作為一位不辭辛勞的人民教師,常常要根據教學需要編寫教案,教案有利于教學水平的提高,有助于教研活動的開展。既然教案這么重要,那到底該怎么寫一篇優質的教案呢?以下我給大家整理了一些優質的教案范文,希望對大家能夠有所幫助。
點到直線的距離教案篇一
1、地位與作用:解析幾何第一章主要研究的是點線、線線的位置關系和度量關系,其中以點點距離、點線距離、線線位置關系為重點,點到直線的距離是其中最重要的環節之一,它是解決其它解析幾何問題的基礎。本節是在研究了兩條直線的位置關系的判定方法的基礎上,研究兩條平行線間距離的一個重要公式。推導此公式不僅完善了兩條直線的位置關系這一知識體系,而且也為將來用代數方法研究曲線的幾何性質奠定了基礎。而更為重要的是:通過認真設計這一節教學,能使學生在探索過程中深刻地領悟到蘊涵于公式推導中的重要的數學思想和方法,學會利用化歸思想和分類方法,由淺入深,由特殊到一般地研究數學問題,同時培養學生濃厚的數學興趣和良好的學習品質。
2、重點、難點及關鍵:重點是“公式的推導和應用”,難點是“公式的推導”,關鍵是“怎樣自然地想到利用坐標系中的x軸或y軸構造rt△,從而推出公式”。對于這個問題,教材中的處理方法是:沒有說明原因直接作輔助線(呈現教材)。這樣做,無法展現為什么會想到要構造rt△這一最需要學生探索的過程,不利于學生完整地理解公式的推導和掌握與之相應的豐富的數學思想方法。如果照本宣科,則不能擺脫在客觀上對學生進行灌注式教學。事實上,為了真正實現以學生為主體的教學,讓學生真正地參與進來,起關鍵作用的是設計出有利于學生參與教學的內容組織形式。因此,我沒有像教材中那樣直接作輔助線,而是對教學內容進行剪裁、重組和鋪墊,構建出在探索結論過程中側重于學生能力培養的一系列教學環節,采用將一般轉化到特殊的方法,引導學生通過對特殊的直觀圖形的觀察、研究,自己發現隱藏其中的rt△,從而解出|pq|。在此基礎上進一步將特殊問題還原到一般,學生便十分自然地想在坐標系中探尋含pq的rt△,找不到,自然想到構造,此時再過p點作x軸或y軸的平行線就顯得“瓜熟蒂落,水到渠成”了。本設計力求以啟迪思維為核心,設計出能啟發學生思維的“最近發展區”,從而突破難點的關鍵,推導出公式。
1、認知目標:
(1)點到直線距離公式的推導,并能用公式計算。
(2)領會滲透于公式推導中的數學思想(如化歸思想、數形結合、分類討論等數學思想),掌握用化歸思想來研究數學問題的方法。
2、能力目標:通過讓學生在實踐中探索、觀察、反思、總結,發現問題、解決問題,從而達到培養學生的觀察能力、歸納能力、思維能力、應用能力和創新能力的目的。
3、情感目標:培養學生勇于探索、善于研究的精神,挖掘其非智力因素資源,培養其良好的數學學習品質。
學生在此之前已經學習了點點距離、線線位置關系,初步掌握了“用代數的方法研究曲線的性質”這一研究解析幾何問題的重要方法,并且學習了三角函數的相關內容,這就為構造rt△,利用三角形性質以及同角公式推導點到直線的距離公式做好了鋪墊。并且,高二的學生已經基本能夠從特殊的情況中發現規律,從而推廣為一般情況,關鍵是學生在這個方面的應用意識還比較淡漠,所以本節課只要做好這種引導工作,學生是比較容易理解的。這也是本節課要突出的“從特殊到一般”的課堂設計的原因,能夠使學生充分地參與進來,體會到成功的喜悅。
本節課的內容實際上并不是難度很大,關鍵是推導公式的方法的選擇,一旦找準推導方法、作出相應的輔助線,接下來的推導過程就是比較容易完成的。所以
1、遵循“數學學習的本質是主體(學生)在頭腦中建構和發展數學認知結構的過程,是主體的一種再創造行為”的理論,采取以“學生為主體,教師為主導的”啟發式、提問式教學方法。
