都是直圓錐。今天這節(jié)課,就學(xué)習(xí)圓錐和圓錐的體積。(板書課題)
二、自主探究:
1.認(rèn)識(shí)圓錐。
我們?cè)谌粘I钪校€見過哪些物體是這樣的圓錐體,誰(shuí)能舉出一些例子?
2.根據(jù)教材第16頁(yè)插圖,和學(xué)生舉的例子通過幻燈片或其他方法抽象出立體圖。
3.利用學(xué)生課前做好的圓錐體及立體圖通過觀察、手摸認(rèn)識(shí)圓錐的特點(diǎn)。
(1) 圓錐的底面是個(gè)圓,圓錐的側(cè)面是一個(gè)曲面。
(2) 認(rèn)識(shí)圓錐的頂點(diǎn),從圓錐的頂點(diǎn)到底面圓心的距離是圓錐的高。(在圖上表示出這條高)提問:圖里畫的這條高和底面圓的所有直徑有什么關(guān)系?
4.學(xué)生練習(xí)。
口答練習(xí)三第1題。
5.教學(xué)圓錐高的測(cè)量方法。(見課本第17頁(yè)有關(guān)內(nèi)容)
6.讓學(xué)生根據(jù)上述方法測(cè)量自制圓錐的高。
7.實(shí)驗(yàn)操作、推導(dǎo)圓錐體積計(jì)算公式。
(1)通過演示使學(xué)生知道什么叫等底等高。(具體方法可見教材第18頁(yè)上面的.圖)
(2)讓學(xué)生猜想:老師手中的圓錐和圓柱等底等高,你能猜想一下它們體積之間有怎樣的關(guān)系?
(3)實(shí)驗(yàn)操作,發(fā)現(xiàn)規(guī)律。
在空?qǐng)A錐里裝滿黃沙,然后倒入空?qǐng)A柱里,看看倒幾次正好裝滿。(用有色水演示也可)從倒的次數(shù)看,你發(fā)現(xiàn)圓錐體積與等底等高的圓柱體積之間有怎樣的關(guān)系?得出圓錐的體積是與它等底等高的圓柱體體積的 。
老師把圓柱里的黃沙倒進(jìn)圓錐,問:把圓柱內(nèi)的沙往圓錐內(nèi)倒三次倒光,你又發(fā)現(xiàn)什么規(guī)律?
(4)是不是所有的圓柱和圓錐都有這樣的關(guān)系?教師可出示不等底不等高的圓錐、圓柱,讓學(xué)生通過觀察實(shí)驗(yàn),得出只有等底等高的圓錐才是圓柱體積的 。
(5)啟發(fā)引導(dǎo)推導(dǎo)出計(jì)算公式并用字母表示。
圓錐的體積=等底等高的圓柱的體積13=底面積高13
用字母表示:v= 13 sh
(6)小結(jié):要求圓錐體積必須知道哪些條件,公式中的底面積乘以高,求的是什么?為什么要乘以 13 ?
8.教學(xué)例l
(1)出示例1
(2)審題后可讓學(xué)生根據(jù)圓錐體積計(jì)算公式自己試做。
(3)批改講評(píng)。注意些什么問題。
圓錐的體積教案人教版 六年級(jí)下冊(cè)數(shù)學(xué)圓錐的體積教案篇四
使學(xué)生系統(tǒng)掌握關(guān)于圓柱和圓錐的基礎(chǔ)知識(shí),進(jìn)一步了解圓柱和圓錐的關(guān)系,熟練運(yùn)用所學(xué)公式計(jì)算解答實(shí)際問題;
幻燈片、電腦制圖
一. 出示課題,引人復(fù)習(xí)內(nèi)容;
1.同學(xué)們,今天這節(jié)課,我們要進(jìn)行圓柱體和圓錐體體積的復(fù)習(xí);
板書課題
2.圓柱體的體積怎么求?
板書:v圓柱=sh
3.圓錐體的體積怎么求?
板書:v圓錐=1/3 sh
4.公式中的 s、h分別表示什么?1/3表示什么?
小結(jié):求圓柱體和圓錐體的體積,首先要正確應(yīng)用公式。
板書:1.正確應(yīng)用公式
當(dāng)題目中沒有直接告訴我們底面積,只給出底面的半徑、直徑或周長(zhǎng)時(shí),求它們的體積必須先求出什么?
二. 基礎(chǔ)練習(xí)
根據(jù)已知條件求圓柱體和圓錐體的底面積(幻燈出示)
計(jì)算這些形體的體積:
(1)s底=1.5 平方米 h=5 米 求v圓柱
(2)s底=1.5 平方米 h=5 米 求v圓錐
(3)r=10分米 h=2 米 求v圓柱
(4)c=6.28米 h=6 米 求v圓錐
(1)、 (2)兩題條件相同,所求不同;
板書:2. 圓錐體積一定要乘 1/3
(3)、 (4)兩題都要先求出底面積;
板書:3. 單位名稱要統(tǒng)一
三. 實(shí)際應(yīng)用練習(xí):
我們還可應(yīng)用到生活中去解決一些實(shí)際問題:(幻燈出示)
1.一根圓柱形鋼材長(zhǎng)2米,底面周長(zhǎng)為6.28厘米,如果1立方厘米鋼重8克,100根這樣的鋼材重多少千克?
默讀后問同學(xué):做這道題前有沒有準(zhǔn)備工作要做?(單位要統(tǒng)一)
2.一個(gè)圓錐形麥堆,底面直徑4米,高1.5米,按每立方米麥重700千克算,這堆麥重多少千克?
默讀后問同學(xué):要注意麥堆是什么形狀?
請(qǐng)兩位同學(xué)板演,其余在本子上自練;
3.小結(jié):在解這兩題時(shí)都用到了什么計(jì)算?
四. 提高練習(xí):
(幻燈出示)在一只底面半徑為30厘米的圓柱形水桶里,放入一段底面半徑為10厘米的圓錐形鋼材,水面升高了5厘米,這段鋼材高為多少?
(電腦出示圖案)觀察水面變化情況,求什么?
1.鋼材是什么形狀?求圓錐體的高用什么方法?h=3v/s,3v表示什么?
2. s可以通過哪個(gè)條件求?( r=10厘米)
3.體積是什么呢?(電腦屏幕逐步演示)
(1)當(dāng)鋼材放入時(shí)水面上升,取出時(shí)水面下降,和什么有關(guān)?
(2)放入時(shí)水面為什么會(huì)上升?
(3)圓錐體占據(jù)了水桶里哪一部分水的體積?
(4)上升的水的體積等于什么?
(5)求圓錐形鋼材的體積就是求什么?
(6)求這部分水的.體積可通過哪些條件求?(r=30厘米,h=5厘米)
(7)板演,同學(xué)自練;
五. 圓柱體、圓錐體之間的關(guān)系是很密切的,下面我們來研究一下:(電腦出示畫面、公式)
1.當(dāng)圓柱體與圓錐體等底等高時(shí),圓柱的體積是圓錐體積的3倍;(逆向)
2.當(dāng)圓柱體與圓錐體體積相等,底面積相等時(shí),圓錐的高是圓柱的3倍;
3.當(dāng)圓柱體與圓錐體體積相等,高也相等時(shí),圓柱的底面積是圓錐底面積的1/3,圓錐底面積是圓柱底面積的3倍。
六、總結(jié):
這節(jié)課我們復(fù)習(xí)了什么?
圓錐的體積教案人教版 六年級(jí)下冊(cè)數(shù)學(xué)圓錐的體積教案篇五
1、知識(shí)目標(biāo):使學(xué)生理解和掌握求圓錐體積的計(jì)算公式,并能正確求出圓錐的體積,《圓錐的體積》教案設(shè)計(jì)及反思。.
2、能力目標(biāo):培養(yǎng)學(xué)生初步的空間觀念,動(dòng)手操作能力和邏輯思維能力。
3、情感目標(biāo):向?qū)W生滲透知識(shí)間可以相互轉(zhuǎn)化的辯證唯物主義思想,讓學(xué)生學(xué)習(xí)將新知識(shí)轉(zhuǎn)化為原有知識(shí)的學(xué)習(xí)方法.
教學(xué)重點(diǎn):圓錐的體積計(jì)算
教學(xué)難點(diǎn):圓錐的體積計(jì)算公式的推導(dǎo).