2、根據“教師應尊重學生主體和主動的精神,開發學生的智能,形成其健全個性”的原則,力求營造民主的教學氛圍,使學生或顯性(答問、板演等)或隱性(聆聽,苦思等)地參與全教學過程,學生在教師設計的問題下,積極思考、動手演練、步步深入,讓學生自己導出公式。
3、采用投影、計算機等教學手段,增大教學的容量和直觀性,有效提高教學效率和教學質量。
4、以反饋調控為手段,力求反饋的全面性(優、中、差生)與時效性(及時、中肯)。
⑴課題引入:復習如何判斷兩條直線的位置關系?如果兩直線相交,又如何求出交點的坐標?這樣有意識地涉及兩直線垂直、兩直線的交點等知識,既幫助學生整理、復習已學知識的結構,也讓學生在復習過程中自己“發現”尚未解決的問題,使新授知識在原認知結構中找到生長點,自然地引出新問題,符合學生的認知規律,有利于學生形成合理、完善的認知結構。(3分鐘)
⑵課題解決:教學過程中,利用“從特殊到一般”的方法(由特殊直線到一般直線;由特殊點到一般的點):
先研究點到特殊的直線(平行于x軸和y軸的直線)的距離;
然后對于一般的直線,先研究特殊的點(原點)到直線的距離(可以利用“等面積法”、“三角形相似的性質”或“解直角三角形”三種思路求解),再將其解題方法推廣到一般的點,就會自然想到構造rt△進行求解了。
逐步逼近目標,在這過程中展示了數學知識產生的思維過程。調動學生自覺地、主動地參與進來,教師的主導作用,學生的主體作用都得以充分體現。在教學中只要抓住“構造一個可用的三角形”這個關鍵,就能突破難點,易于學生的理解和掌握。(27分鐘)
⑶例題練習:推導出公式之后,通過例題講解和學生動手練習,進一步鞏固公式的記憶和應用。(12分鐘)
⑷小結作業:師生互動,共同總結公式的推導過程以及公式的特征和應用,布置課后作業。(3分鐘)
《點到直線的距離公式》是解決理論和實際問題的一個重要工具,這不僅是其有廣泛的應用,而更重要的是公式推導過程中蘊含著重要的數學思想,教學中理應予以重視。因而,在設計這節課的教學方案時,要力求暴露公式推導中的思維過程,突出整體觀念對思維過程的指導作用。但在以往的教學過程中遇到的最大困難是:思路自然的則運算很繁,而運算較簡單的解法則思路又很不自然。這樣就造成了教學中通常采用“滿堂灌”、“注入式”,學生的思維得不到應有的訓練,學生的主體作用也不能充分體現出來。為避免這個問題,有必要很好地探討一下,“點到直線的距離公式”的教學如何更合理,怎樣把教學過程變成師生共同探索、發現公式的過程,怎樣使推導過程自然而簡練。
本節課是“兩條直線的位置關系”的最后一個內容,在復習引入時,有意識地涉及兩直線垂直、兩直線的交點等知識,既幫助學生整理、復習已學知識的結構,也讓學生在復習過程中自己“發現”尚未解決的問題,使新授知識在原認知結構中找到生長點,自然地引出新問題,符合學生的認知規律,有利于學生形成合理、完善的認知結構。教學過程中,逐步逼近目標,在這過程中展示了數學知識產生的思維過程。學生能夠自覺地、主動地參與進來,教師的主導作用、學生的主體作用都得以充分體現,經常這樣做,學生的數學思維能力必將逐步得到提高。在教學中只要抓住“構造一個可用的三角形”這個關鍵,就能突破難點,還可以采用其他的方法推導“點到直線的距離”公式,易于學生的理解和掌握。
這堂課,既是一堂新課,也是實驗課;既學習了新知識,也鍛煉了用從特殊到一般,再從一般到特殊的思維方法分析解決問題的能力,提高了學生使用現代化工具的動手能力;也讓學生感受到數學變化的美;也在學生個性情感中融入了創新的意識與膽量。
點到直線的距離教案篇二
教學目標:
1.讓學生理解點到直線距離公式的推導和掌握點到直線距離公式及其應用,會用點到直線距離求兩平行線間的距離.
2.培養學生觀察、思考、分析、歸納等數學能力,數形結合、化歸(或轉化)、特殊到一般的數學思想方法以及數學應用意識.
3.讓學生了解和感受探索問題的方法,以及用聯系的觀點看問題.在探索問題的過程中體驗成功的喜悅.
教學重點:點到直線距離公式及其應用.
教學難點:點到直線距離公式的推導.
教學方法:啟發式講解法、討論法.
教學工具:電腦多媒體.
教學過程:
一、提出問題
多媒體顯示實際的例子:
某電信局計劃年底解決本地區最后一個小區的電話通信問題.經過測量,若按照部門內部設計好的坐標圖(即以電信局為原點),得知這個小區的坐標為p(-1,5),離它最近的只有一條線路通過,其方程為2x y 10=0.要完成這項任務,至少需要多長的電纜線?
這個實際問題要解決,要轉化成什么樣的
數學問題?學生得出就是求點到直線的距離.教師提出這堂課我們就來學習點到直線的距離,并板書寫課題:點到直線的距離.
二、解決問題
多媒體顯示:已知點p(x0,y0),直線 :ax by c=0,求點p到直線 的距離.
怎樣求點到直線距離呢?學生應該很快能回答出,做垂線找垂足q,求線段pq的長度.怎樣用點的坐標和直線方程求和表示點到直線距離呢?
教師提示在解決問題時先可以考慮特殊情況,再考慮一般情況.學生提出平行于x軸和y軸的特殊情況.顯示圖形:
板書:
如何求 ?
學生思考回答下列想法:
思路一:過 作 于 點,根據點斜式寫出直線 方程,由 與 聯立方程組解得 點坐標,然后利用兩點距離公式求得.
教師評價:此方法思路自然,但是運算繁瑣.并多媒體展示求解過程.
解:直線 : ,即
由 ,
說明:本過程只展示,不在課堂推導.
教師提問:能否用其它方法,不求點q的坐標,求線段pq的長度?
學生思考:放在三角形---特殊三角形---直角三角形中.
教師提問:如何構造三角形?第三個頂點選在什么位置?
學生思考:可能在直線 與x軸的交點m或與y軸交點n,或過p點做x,y軸的平行線與直線 的交點r、s.
教師根據學生提出的點的位置作分析,求解過程的繁與簡,最后決定方法.下列是學生可能提到的情況:
思路二:在直角△pqm,或直角△pqn中,求邊長與角(角與直線到直線角有關),用余弦值.
思路三:在直角△pqr,或直角△pqs中,求邊長與角(角與直線傾斜角有關,但分情況),用余弦值.
思路四:在直角△prs中,求線段pr、ps、rs,利用等面積法(不涉及角和分情況),求得線段pq長.
學生練習求解思路四.教師巡視,根據學生情況演示過程.
解:設 , , ,
, ; ,
由 ,
而
說明:如果學生沒有想到思路二、三,教師提示做課后思考作業題目.
教師提問:①上式是由條件下 得出,對 成立嗎?
②點p在直線 上成立嗎?
③公式結構特點是什么?用公式時直線方程是什么形式?
由此推導出點p(x0,y0)到直線 :ax by c=0距離公式:
教師繼續引導學生思考,不構造三角形可以求嗎?(在前面學習的向量知識中,有向量的模.由于在證明兩直線垂直時已經用到向量知識,且也提出過直線的法向量的概念.)能否用向量知識求解呢?
思路五:已知直線 的法向量 ,則 , ,如何選取法向量?直線的方向向量 ,則法向量為 ,或 ,或其它.由師生一起分析得出取 = .
教師板演:
,
,由于點q在直線上,所以滿足直線方程 ,解得
教師評析:向量是新教材內容,是一種很好的數學工具,和解析幾何結合應用是現在新教材知識的交匯點.而且上述方法在今后解析幾何與向量結合的題目中,用坐標聯系轉化是常用方法.