教學(xué)準(zhǔn)備:圓錐形蘿卜、繩子,每個(gè)小組一個(gè)計(jì)算器、等底等高的圓柱和圓錐容器模型、沙土水等。
一、復(fù)習(xí)導(dǎo)入。師:同學(xué)們,你們知道桌上那個(gè)白蘿卜,它是什么形體嗎?(圓柱體),現(xiàn)在,如是假設(shè)它的底面積是5平方厘米,高是4厘米,你怎樣求它的體積呢?求出體積后,問:現(xiàn)在老師想請(qǐng)你們幫個(gè)忙,把它削成一個(gè)最大的圓錐,你們有辦法嗎?說一說什么樣的圓錐體才算最大呢?(與原來的圓柱體蘿卜等底等高)
二、探究新知1、實(shí)踐猜想.師:好,現(xiàn)在請(qǐng)同學(xué)們動(dòng)手削蘿卜,比比哪一組削得最漂亮?學(xué)生削完后,問:誰(shuí)來猜猜,現(xiàn)在削成的圓錐體積與剛才圓柱有什么關(guān)系呢?你是怎么猜測(cè)的?生1:我猜圓錐的體積可能等于原來那個(gè)蘿卜體積的,就是5立方厘米。
生2:我猜圓錐的體積可能等于原來那個(gè)蘿卜體積的,就是10立方厘米。我是根據(jù)我們以前學(xué)過的在長(zhǎng)方形里剪一個(gè)最大的三角形,三角形的面積是長(zhǎng)方形的,所以我認(rèn)為圓錐的體積也是圓柱體積的。
生3: 我猜圓錐的體積可能等于原來那個(gè)蘿卜體積的,就是6立方厘米,是把削去的蘿卜拼起來和圓錐體蘿卜進(jìn)行比較,發(fā)現(xiàn)削去的部分的體積大約是圓錐體積的2倍。
生4: 我猜圓錐的體積可能等于原來那個(gè)蘿卜體積的,就是8立方厘米,我是估計(jì)的。.師:那你有什么方法可以驗(yàn)證你的猜想呢?
生5:我可以把削成的圓錐與削去的蘿卜都拿去稱,再比較它們的重量。.
生6:我把圓錐體蘿卜浸入盛有水的圓柱容器里,算出它的體積,再把削去部分的蘿卜也浸入盛有水的圓柱形容器里,根據(jù)水面上升的高度求出它的體積就知道了。.
生7:我可以把剛才那個(gè)圓柱體蘿卜和削成的圓錐休蘿卜分別挖成空心的然后把空?qǐng)A錐蘿卜盛滿水倒入圓柱體蘿卜中,分別算出體積后進(jìn)行比較。
生8:我可以用桌上的這些學(xué)具來驗(yàn)證。.再讓學(xué)生比比哪種方法最合適?
2、實(shí)驗(yàn)驗(yàn)證。師:好,現(xiàn)在讓我們利用學(xué)具來驗(yàn)證一下自己猜想,請(qǐng)小組合作動(dòng)手實(shí)驗(yàn),比比哪組實(shí)驗(yàn)最準(zhǔn)確?
3、匯報(bào)歸納師:通過剛才同學(xué)們的認(rèn)真探討,誰(shuí)能說說你是怎么實(shí)驗(yàn)的?生:我用圓柱裝滿沙把它倒入圓錐中,剛好倒了3杯。生:我用圓錐裝三次沙,剛好裝滿這個(gè)圓柱。師:這個(gè)實(shí)驗(yàn)說明等底等高的圓錐和圓柱的體積有怎樣的關(guān)系?生:說明了圓錐的`體積等于和它等底等高的圓柱體積體積的三分之一。師:請(qǐng)同學(xué)們思考:如果一個(gè)圓柱的體積是24立方米,那么和它等底等高的圓錐的體積是多少立方米?師:圓柱體積計(jì)算公式是v=sh,那么和它等底等高的圓錐體積應(yīng)樣計(jì)算?生:圓錐的體積v等于和它等底等高的圓柱的體積的三分之一,即v=sh師:同學(xué)們,現(xiàn)在你知道剛才我們削的那個(gè)圓錐的體積應(yīng)該是多少了嗎?
4、解決問題,教案《《圓錐的體積》教案設(shè)計(jì)及反思》。課件出示例1,讓學(xué)生獨(dú)立完成。5、教師小結(jié)。
三、擴(kuò)展應(yīng)用。(一)、基本練習(xí)。1、一個(gè)圓錐的底面積是25平方分米,高是9分米,它的體積是多少?2、測(cè)量圓錐體學(xué)具,求出體積,并說說高是怎么量的?3、一個(gè)圓錐的底面積直徑是20厘米,高是8厘米,它們體積是多少?(二)擴(kuò)展練習(xí)。!、一個(gè)圓錐的體積是8立方分米,底面積是2平方分米,高是()分米?2、圓錐形的容器高12厘米,容器中盛滿水,如果水全部倒入等底的圓柱容器中,水面高是( )
四、歸納小結(jié)。師:通過這節(jié)課的學(xué)習(xí),你學(xué)會(huì)了什么?你是怎么學(xué)會(huì)的?
五、作業(yè)。
選擇題。(1)、兩個(gè)體積相等的等底圓柱和圓錐,圓錐的高一定是圓柱的( )。(2)、把一段圓柱形的木棒削成一個(gè)最大的圓錐,削去的體積是圓錐體積的( )。供選答案:(1)3倍(2)(3)(4)2倍
這節(jié)課,體現(xiàn)了以下幾個(gè)特點(diǎn):
一、在“動(dòng)”中獲新知。“動(dòng)”是孩子的天性,每位孩子都充滿了“動(dòng)”的欲望。由于幾何知識(shí)比較抽象,學(xué)生理解和掌握幾何圖形的概念、性質(zhì)、求積公式、形成空間觀念,都必須有大量具體的、形象的感性材料的積累。所以教材在編排這一知識(shí)塊的時(shí)候,就已安排了很多的實(shí)踐性練習(xí)。教學(xué)時(shí),教者能充分利用這一特點(diǎn),通過擺、剪、折、量、畫、分割、拼合等操作活動(dòng),使學(xué)生獲得鮮明、生動(dòng)、形象的感性認(rèn)識(shí),在此基礎(chǔ)上,抽象概括出圓錐的體積計(jì)算方法,形成正確的空間觀念。
二、在“動(dòng)”中求發(fā)展。在教學(xué)圓錐的體積時(shí),教者先讓學(xué)生觀察并討論推導(dǎo)圓錐體積公式的實(shí)驗(yàn)方法,當(dāng)學(xué)生由于受圓柱體積公式推導(dǎo)方法的影響,思維受阻時(shí),教者向?qū)W生提議:用桌上學(xué)具來驗(yàn)證。同時(shí)推薦一些實(shí)驗(yàn)用品:水或沙、尺等。讓學(xué)生在實(shí)驗(yàn)中選擇并設(shè)置疑問:圓錐體積與圓柱體積的關(guān)系。通過實(shí)際操作,學(xué)生不僅得出圓錐體積的計(jì)算公式。獲得了知識(shí)的結(jié)果,而且經(jīng)歷了知識(shí)面發(fā)展、發(fā)生的過程,同時(shí)加強(qiáng)并鞏固口頭和書面表達(dá)能力,發(fā)展解決數(shù)學(xué)問題的能力,增進(jìn)對(duì)數(shù)學(xué)的理解力。
三、在“動(dòng)”中學(xué)會(huì)與他人合作。學(xué)習(xí)是學(xué)生主體的主動(dòng)建構(gòu)過程,其本質(zhì)是讓學(xué)生認(rèn)識(shí)客觀世界,把書本中的知識(shí)結(jié)構(gòu)轉(zhuǎn)化為自己的認(rèn)知結(jié)構(gòu)。這個(gè)過程是學(xué)生主體活動(dòng)的過程,必須由學(xué)生親身參與,學(xué)生在動(dòng)手中運(yùn)用感官參與學(xué)習(xí),自覺主動(dòng)地去操作、去學(xué)習(xí),在濃厚的動(dòng)手實(shí)踐中不僅經(jīng)歷了知識(shí)的形成過程,而且也學(xué)會(huì)了如何與他人合作才能取得成功。
圓錐的體積教案人教版 六年級(jí)下冊(cè)數(shù)學(xué)圓錐的體積教案篇六
教學(xué)目標(biāo):
1、通過動(dòng)手操作實(shí)驗(yàn),推導(dǎo)出圓錐體體積的計(jì)算公式。
2、理解并掌握體積公式,能運(yùn)用公式求圓錐的體積,并會(huì)解決簡(jiǎn)單的實(shí)際問題。
3、通過學(xué)生動(dòng)腦、動(dòng)手,培養(yǎng)學(xué)生的觀察、分析的綜合能力。
教具準(zhǔn)備:等底等高的圓柱體和圓錐體5套,大小不同的圓柱體和圓錐體5套、水槽5個(gè),以及多媒體輔助教學(xué)課件。
教學(xué)過程設(shè)計(jì):
1、認(rèn)識(shí)圓柱(課件演示),并說出怎樣計(jì)算圓柱的體積?(屏幕出示:圓柱體的體積=底面積×高)
2、口算下列圓柱的體積。
(1)底面積是5平方厘米,高 6 厘米,體積 = ?