三、公式應用
練習:
1.解決課堂提出的實際問題.(學生口答)
2.求點p0(-1,2)到下列直線的距離 :
①3x=2 ②5y=3 ③2x y=10 ④y=-4x 1
練習選擇:平行坐標軸的特殊直線,直線方程的非一般形式.
練習目的:熟悉公式結構,記憶并簡單應用公式.
教師強調:直線方程的一般形式.
例題:
3.求平行線2x-7y 8=0和2x-7y-6=0的距離.
教師提問:如何求兩平行線間的距離?距離如何轉化?
學生回答:選其中一條直線上的點到另一條直線的距離.
師生共同分析:點所在直線的任意性、點的任意性.
學生自己練習,教師巡視.教師提問幾個學生回答自己選取的點和直線以及結果.然后選擇一種取任意點的方法進行板書.
解:在直線2x-7y-6=0上任取點p(x0,y0),則2 x0-7 y0-6=0,點p(x0,y0)到直線2x-7y 8=0的距離是 .
教師評述:本例題選取課本例題,但解法較多.除了選擇直線上的點,還可以選取原點,求它到兩條直線的距離,然后作和.或者選取直線外的點p,求它到兩條直線的距離,然后作差.
引申思考: 與 兩平行線間距離公式.
四、課堂小結:(由學生總結)
①&n
② 數學思想方法:類比、轉化、數形結合思想,特殊到一般的方法.
③ 多角度考慮問題,一題多解.
五、布置作業
① 課本習題7.3的第13題----16題;
② 總結寫出點到直線距離公式的多種方法.
教學設計說明:
一、教材分析
我主要從三方面:教材的地位和作用、教學目標分析、教學重點和難點來說明的。教學目標包括:知識、能力、德育等方面的內容。我確定教學目標的依據有教學大綱、考試大綱的要求、新教材的特點、所教學生的實際情況。
二、教學方法和手段
1、教學方法的選擇
(1)指導思想:教師為主導,學生為主體,引導學生參與對事物的認識過程。
(2)教學方法:啟發式講解法、討論法。
2.教學手段的選用
采用了電腦多媒體教具,不僅將數學問題形象、直觀顯示,便于學生思考,而且迅速展示部分純計算的解題過程,提高課堂效率。
三、教學過程
這節課我分:"提出問題--解決問題--公式應用--課堂小結--布置作業"五個環節來完成。
首先多媒體顯示實例,引發學生的學習的興趣和求知欲望,從而引出數學問題。通過一系列問題引導學生通過圖形觀察,進而分析、歸納總結選擇較好的方法具體實施。關于思路五,在課本中沒有出現這樣的證法,我在課堂上選取這樣的證法。主要是考慮到:向量是新教材內容,是一種很好的數學工具,和解析幾何結合應用是現在新教材知識的交匯點。而且上述方法在今后解析幾何與向量結合的題目中,用坐標聯系轉化是常用方法,這樣思路五的給出不僅符合新教材的要求,也為今后的學習方法奠定了基礎。
我選擇練習目的:熟悉公式結構,記憶并簡單應用公式,主要通過學生口答完成。我強調注意在公式中直線方程的一般式。例題的選取來自課本,但是課本只有一種特殊點的解法。我把本例題進行挖掘,引導學生多角度考慮問題。在整個過程中讓學生注意體會解題方法中的靈活性。本節課小結主要由學生總結,教師補充,尤其數學思想方法教師加以解釋。在整節課的處理中,采取了知識、方法來源于課本,挖掘其深度、廣度,符合現代教學要求
點到直線的距離教案篇三
1、地位與作用:解析幾何第一章主要研究的是點線、線線的位置關系和度量關系,其中以點點距離、點線距離、線線位置關系為重點,點到直線的距離是其中最重要的環節之一,它是解決其它解析幾何問題的基礎。本節是在研究了兩條直線的位置關系的判定方法的基礎上,研究兩條平行線間距離的一個重要公式。推導此公式不僅完善了兩條直線的位置關系這一知識體系,而且也為將來用代數方法研究曲線的幾何性質奠定了基礎。而更為重要的是:通過認真設計這一節教學,能使學生在探索過程中深刻地領悟到蘊涵于公式推導中的重要的數學思想和方法,學會利用化歸思想和分類方法,由淺入深,由特殊到一般地研究數學問題,同時培養學生濃厚的數學興趣和良好的學習品質。
2、重點、難點及關鍵:重點是“公式的推導和應用”,難點是“公式的推導”,關鍵是“怎樣自然地想到利用坐標系中的x軸或y軸構造rt△,從而推出公式”。對于這個問題,教材中的處理方法是:沒有說明原因直接作輔助線(呈現教材)。這樣做,無法展現為什么會想到要構造rt△這一最需要學生探索的過程,不利于學生完整地理解公式的推導和掌握與之相應的豐富的數學思想方法。如果照本宣科,則不能擺脫在客觀上對學生進行灌注式教學。事實上,為了真正實現以學生為主體的教學,讓學生真正地參與進來,起關鍵作用的是設計出有利于學生參與教學的內容組織形式。因此,我沒有像教材中那樣直接作輔助線,而是對教學內容進行剪裁、重組和鋪墊,構建出在探索結論過程中側重于學生能力培養的一系列教學環節,采用將一般轉化到特殊的方法,引導學生通過對特殊的直觀圖形的觀察、研究,自己發現隱藏其中的rt△,從而解出|pq|。在此基礎上進一步將特殊問題還原到一般,學生便十分自然地想在坐標系中探尋含pq的rt△,找不到,自然想到構造,此時再過p點作x軸或y軸的平行線就顯得“瓜熟蒂落,水到渠成”了。本設計力求以啟迪思維為核心,設計出能啟發學生思維的“最近發展區”,從而突破難點的關鍵,推導出公式。
(1)點到直線距離公式的推導,并能用公式計算。
(2)領會滲透于公式推導中的數學思想(如化歸思想、數形結合、分類討論等數學思想),掌握用化歸思想來研究數學問題的方法。
通過讓學生在實踐中探索、觀察、反思、總結,發現問題、解決問題,從而達到培養學生的觀察能力、歸納能力、思維能力、應用能力和創新能力的目的。
培養學生勇于探索、善于研究的精神,挖掘其非智力因素資源,培養其良好的數學學習品質。
學生在此之前已經學習了點點距離、線線位置關系,初步掌握了“用代數的方法研究曲線的性質”這一研究解析幾何問題的重要方法,并且學習了三角函數的相關內容,這就為構造rt△,利用三角形性質以及同角公式推導點到直線的距離公式做好了鋪墊。并且,高二的學生已經基本能夠從特殊的情況中發現規律,從而推廣為一般情況,關鍵是學生在這個方面的應用意識還比較淡漠,所以本節課只要做好這種引導工作,學生是比較容易理解的。這也是本節課要突出的“從特殊到一般”的課堂設計的原因,能夠使學生充分地參與進來,體會到成功的喜悅。
本節課的內容實際上并不是難度很大,關鍵是推導公式的方法的選擇,一旦找準推導方法、作出相應的輔助線,接下來的推導過程就是比較容易完成的。所以
1、遵循“數學學習的本質是主體(學生)在頭腦中建構和發展數學認知結構的過程,是主體的一種再創造行為”的理論,采取以“學生為主體,教師為主導的”啟發式、提問式教學方法。
2、根據“教師應尊重學生主體和主動的精神,開發學生的智能,形成其健全個性”的原則,力求營造民主的教學氛圍,使學生或顯性(答問、板演等)或隱性(聆聽,苦思等)地參與全教學過程,學生在教師設計的問題下,積極思考、動手演練、步步深入,讓學生自己導出公式。
3、采用投影、計算機等教學手段,增大教學的容量和直觀性,有效提高教學效率和教學質量。
4、以反饋調控為手段,力求反饋的全面性(優、中、差生)與時效性(及時、中肯)。
⑴課題引入:復習如何判斷兩條直線的位置關系?如果兩直線相交,又如何求出交點的坐標?這樣有意識地涉及兩直線垂直、兩直線的交點等知識,既幫助學生整理、復習已學知識的結構,也讓學生在復習過程中自己“發現”尚未解決的問題,使新授知識在原認知結構中找到生長點,自然地引出新問題,符合學生的認知規律,有利于學生形成合理、完善的認知結構。(3分鐘)