(2)底面半徑是 2 分米,高10分米,體積 = ?
(3)底面直徑是 6 分米,高10分米,體積 = ?
3、認(rèn)識(shí)圓錐(課件演示),并說出有什么特征?
教師導(dǎo)入:同學(xué)們,我們已經(jīng)認(rèn)識(shí)了圓錐,掌握了它的特征,但是,對(duì)于圓錐的學(xué)習(xí)我們不能只停留在認(rèn)識(shí)上,有關(guān)圓錐的知識(shí)還有很多有待于我們?nèi)W(xué)習(xí)、去探究。這節(jié)課我們就來研究“圓錐的體積”。(板書課題)
1、探討圓錐的體積計(jì)算公式。
教師:怎樣推導(dǎo)圓錐的體積計(jì)算公式呢?在回答這個(gè)問題之前,請(qǐng)同學(xué)們先想一想,我們是怎樣知道圓柱體積計(jì)算公式的?
學(xué)生回答,教師板書:
圓柱------(轉(zhuǎn)化)------長(zhǎng)方體
圓柱體積計(jì)算公式--------(推導(dǎo))長(zhǎng)方體體積計(jì)算公式
教師:借鑒這種方法,為了我們研究圓錐體體積的方便,每個(gè)組都準(zhǔn)備了一個(gè)圓柱體和一個(gè)圓錐體。你們小組比比看,這兩個(gè)形體有什么相同的地方?學(xué)生操作比較后,再用課件演示。
(1)提問學(xué)生:你發(fā)現(xiàn)到什么?(圓柱和圓錐的底和高有什么關(guān)系?)
(學(xué)生得出:底面積相等,高也相等。)
教師:底面積相等,高也相等,用數(shù)學(xué)語(yǔ)言說就叫“等底等高”。
(板書:等底等高)
(2)為什么?既然這兩個(gè)形體是等底等高的,那么我們就跟求圓柱體體積一樣,就用“底面積×高”來求圓錐體體積行不行?
(不行,因?yàn)閳A錐體的體積小)
教師:(把圓錐體套在透明的圓柱體里)是啊,圓錐體的體積小,那你估計(jì)一下這兩個(gè)形體的體積大小有什么樣的倍數(shù)關(guān)系?(指名發(fā)言)
用水和圓柱體、圓錐體做實(shí)驗(yàn)。怎樣做這個(gè)實(shí)驗(yàn)由小組同學(xué)自己商量,但最后要向同學(xué)們匯報(bào),你們組做實(shí)驗(yàn)的圓柱體和圓錐體在體積大小上有什么樣的.倍數(shù)關(guān)系。
(3)學(xué)生分組做實(shí)驗(yàn),并借助課件演示。
(教師深入小組中了解活動(dòng)情況,對(duì)個(gè)別小組予以適當(dāng)?shù)膸椭?
a、誰(shuí)來匯報(bào)一下,你們組是怎樣做實(shí)驗(yàn)的?
b、你們做實(shí)驗(yàn)的圓柱體和圓錐體在體積大小上發(fā)現(xiàn)有什么倍數(shù)關(guān)系?
(學(xué)生發(fā)言:圓柱體的體積是圓錐體體積的3倍)
教師:同學(xué)們得出這個(gè)結(jié)論非常重要,其他組也是這樣的嗎?
學(xué)生回答后,教師用教學(xué)課件演示實(shí)驗(yàn)的全過程,并啟發(fā)學(xué)生在小組內(nèi)有條理地表述圓錐體體積計(jì)算公式的推導(dǎo)過程。
(板書圓錐體體積計(jì)算公式)
教師:我們學(xué)過用字母表示數(shù),誰(shuí)來把這個(gè)公式用字母表示一下?(指名發(fā)言,板書)
(4)學(xué)生操作:出示另外一組大小不同的圓柱體和圓錐體進(jìn)行體積大小的比較,通過比較你發(fā)現(xiàn)什么?
學(xué)生回答后,教師整理歸納:不是任何一個(gè)圓錐體的體積都是任何一個(gè)圓柱體體積的 。(教師拿起一個(gè)小圓錐、一個(gè)大圓柱)如果老師在這個(gè)大圓錐體里裝滿了水,往這個(gè)小圓柱體里倒,需要倒三次才能倒?jié)M嗎?(不需要)
為什么你們做實(shí)驗(yàn)的圓錐體里裝滿了水往圓柱體里倒,要倒三次才能倒?jié)M呢?(因?yàn)槭堑鹊椎雀叩膱A柱體和圓錐體。)
(教師給體積公式與“等底等高”四個(gè)字上連線。)
進(jìn)一步完善體積計(jì)算公式:
圓錐的體積=等底等高的圓柱體體積×1/3
=底面積 × 高×1/3
v = 1/3sh
教師:現(xiàn)在我們得到的這個(gè)結(jié)論就更完整了。(指名反復(fù)敘述公式。)
課件出示:
想一想,討論一下:?
(1)通過剛才的實(shí)驗(yàn),你發(fā)現(xiàn)了什么?
(2)要求圓錐的體積必須知道什么?
學(xué)生后討論回答。
1、口答。
(1)有一個(gè)圓柱的體積是27立方分米,與它等底等高的圓錐體積是多少?
(2)有一個(gè)圓錐的體積是9立方分米,與它等底等高的圓柱體積是多少?
2、出示例題,學(xué)生讀題,理解題意,自己解決問題。
例1、一個(gè)圓錐形的零件,底面積是19平方厘米,高是12厘米,這個(gè)零件的體積是多少?
a、 學(xué)生完成后,進(jìn)行小組交流。
b 、 你是怎樣想的和怎樣解決問題的。(提問學(xué)生多人)
c 、 教師板書:
1/3×19×12=76(立方厘米)
答:它的體積是76立方厘米
3 、練習(xí)題。
一個(gè)圓錐體,半徑為6cm,高為18cm。體積是多少?(學(xué)生在黑板上只列式,反饋。)
我們已經(jīng)學(xué)會(huì)了求圓錐體的體積,現(xiàn)在我們來解決有關(guān)圓錐體體積的問題。
4、出示例2:要求學(xué)生自己讀題,理解題意。
在打谷場(chǎng)上,有一個(gè)近似于圓錐形的小麥堆,測(cè)得底面直徑是4米,高是1.2米,每立方米小麥約重735千克,這堆小麥約有多少千克?(得數(shù)保留整千克)
(1)提問:從題目中你知道了什么?
(2)學(xué)生獨(dú)立完成后教師提問,并回答學(xué)生的質(zhì)疑:
3.14×(4÷2)2×1.2× 1/3 表示什么?為什么要先求圓錐的體積?得數(shù)保留整千克數(shù)是什么意思?….
5、比較:例1和例2有什么不同的地方?
(1)例1直接告訴了我們底面積,而例2沒有直接告訴,要求我們先求出底面積,再求出圓錐體積;(2)例1 是直接求體積,例2是求出體積后再求重量。
圓錐的體積教案人教版 六年級(jí)下冊(cè)數(shù)學(xué)圓錐的體積教案篇七
教師提供小學(xué)數(shù)學(xué)六年級(jí)下冊(cè)14頁(yè)----17頁(yè)。
等底等高的圓柱和圓錐教學(xué)用具各一個(gè),小水盆,一些綠豆。
1、結(jié)合具體情景和實(shí)踐活動(dòng),了解圓錐的體積或容積的含義,進(jìn)一步體會(huì)物體體積和容積的含義。
2、經(jīng)歷“類比猜想---驗(yàn)證說明”的探索圓錐體積計(jì)算方法的過程,掌握?qǐng)A錐體積的計(jì)算方法,能正確計(jì)算圓錐的體積,并解決一些簡(jiǎn)單的實(shí)際問題。
重點(diǎn):圓錐的體積計(jì)算。
難點(diǎn)圓錐的體積公式推導(dǎo)。
關(guān)鍵:圓錐的體積是與它等底等高的圓柱體積的三分之一。
等底等高的圓柱和圓錐教學(xué)用具各一個(gè),一個(gè)三角形和一個(gè)長(zhǎng)方形。
看看你們能不能發(fā)現(xiàn)這兩個(gè)圖形之間隱藏的關(guān)系?你有什么發(fā)現(xiàn)?
長(zhǎng)方形的長(zhǎng)等于三角形的底,長(zhǎng)方形的寬等于三角形的高。
你的發(fā)現(xiàn)真了不起。這種情況在數(shù)學(xué)中叫做“等底等高”。在“等底等高”的條件時(shí),它們的'面積又有什么樣的關(guān)系呢?
三角形的面積等于長(zhǎng)方形面積的一半或長(zhǎng)方形面積是三角形面積的2倍。
點(diǎn)撥自學(xué)
1、圓柱和圓錐有哪些相同的地方?
2、圓柱和圓錐有哪些不同的地方?
3、圓錐的體積和圓柱的體積有什么關(guān)系呢?
請(qǐng)小組開始討論。注意,這里的圓柱和圓錐指的就是圖上的圓柱和圓錐喲!按照預(yù)習(xí)中學(xué)生存在的問題,教師加以點(diǎn)撥。
它們的底面積相等,高也相等
圓柱有無(wú)數(shù)條高,圓錐只有一條高。圓錐體積比圓柱小……
動(dòng)手做實(shí)驗(yàn):把圓錐裝滿綠豆,倒入圓柱中,看倒幾次能把圓柱裝滿。
通過實(shí)驗(yàn)操作,得出了正確的科學(xué)的結(jié)論:圓錐的體積等于和它等底等高的圓柱體積的三分之一。組內(nèi)交流
組際解疑
老師點(diǎn)撥
1、一個(gè)圓錐形的零件,底面積是19平方厘米,高是12厘米,這個(gè)零件的體積是多少?(口算)
2、沈老師在大梅沙玩,將沙堆成一個(gè)圓錐形,底面半徑約3分米,高約2.7分米,求沙堆的體積。
(只列式不計(jì)算)
3、在打谷場(chǎng)上,有一個(gè)近似于圓錐的小麥堆,測(cè)底面直徑是4米,高是1.2米。每立方米小麥約重735千克,這堆小麥大約有多少千克?
(只列式不計(jì)算)
4、如圖,求這枝大筆的體積。
(單位:厘米)
(只列式不計(jì)算)
5、將一個(gè)底面半徑是2分米,高是4分米的圓柱形木塊,削成一個(gè)最大的圓錐,那么削去的體積是多少立方分米?(口算)
通過今天的學(xué)習(xí),我學(xué)會(huì)了,以后我會(huì)在方面更加努力的。
本節(jié)課通過交流、問答、猜想等形式,調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性,激發(fā)學(xué)生強(qiáng)烈的探究欲望,學(xué)生迫切希望通過實(shí)驗(yàn)來證實(shí)自己的猜想,所以做起實(shí)驗(yàn)來就興趣極高,在實(shí)驗(yàn)過程中通過學(xué)生的親身體驗(yàn)知識(shí)的探究的過程,加深學(xué)生對(duì)所學(xué)知識(shí)的理解,學(xué)生學(xué)習(xí)的積極性被調(diào)動(dòng)起來了,學(xué)生學(xué)得輕松、愉快。充分讓學(xué)生體會(huì)到了等底等高的圓錐的體積是圓柱的三分之一。
圓錐的體積教案人教版 六年級(jí)下冊(cè)數(shù)學(xué)圓錐的體積教案篇八
教科書第39~40頁(yè)例1,課堂活動(dòng)及練習(xí)九第1題,第2題。
1.在操作和探究中理解并掌握?qǐng)A錐的體積計(jì)算公式。
2.引導(dǎo)學(xué)生探究、發(fā)現(xiàn),培養(yǎng)學(xué)生的觀察、歸納等能力。
3.在實(shí)驗(yàn)中,培養(yǎng)學(xué)生的數(shù)學(xué)興趣,發(fā)展學(xué)生的空間觀念。
一、圓錐體積的計(jì)算公式的推導(dǎo)過程。
圓錐體積計(jì)算公式的理解。
小黑板、等底等高的圓柱和圓錐、圓柱形水槽、河沙或水。一、情景鋪墊,引入課題
教師出示小黑板畫面,畫面中兩個(gè)小孩正在商店里買蛋糕,蛋糕有圓柱形和圓錐形兩種。圓柱形蛋糕的標(biāo)簽上寫著底面積16cm2,高20cm,單價(jià):40元/個(gè);圓錐形的蛋糕標(biāo)簽上寫著底面積16cm2,高60cm,單價(jià):40元/個(gè)。
屏幕上出示問題:到底選哪種蛋糕劃算呢?
教師:圖上的兩個(gè)小朋友在做什么?他們遇到什么困難了?他們應(yīng)該選哪種蛋糕劃算呢?誰(shuí)能幫他們解決這個(gè)問題?
教師抽學(xué)生回答問題。
可能會(huì)出現(xiàn)以下幾種情形:
第一種學(xué)生會(huì)認(rèn)為買圓柱形的蛋糕比較劃算,理由是這種蛋糕比圓錐形蛋糕的個(gè)大。
第二種學(xué)生會(huì)認(rèn)為買圓錐形的蛋糕比較劃算,理由是這種蛋糕比圓柱形蛋糕高。
第三種學(xué)生會(huì)認(rèn)為不能確定,理由是不知道誰(shuí)的體積大,無(wú)法比較。
教師:看來要幫助這兩個(gè)同學(xué)不是一件容易的事情,解決這個(gè)問題的關(guān)鍵在哪里?
學(xué)生明白首先要求出圓錐形蛋糕的體積。
教師:怎樣計(jì)算圓錐的體積?這節(jié)課我們一起研究圓錐體積的計(jì)算方法。
揭示課題。板書課題:圓錐的體積
二、自主探究,感悟新知
1.提出猜想,大膽質(zhì)疑
教師:誰(shuí)來猜猜圓錐的體積怎么算?
學(xué)生猜測(cè):圓柱和圓錐的底面都是圓的,它們之間可能有聯(lián)系,可不可以把圓錐變成圓柱,求出圓柱的體積,從而得出圓錐的體積……
對(duì)學(xué)生的各種猜想,教師給予肯定和表?yè)P(yáng)。
2.分組合作,動(dòng)手實(shí)驗(yàn)
教師:圓錐的體積和圓柱的體積之間究竟有沒有關(guān)系呢?如果有關(guān)系的話,它們之間又是一種什么關(guān)系?通過什么辦法才能找到它們之間的關(guān)系呢?帶著這些問題,請(qǐng)同學(xué)們分組研究,通過實(shí)驗(yàn)尋找答案。
教師布置任務(wù)并提出要求。
每個(gè)小組的桌上都有準(zhǔn)備好的器材:等底等高空心的或?qū)嵭牡膱A柱和圓錐、河沙或水、水槽等不同的器材,以及一張可供選用的實(shí)驗(yàn)報(bào)告單。四人小組的成員分工合作,利用提供的器材共同想辦法解決問題,找出圓錐體積的計(jì)算方法。并可根據(jù)小組研究方法填寫實(shí)驗(yàn)報(bào)告單。
學(xué)生小組合作探究,教師巡視指導(dǎo),參與學(xué)生的活動(dòng)。
3.教師用投影儀展示實(shí)驗(yàn)報(bào)告單
圓錐的體積實(shí)驗(yàn)報(bào)告單
第()小組記錄人:
名稱底面半徑最初水面高度最后水面高度水面上升高度體積
圓柱
圓錐
結(jié)論
反饋信息。各小組交流實(shí)驗(yàn)方法和結(jié)果。
教師:你們采用了哪些方法研究等底等高的圓柱和圓錐之間的關(guān)系?通過實(shí)驗(yàn),你們發(fā)現(xiàn)了什么?
方案一:用空心的圓錐裝滿水,再把水倒在與這個(gè)圓錐等底等高的空心圓柱形容器中,倒了三次,剛好裝滿圓柱形容器,因?yàn)閳A柱的體積=底面積×高,所以圓錐的體積=13×圓柱的體積。
方案二:方法與一小組的方法基本一樣,只不過裝的是河沙。我們的結(jié)論和一小組一樣,圓錐的'體積也是這個(gè)等底等高圓柱體積的三分之一。
方案三:我們組與前兩小組的方法不一樣。我們是用兩個(gè)同樣大的水槽裝同樣多的水,在水面的位置分別作好標(biāo)記,然后把這兩個(gè)實(shí)心的圓柱和圓錐分別放入兩個(gè)水槽中,在升高后的水面分別作好標(biāo)記,算出兩個(gè)水槽水面上升的高度,發(fā)現(xiàn)放圓柱形水槽的水面上升的高度是放圓錐形水槽水面高度的三倍。因?yàn)閮蓚€(gè)水槽底面一樣大也就是底面積相等,由圓柱的體積計(jì)算公式算出兩個(gè)水槽中水的體積,發(fā)現(xiàn)圓錐的體積是圓柱的體積的三分之一。因此我們組得出的結(jié)論是:圓錐的體積是與它等底等高圓柱體積的三分之一。
教師:三個(gè)小組采用的實(shí)驗(yàn)方法不一樣,得出的結(jié)論都一樣。老師為你們的探索精神感到驕傲。
教師把學(xué)生們的實(shí)驗(yàn)過程用小黑板演示一遍,讓學(xué)生再經(jīng)歷一次圓錐體積的探究過程。
4.公式推導(dǎo)
教師:圓柱的體積怎樣計(jì)算?圓錐的體積又怎樣計(jì)算?
教師引導(dǎo)學(xué)生理解只要求出與這個(gè)圓錐等底等高的圓柱的體積,再乘以三分之一,就得到圓錐的體積。
板書:圓柱的體積=底面積×高
v=s×h
↓〖4↓〖6↓
圓錐的體積=13×底面積×高
v=13×s×h
教師:圓柱的體積用字母v表示,圓錐的體積也用字母v表示。怎樣用字母表示圓錐的體積公式?
抽學(xué)生回答,教師板書:v=13sh
教師引導(dǎo)學(xué)生理解公式,弄清公式中的s表示什么,h表示什么。
要求學(xué)生閱讀教科書第39頁(yè)和第40頁(yè)例1前的內(nèi)容。勾畫出你認(rèn)為重要的語(yǔ)句,并說說理由。
5.拓展
教師:是不是底和高不相等的圓錐體積也是圓柱體積的三分之一呢?我們來做個(gè)實(shí)驗(yàn)。
教師利用學(xué)生的實(shí)驗(yàn)器材進(jìn)行演示。
用兩個(gè)等底不等高的圓柱和圓錐裝水;再用兩個(gè)等高不等底的圓柱和圓錐裝水,兩次結(jié)果都沒得到圓錐體積是圓柱體積的三分之一,進(jìn)一步讓學(xué)生體會(huì)等底等高的含義。
6.運(yùn)用所學(xué)知識(shí)解決問題
教學(xué)例1。
一個(gè)鉛錘高6cm,底面半徑4cm。這個(gè)鉛錘的體積是多少立方厘米?
學(xué)生讀題,找出題中的條件和問題。
引導(dǎo)學(xué)生弄清鉛錘的形狀是圓錐形。
學(xué)生獨(dú)立解答。抽學(xué)生上臺(tái)展示解答情況并說出思考過程。
三、拓展應(yīng)用,鞏固新知
1.教科書第42頁(yè)第1題
學(xué)生獨(dú)立解答,集體訂正。
2.填一填
(1)圓柱的體積字母表達(dá)式是(),圓錐的體積字母表達(dá)式是()。
(2)等底等高的圓柱的體積是圓錐體積的()倍。
抽生回答,熟悉圓錐的體積計(jì)算公式。
3.把下列表格補(bǔ)充完整
形狀底面積s(m2)高h(yuǎn)(m)體積v(m3)
圓錐159
圓柱160.6
學(xué)生在解答時(shí),教師巡視指導(dǎo)。
4.教科書第42頁(yè)練習(xí)九第2題
分組解答,抽生板算。教師帶領(lǐng)學(xué)生集體訂正。
5.應(yīng)用公式解決實(shí)際問題
教師:現(xiàn)在我們?cè)賮韼椭@兩個(gè)同學(xué)解決他們的難題。
要求學(xué)生獨(dú)立解答新課前買蛋糕的問題。
抽學(xué)生說出計(jì)算的結(jié)果。明白兩個(gè)蛋糕的體積一樣大,因此買兩種形狀的蛋糕都可以。
教師引導(dǎo)學(xué)生明白生活中的許多現(xiàn)象中都藏著數(shù)學(xué)問題,只要留心觀察就能得出結(jié)論。這節(jié)課的學(xué)習(xí)中,你都有哪些收獲?有關(guān)圓錐體積的知識(shí)還有哪些不清楚的?
圓錐的體積教案人教版 六年級(jí)下冊(cè)數(shù)學(xué)圓錐的體積教案篇九
美國(guó)教育心理學(xué)家奧蘇伯爾說:如果我不得不把教育心理學(xué)還原為一條原理的話,影響學(xué)習(xí)的最重要的原因是學(xué)生已經(jīng)知道了什么,我們應(yīng)當(dāng)根據(jù)學(xué)生原有的知識(shí)狀況進(jìn)行教學(xué)。本節(jié)課是學(xué)生在認(rèn)識(shí)了圓錐特征的基礎(chǔ)上進(jìn)行學(xué)習(xí)的。圓錐高的概念仍是本節(jié)課學(xué)習(xí)的一個(gè)重要知識(shí)儲(chǔ)備,因而有必要在復(fù)習(xí)階段利用直觀教具通過切、摸等活動(dòng),幫助學(xué)生理解透徹。學(xué)生分組操作時(shí),肯定能借助倒水(或沙子)的實(shí)驗(yàn),親身感受等底等高的圓柱與圓錐體積間的3倍關(guān)系。但是他們不易發(fā)現(xiàn)隱藏在實(shí)驗(yàn)中的等底等高的這一條件,這是實(shí)驗(yàn)過程中的一個(gè)盲點(diǎn)。為凸現(xiàn)這一條件,可借助體積關(guān)系不是3倍的實(shí)驗(yàn)器材,引導(dǎo)學(xué)生經(jīng)歷去粗取精、去偽存真、由表及里、層層逼近的過程,進(jìn)行深度信息加工。
一、復(fù)習(xí)舊知,鋪墊孕伏
1.(電腦出示一個(gè)透明的圓錐)仔細(xì)觀察,圓錐有哪些主要特征呢?
2.復(fù)習(xí)高的概念。
(1)什么叫圓錐的高?
(2)請(qǐng)一位同學(xué)上來指出用橡皮泥制作的圓錐體模型的.高。(提供刀片、橡皮泥模型等,幫助學(xué)生進(jìn)行操作)
評(píng)析:
圓錐特征的復(fù)習(xí)簡(jiǎn)明扼要。圓錐高的復(fù)習(xí)頗具新意,通過動(dòng)手操作,從而使抽象的高具體化、形象化。
二、創(chuàng)設(shè)情境,引發(fā)猜想
1. 電腦呈現(xiàn)出動(dòng)畫情境(伴圖配音)。
夏天,森林里悶熱極了,小動(dòng)物們都熱得喘不過氣來。一只小白兔去動(dòng)物超市購(gòu)物,在冷飲專柜熊伯伯那兒買了一個(gè)圓柱形的雪糕。這一切都被躲在一旁的狐貍看見了,它也去熊伯伯的專柜里買了一個(gè)圓錐形的雪糕。小白兔剛張開嘴,滿頭大汗的狐貍拿著一個(gè)圓錐形的雪糕一溜煙跑了過來。(圖中圓柱形和圓錐形的雪糕是等底等高的。)
2. 引導(dǎo)學(xué)生圍繞問題展開討論。
問題一:狐貍貪婪地問:小白兔,用我手中的雪糕跟你換一個(gè),怎么樣?(如果這時(shí)小白兔和狐貍換了雪糕,你覺得小白兔有沒有上當(dāng)?)
問題二:(動(dòng)畫演示)狐貍手上又多了一個(gè)同樣大小的圓錐形雪糕。(小白兔這時(shí)和狐貍換雪糕,你覺得公平嗎?)
問題三:如果你是森林中的小白兔,狐貍手中的圓錐形雪糕有幾個(gè)時(shí),你才肯與它交換?(把你的想法與小組同學(xué)交流一下,再向全班同學(xué)匯報(bào))
過渡:小白兔究竟跟狐貍怎樣交換才公平合理呢?學(xué)習(xí)了圓錐的體積后,就會(huì)弄明白這個(gè)問題。
評(píng)析:
數(shù)學(xué)課程要關(guān)注學(xué)生的生活經(jīng)驗(yàn)和已有的知識(shí)體驗(yàn),教師在引入新知時(shí),創(chuàng)設(shè)了一個(gè)有趣的童話情境,使枯燥的數(shù)學(xué)問題變?yōu)榛钌纳瞵F(xiàn)實(shí),讓數(shù)學(xué)課堂充滿生命活力。學(xué)生在判斷公平與不公平中蘊(yùn)涵了對(duì)等底等高圓柱和圓錐體積關(guān)系的猜想,他們?cè)谶@一情境中敢猜想、要猜想、樂猜想,在猜想中交流,在交流中感悟,自然地提出了一個(gè)富有挑戰(zhàn)性的數(shù)學(xué)問題,從而引發(fā)了學(xué)生進(jìn)一步探究的強(qiáng)烈欲望。
三、自主探索,操作實(shí)驗(yàn)
下面,請(qǐng)同學(xué)們利用老師提供的實(shí)驗(yàn)材料分組操作,自己發(fā)現(xiàn)屏幕上的圓柱與圓錐體積間的關(guān)系,解決電腦博士給我們提出的問題。
出示思考題:
(1)通過實(shí)驗(yàn),你們發(fā)現(xiàn)圓柱的體積和圓錐體積之間有什么關(guān)系?
(2)你們的小組是怎樣進(jìn)行實(shí)驗(yàn)的?
1. 小組實(shí)驗(yàn)。
圓錐的體積教案人教版 六年級(jí)下冊(cè)數(shù)學(xué)圓錐的體積教案篇十
1、學(xué)生通過自己的實(shí)驗(yàn),非常順利地得到等底等高的圓柱和圓錐體積之間的關(guān)系,推導(dǎo)出來圓錐的體積計(jì)算公式。原因之處有:(1)猜想:發(fā)揮學(xué)生的空間想象,使學(xué)生初步建立圓錐與圓柱體積之間的關(guān)系,教師預(yù)設(shè)學(xué)生可能粗略地知道有“三分之一”這一關(guān)系,“那么三分之一這一關(guān)系怎樣推導(dǎo)呢”引起以下怎樣推導(dǎo)圓錐的體積這一過程。
(2)在推導(dǎo)過程中,帶著思考題(思考題實(shí)際就是學(xué)生實(shí)驗(yàn)的`過程),讓學(xué)生帶有目標(biāo)進(jìn)行實(shí)驗(yàn),讓學(xué)生更有目的性,也非常方便,有操作性。
(3)學(xué)具準(zhǔn)備充分,各小組選擇水、沙子,增強(qiáng)趣味性,主動(dòng)性,積極性高。
(4)公式推導(dǎo)完之后的一個(gè)反例子(出示一個(gè)非常大的圓柱和一個(gè)非常小的圓錐),讓學(xué)生明確并不是所有的圓錐的體積都是圓柱體積的三分之一,從而強(qiáng)調(diào)了等底等高。
2、練習(xí)題由淺入深,判斷題主要是要加深學(xué)生對(duì)概念、公式的運(yùn)用和理解,第2題是書上的一組題,為提高效率只列式不計(jì)算,這三道題分別是告訴底面積和高、底面半徑和高、底面直徑和高,把幾種類型都呈現(xiàn)出來。最后一題是動(dòng)手實(shí)踐題,一要考察學(xué)生的公式運(yùn)用情況,二要考察學(xué)生的解決實(shí)際問題的能力及策略,雖然沒做幾道題,但我覺得:解決問題比什么都重要。
3、本來想用不等底、不等高的圓柱和圓錐參與實(shí)驗(yàn),考慮到可能會(huì)得出錯(cuò)誤結(jié)論而影響體積公式的推導(dǎo),所以把這一環(huán)節(jié)省去。設(shè)計(jì)了一組大的等底等高的圓錐和圓柱,讓學(xué)生明確不管大小,只要等底等高就有3倍這樣的關(guān)系。
4、時(shí)間分配上不到位,例題的處理中,考慮到本節(jié)的重點(diǎn)是理解公式并運(yùn)用公式,所以沒花多的時(shí)間,由于數(shù)字教大,部分學(xué)生沒做完。
圓錐的體積教案人教版 六年級(jí)下冊(cè)數(shù)學(xué)圓錐的體積教案篇十一
1、知識(shí)與技能目標(biāo):使學(xué)生理解和掌握?qǐng)A錐體積的計(jì)算公式,會(huì)運(yùn)用公式計(jì)算圓錐的體積并解決簡(jiǎn)單的實(shí)際問題。
2、過程與方法:在推導(dǎo)公式過程中,通過小組合作、動(dòng)手實(shí)驗(yàn)的方法,培養(yǎng)學(xué)生分析、推理的能力及抽象概括能力。
3、態(tài)度、情感、價(jià)值觀:在探究公式的過程中,向?qū)W生滲透“事物之間是相互聯(lián)系”的,并通過活動(dòng),使學(xué)生形成良好的合作探究意識(shí)。
教學(xué)重點(diǎn):掌握?qǐng)A錐體積的計(jì)算公式。
教學(xué)難點(diǎn):圓錐體積公式的推導(dǎo)過程。
1、怎樣計(jì)算圓柱的體積?
2、一個(gè)圓柱的底面積是60平方分米,高
是15分米,它的體積是多少立方分米?
3、說一說圓錐有哪些特征?
(1)頂部:
(2)底面:
(3)側(cè)面:
(4)高:
4、我們學(xué)習(xí)了圓柱的體積,還認(rèn)識(shí)了圓錐體。
同學(xué)們看今年又是一個(gè)豐收年,農(nóng)民伯伯可高興了,你能幫他們計(jì)算收了多少糧食嗎?也就是求圓錐的體積。圓錐的體積怎樣計(jì)算呢?它又是怎樣推導(dǎo)出來了呢?這節(jié)課我們就來研究這個(gè)問題。(板書課題:圓錐的體積)
1、引導(dǎo)學(xué)生借助圓柱,探討圓錐的體積公式。
①、猜:圓錐的體積怎樣計(jì)算呢?大膽猜一下。
②、圓錐的體積公式是怎樣推導(dǎo)的呢?你有什么想法?小組內(nèi)討論。
2、下面我們就用實(shí)驗(yàn)的方法來推導(dǎo)圓椎的體積公式。
老師提供了實(shí)驗(yàn)用具,(每組有1個(gè)圓柱和一個(gè)圓錐實(shí)驗(yàn)杯,一瓶礦泉水)
(1)引導(dǎo)學(xué)生觀察用來實(shí)驗(yàn)的圓錐、圓柱的特點(diǎn):圓柱和圓錐都是等底等高(師板書:等底等高)
(2)學(xué)生實(shí)驗(yàn):
你想怎么做實(shí)驗(yàn)?小組內(nèi)議一議,老師指導(dǎo)倒一下水。請(qǐng)同學(xué)們以小組為單位進(jìn)行實(shí)驗(yàn),在實(shí)驗(yàn)中,注意填好實(shí)驗(yàn)報(bào)告表。(大屏幕出示實(shí)驗(yàn)報(bào)告表)
a:你們小組是怎樣進(jìn)行實(shí)驗(yàn)的?
b:通過實(shí)驗(yàn),你們發(fā)現(xiàn)了所給的圓錐、圓柱在體積上有什么關(guān)系?
c:根據(jù)這個(gè)關(guān)系怎樣求出圓錐的體積?學(xué)生匯報(bào),完成計(jì)算公式的推導(dǎo)。
3、同學(xué)們一定有不少的收獲和發(fā)現(xiàn),下面我們來交流一下。
要求:小組內(nèi)先交流一下,選三四名同學(xué)到前面來匯報(bào)。哪個(gè)小組同學(xué)匯報(bào)?哪個(gè)小組同學(xué)補(bǔ)充?(學(xué)生實(shí)驗(yàn)并講解,教師糾正:實(shí)驗(yàn)總是不十分準(zhǔn)確,有可能差點(diǎn)。)
一名學(xué)生匯報(bào),師板書。
生:我們把圓錐裝滿水,倒入這個(gè)圓柱體當(dāng)中,正好倒了3次倒?jié)M,得出圓錐的體積等于這個(gè)圓柱的體積的1/3,因?yàn)閳A柱的體積v=sh,所以圓錐的體積v =1/3sh
(教師板書)圓錐的體積= 1/3 ×底面積×高
等底等高v=1/3sh(圓柱的體積怎樣求?圓錐的體積怎樣求?)
4、反饋。同學(xué)們經(jīng)過實(shí)驗(yàn),發(fā)現(xiàn)了用來實(shí)驗(yàn)的圓錐的體積等于圓柱的體積的.1/3,老師也想做實(shí)驗(yàn):出示一個(gè)非常大的圓柱,一個(gè)很小的圓錐,這個(gè)圓柱的體積是圓錐體積的3倍嗎?(為什么?)
我們已經(jīng)推導(dǎo)出了圓錐的體積公式v、s、h表示什么?利用這一關(guān)系推導(dǎo)出圓錐的體積:v錐=1/3 sh)
圓柱的體積是與它等底等高圓錐體積的3倍。
圓錐的體積是與它等底等高圓柱體積的1/3 。
1、如果小麥堆的底面半徑為2米,高是1.5米。你能計(jì)算出小麥堆的體積嗎?
(一名學(xué)生板演并匯報(bào))學(xué)生講解。
答:這個(gè)小麥堆的體積是6.28立方厘米。注意:計(jì)算公式上有無(wú)漏洞、計(jì)算上的指導(dǎo)(約分)單位名稱上的指導(dǎo)(立方)。
2、想一想。議一議。說一說:
(1)已知圓錐的底面半徑r和高h(yuǎn),如何求體積v?
(2)已知圓錐的底面直徑d和高h(yuǎn),如何求體積v?
(3)已知圓錐的底面周長(zhǎng)c和高h(yuǎn),如何求體積v?
4、考考你:
有一根底面直徑是6厘米,長(zhǎng)是15厘米的圓柱形鋼材,要把它削成與它等底等高的圓錐形零件。要削去鋼材多少立方厘米?
這節(jié)課你有什么收獲?
板書:圓錐的體積
圓錐的體積=1/3 ×底面積×高
圓錐的體積教案人教版 六年級(jí)下冊(cè)數(shù)學(xué)圓錐的體積教案篇十二
使同學(xué)初步掌握?qǐng)A錐體積的計(jì)算公式,并能運(yùn)用公式正確地計(jì)算圓錐的體積,發(fā)展同學(xué)的空間觀念。
等底等高的圓柱和圓錐8組,比圓柱體積多的沙土
一、復(fù)習(xí)
1、圓錐有什么特征?
使同學(xué)進(jìn)一步熟悉圓錐的特征:底面,側(cè)面,高和頂點(diǎn)。
2、圓柱體積的計(jì)算公式是什么?
指名同學(xué)回答,并板書公式:“圓柱的體積=底面積×高”。同時(shí)滲透轉(zhuǎn)化方法在數(shù)學(xué)學(xué)習(xí)中的應(yīng)用。
二、導(dǎo)人新課
我們已經(jīng)學(xué)過圓柱體積的計(jì)算公式,那么圓錐的體積是不是和圓柱體積有關(guān)呢?今天我們就來學(xué)習(xí)圓錐體積的計(jì)算。
板書課題:圓錐的體積
三、新課
1、教學(xué)圓錐體積的計(jì)算公式。
師:請(qǐng)大家回億一下,我們是怎樣得到圓柱體積的計(jì)算公式的?
指名同學(xué)敘述圓柱體積計(jì)算公式的推導(dǎo)過程,使同學(xué)明確求圓柱的`體積是通過切拼生長(zhǎng)方體來求得的。
師:那么圓錐的體積該怎樣求呢?能不能也通過已學(xué)過的圖形來求呢?
先讓同學(xué)討論一下用什么方法求,然后指出:我們可以通過實(shí)驗(yàn)的方法,得到計(jì)算圓錐體積的公式。
教師拿出等底等高的圓柱和圓錐各一個(gè),“大家看,這個(gè)圓錐和圓柱有什么一起的地方?”
然后通過演示后,指出:“這個(gè)圓錐和圓柱是等底等高的,下面我們通過實(shí)驗(yàn),看看它們之間的體積有什么關(guān)系?”
同學(xué)分組實(shí)驗(yàn)。
匯報(bào)實(shí)驗(yàn)結(jié)果。先在圓錐里裝滿沙土,然后倒入圓柱。正好3次可以倒?jié)M。
多指名說
接著,教師課件邊演示邊敘述:現(xiàn)在圓錐和圓柱里都是空的。請(qǐng)大家注意觀察,看看能夠倒幾次正好把圓柱裝滿?
問:把圓柱裝滿一共倒了幾次?
生:3次。
師:這說明了什么?
生:這說明圓錐的體積是和它等底等高的圓柱的體積的。
多找?guī)酌瑢W(xué)說。
板書:圓錐的體積=1/3 × 圓柱體積
師:圓柱的體積等于什么?
生:等于“底面積×高”。
師:那么,圓錐的體積可以怎樣表示呢?
引導(dǎo)同學(xué)想到可以用“底面積×高”來替換“圓柱的體積”,于是可以得到圓錐體積的計(jì)算公式。
板書:圓錐的體積= 1/3 ×底面積×高
師:用字母應(yīng)該怎樣表示?
然后板書字母公式:v=1/3 sh
師:在這個(gè)公式里你覺得哪里最應(yīng)該注意?
2、鞏固練習(xí)
(1)已知圓柱和圓錐等底等高。圓柱的體積是45立方厘米,圓錐的體積是( )立方厘米。已知圓柱和圓錐等底等高。圓錐的體積是20立方厘米,圓柱的體積是( )立方厘米。
(2)求下面圓錐的體積。
已知底面面積是9.6平方米,高是2米。
底面半徑是4厘米,高是3.5厘米。
底面直徑是4厘米,高是6厘米。
在列式時(shí)注意什么?( ) 在計(jì)算時(shí),我們?cè)鯓佑?jì)算比較簡(jiǎn)便?(能約分的要先約分)
(3)判斷:
(l)圓錐體積是圓柱體積的1/3( )
(2)圓柱體的體積大于與它等底等高的圓錐體的體積。( )
(3)假如圓柱圓錐等底等高,圓柱體積是圓錐的3倍,圓錐體積是圓柱體積的2/3。( )
(4)圓錐的底面積是3平方厘米,體積是6立方厘米。( )
圓錐的體積教案人教版 六年級(jí)下冊(cè)數(shù)學(xué)圓錐的體積教案篇十三
練習(xí)四第4~12題和第23頁(yè)思考題
1.使學(xué)生進(jìn)步理解、掌握?qǐng)A錐的體積計(jì)算方法,能根據(jù)不同的條件計(jì)算出圓錐的體積。
2.提高學(xué)生解決生活中實(shí)際問題的能力。
3.養(yǎng)成良好的學(xué)習(xí)習(xí)慣。
進(jìn)步掌握?qǐng)A錐體積的計(jì)算方法。
圓柱和圓錐體積之間的聯(lián)系與區(qū)別。
1.復(fù)習(xí)體積計(jì)算。
(1)提問:圓錐的體積怎樣計(jì)算?
(2)口答下列各圓錐的體積。
①底面積3平方分米,高2分米。
②底面積4平方厘米,高4.5厘米。
2.引入新課。
今天這節(jié)課,我們練習(xí)圓錐體積的計(jì)算,通過練習(xí),還要能應(yīng)用圓錐體積計(jì)算的方法解決一些簡(jiǎn)單的實(shí)際問題。
組織練習(xí)。
1.做練習(xí)四第4題。
學(xué)生獨(dú)立計(jì)算。
2.做練習(xí)四第5題。
把等底等高的圓柱體積和圓錐體積相互轉(zhuǎn)化,從已知的圓柱體積得出相應(yīng)的圓錐體積,從已知的圓錐體積得出相應(yīng)的圓柱體積,繼續(xù)加強(qiáng)對(duì)等底等高圓柱和圓錐體積關(guān)系的理解。
3.做練習(xí)四第6題。
出示第6題的圖。
引導(dǎo)分析:根據(jù)圖示的各個(gè)立體圖形的底面直徑與高,尋找與圓錐體積相等的。圓柱,可以從圓錐體積是等底等高圓柱體積的1/3,推理出體積相等的.圓柱與圓錐,如果底面積相等,圓錐的高是圓柱的3倍圓柱的高是圓錐的1/3;如果高相等,圓錐的底面積是圓柱的3倍圓柱的底面積是圓錐的1/3。還要注意到,大圓的直徑是小圓的3倍小圓直徑是大圓的1/3,大圓的面積則是小圓的9倍小圓的面積是大圓的1/9。
4.做練習(xí)四第7題。
(1)提問:圓錐體積最大時(shí)與圓柱的關(guān)系是什么?(等底等高)
接著讓學(xué)生獨(dú)立練習(xí)。
(2)讓學(xué)生自主地提出其他問題,進(jìn)一步的掌握?qǐng)A錐和圓柱的關(guān)系。
5.做練習(xí)四第8題。
聯(lián)系實(shí)際,解決問題。
6.做練習(xí)四第9題。
讓學(xué)生動(dòng)手操作,理解三角形繞它的兩條高旋轉(zhuǎn)一周形成兩個(gè)大小不同的圓錐。在此基礎(chǔ)上讓學(xué)生獨(dú)立計(jì)算。
7.做練習(xí)四第12題。
出示圓錐形模型,提問:你有什么辦法算山它的體積嗎,需要測(cè)量哪些數(shù)據(jù)?怎樣測(cè)量直徑和高。請(qǐng)同學(xué)們回去測(cè)量你用第115頁(yè)圖制作的圓錐,求出它的體積來。
這節(jié)課練習(xí)了圓錐的體積計(jì)算和應(yīng)用:計(jì)算體積需要知道底面積和高。如果沒有告訴底面積,我們要先求半徑算出底面積,再計(jì)算體積。應(yīng)用圓錐體積計(jì)算方法,有時(shí)候還可以計(jì)算出圓錐形物休的重量。
1.練習(xí)四第10.11題。
2.學(xué)有余力學(xué)生完成思考題。
圓錐的體積教案人教版 六年級(jí)下冊(cè)數(shù)學(xué)圓錐的體積教案篇十四
第25~26頁(yè),例2、例3及練習(xí)四的第3~8題。<
1、通過分小組倒水實(shí)驗(yàn),使學(xué)生自主探索出圓錐體積和圓柱體積之間的關(guān)系,初步掌握?qǐng)A錐體積的計(jì)算公式,并能運(yùn)用公式正確地計(jì)算圓錐的體積,解決實(shí)際生活中有關(guān)圓錐體積計(jì)算的簡(jiǎn)單問題。
2、借助已有的生活和學(xué)習(xí)經(jīng)驗(yàn),在小組活動(dòng)過程中,培養(yǎng)學(xué)生的動(dòng)手操作能力和自主探索能力。
3、通過小組活動(dòng),實(shí)驗(yàn)操作,巧妙設(shè)置探索障礙,激發(fā)學(xué)生的自主探索意識(shí),發(fā)展學(xué)生的空間觀念。
掌握?qǐng)A錐體積的計(jì)算公式。
正確探索出圓錐體積和圓柱體積之間的關(guān)系。
圓錐與等底等高的圓柱,圓錐與不等底等高的圓柱。
1、圓錐有什么特征?(使學(xué)生進(jìn)一步熟悉圓錐的特征:底面、側(cè)面、高和頂點(diǎn))
2、圓柱體積的計(jì)算公式是什么?
指名學(xué)生回答,并板書公式:“圓柱的體積=底面積×高”。
1、教學(xué)圓錐體積的計(jì)算公式。
(1)回憶圓柱體積計(jì)算公式的推導(dǎo)過程,使學(xué)生明確求圓柱的體積是通過切拼成長(zhǎng)方體來求得的.
(2)能不能也通過已學(xué)過的圖形來求呢?圓錐的體積可能和什么圖形的體積有關(guān)?圓錐的體積該怎樣求呢?(指出:我們可以通過實(shí)驗(yàn)的方法,得到計(jì)算圓錐體積的公式)
(3)拿出等底等高的圓柱和圓錐各一個(gè),通過演示,使學(xué)生發(fā)現(xiàn)“這個(gè)圓錐和圓柱是等底等高的,下面我們通過實(shí)驗(yàn),看看它們之間的體積有什么關(guān)系?”
(4)先在圓錐里裝滿水,然后倒入圓柱。讓學(xué)生注意觀察,倒幾次正好把圓柱裝滿?
(教師讓學(xué)生注意,記錄幾次,使學(xué)生清楚地看到倒3次正好把圓柱裝滿。)
(5)這說明了什么?(這說明圓錐的體積是和它等底等高的圓柱的體積的 )還可以怎么說?
板書:圓錐的體積=1/3×圓柱的體積=1/3×底面積×高,字母公式:v=1/3sh
拿不等底等高的圓柱與圓錐進(jìn)行實(shí)驗(yàn)。為什么倒3次不能剛好倒,和剛才不一樣呢?
強(qiáng)調(diào):“等底等高”。
問:sh表示什么?為什么要乘1/3?
練習(xí):一個(gè)圓柱的體積是27立方分米,與它等底等高的圓錐體積是多少?
一個(gè)圓錐的體積是15立方厘米,與它等底等高的圓柱的體積是多少?
2、教學(xué)練習(xí)四第3題
(1)這道題已知什么?求什么?已知圓錐的底面積和高應(yīng)該怎樣計(jì)算?
(2)引導(dǎo)學(xué)生對(duì)照?qǐng)A錐體積的計(jì)算公式代入數(shù)據(jù),然后讓學(xué)生自己進(jìn)行計(jì)算,做完后集體訂正。
說明:不要漏乘1/3,計(jì)算時(shí)能約分的要先約分。
3、鞏固練習(xí):完成練習(xí)四第4題。
4、教學(xué)例3.
(1)出示例3
已知近似于圓錐形的沙堆的.底面直徑和高,求這堆沙堆的的體積。
(2)要求沙堆的體積需要已知哪些條件?(由于這堆沙堆近似圓錐形,所以可利用圓錐的體積公式來求,需先已知沙堆的底面積和高)
(3)題目的條件中不知道圓錐的底面積,應(yīng)該怎么辦?(先算出沙堆的底面半徑,再利用圓的面積公式算出麥堆的底面積,然后根據(jù)圓錐的體積公式求出沙堆的體積)
(4)分析完后,指定兩名學(xué)生板演,其余學(xué)生將計(jì)算步驟寫在教科書第26頁(yè)上.做完后集體訂正。(注意學(xué)生最后得數(shù)的取舍方法是否正確)
1、做練習(xí)四的第7題。
學(xué)生先獨(dú)立判斷這三句話是否正確,然后全般核對(duì)評(píng)講。
2、做練習(xí)四的第8題。
(1)引導(dǎo)學(xué)生學(xué)生思考回答以下問題:
① 這道題已知什么?求什么?
② 求圓錐的體積必須知道什么?
③ 求出這堆煤的體積后,應(yīng)該怎樣計(jì)算這堆煤的重量?
(2)讓學(xué)生做在練習(xí)本上,教師巡視,做完后集體訂正。
3、做練習(xí)四的第6題。
(1)指名學(xué)生先后回答下面問題:
① 圓柱的側(cè)面積等于多少?
② 圓柱的表面積的含義是什么?怎樣計(jì)算?
③ 圓柱體積的計(jì)算公式是什么?
④ 圓錐的體積公式是什么?
(2)學(xué)生把計(jì)算結(jié)果填寫在教科書第28頁(yè)的表格中,做完后集體訂正。
這節(jié)課學(xué)習(xí)了哪些內(nèi)容?你是如何準(zhǔn)確地記住圓錐的體積公式的?
第七課時(shí)教學(xué)反思
課件演示
俗話說“眼見為實(shí)”,所以相對(duì)于課件演示而言,教師在全班演示會(huì)更直觀,結(jié)論也更具信服性。
俗話又說“紙上得來終覺淺,絕知此事要躬行”,所以相對(duì)于看教師演示與自己親自動(dòng)手實(shí)驗(yàn),親身經(jīng)歷探究印象會(huì)更深刻。
課堂如果以4――6人小組為單位進(jìn)行實(shí)驗(yàn),全班至少得有9套以上教具。可我校現(xiàn)有教具數(shù)量不夠。如果要求學(xué)生課前自制教具,他們暫時(shí)無(wú)法制作出與圓柱等底等高高的圓錐。所以只好改為教師演示,學(xué)生觀察。
僅用一次實(shí)驗(yàn)就得出結(jié)論是不嚴(yán)謹(jǐn)?shù)模哉n堂上必須讓學(xué)生歷經(jīng)多次不同實(shí)驗(yàn)后才能得到正確結(jié)論。根據(jù)學(xué)校現(xiàn)有教具,今天我準(zhǔn)備了兩套不同大小的等底等高圓柱、圓錐作為器材。在實(shí)驗(yàn)中,我不僅讓學(xué)生清晰地看到將圓錐內(nèi)的水倒3次可以注滿與它等底等高的圓柱,同時(shí),還讓他們看到圓柱內(nèi)的水再反倒回等底等高的圓錐時(shí)要倒3次。不僅自己示范演示,也讓學(xué)生參與演示實(shí)驗(yàn)。最后,我還用不等底等高的圓柱與圓錐做實(shí)驗(yàn),強(qiáng)調(diào)實(shí)驗(yàn)結(jié)果只有在“等底等高”的條件下才能成立。因?yàn)閷?shí)驗(yàn)環(huán)節(jié)落實(shí)較好,全班作業(yè)正確率高。