⑵課題解決:教學過程中,利用“從特殊到一般”的方法(由特殊直線到一般直線;由特殊點到一般的點),提出如下問題:
先研究點到特殊的直線(平行于x軸和y軸的直線)的距離;
然后對于一般的直線,先研究特殊的點(原點)到直線的距離(可以利用“等面積法”、“三角形相似的性質”或“解直角三角形”三種思路求解),再將其解題方法推廣到一般的點,就會自然想到構造rt△進行求解了。
逐步逼近目標,在這過程中展示了數學知識產生的思維過程。調動學生自覺地、主動地參與進來,教師的主導作用,學生的主體作用都得以充分體現。在教學中只要抓住“構造一個可用的三角形”這個關鍵,就能突破難點,易于學生的理解和掌握。(27分鐘)
⑶例題練習:推導出公式之后,通過例題講解和學生動手練習,進一步鞏固公式的記憶和應用。(12分鐘)
⑷小結作業:師生互動,共同總結公式的推導過程以及公式的特征和應用,布置課后作業。(3分鐘)
《點到直線的距離公式》是解決理論和實際問題的一個重要工具,這不僅是其有廣泛的應用,而更重要的是公式推導過程中蘊含著重要的數學思想,教學中理應予以重視。因而,在設計這節課的教學方案時,要力求暴露公式推導中的思維過程,突出整體觀念對思維過程的指導作用。但在以往的教學過程中遇到的最大困難是:思路自然的則運算很繁,而運算較簡單的解法則思路又很不自然。這樣就造成了教學中通常采用“滿堂灌”、“注入式”,學生的思維得不到應有的訓練,學生的主體作用也不能充分體現出來。為避免這個問題,有必要很好地探討一下,“點到直線的距離公式”的教學如何更合理,怎樣把教學過程變成師生共同探索、發現公式的過程,怎樣使推導過程自然而簡練。
本節課是“兩條直線的位置關系”的最后一個內容,在復習引入時,有意識地涉及兩直線垂直、兩直線的交點等知識,既幫助學生整理、復習已學知識的結構,也讓學生在復習過程中自己“發現”尚未解決的問題,使新授知識在原認知結構中找到生長點,自然地引出新問題,符合學生的認知規律,有利于學生形成合理、完善的認知結構。教學過程中,逐步逼近目標,在這過程中展示了數學知識產生的思維過程。學生能夠自覺地、主動地參與進來,教師的主導作用、學生的主體作用都得以充分體現,經常這樣做,學生的數學思維能力必將逐步得到提高。在教學中只要抓住“構造一個可用的三角形”這個關鍵,就能突破難點,還可以采用其他的方法推導“點到直線的距離”公式,易于學生的理解和掌握。
這堂課,既是一堂新課,也是實驗課;既學習了新知識,也鍛煉了用從特殊到一般,再從一般到特殊的思維方法分析解決問題的能力,提高了學生使用現代化工具的動手能力;也讓學生感受到數學變化的美;也在學生個性情感中融入了創新的意識與膽量。
點到直線的距離教案篇四
一. 教學目標
1.教材分析
⑴ 教學內容
《點到直線的距離》是全日制普通高級中學教科書(必修·人民教育出版社)第二冊(上),“§7.3兩條直線的位置關系”的第四節課,主要內容是點到直線的距離公式的推導過程和公式應用.
⑵ 地位與作用
本節對“點到直線的距離”的認識,是從初中平面幾何的定性作圖,過渡到了解析幾何的定量計算,其學習平臺是學生已掌握了直線傾斜角、斜率、直線方程和兩條直線的位置關系等相關知識.對“點到直線的距離”的研究,為以后直線與圓的位置關系和圓錐曲線的進一步學習奠定了基礎,具有承前啟后的重要作用.
2.學情分析
高二年級學生已掌握了三角函數、平面向量等有關知識,具備了一定的利用代數方法研究幾何問題的能力.根據我校學生基礎知識較扎實、思維較活躍,但處理抽象問題的能力還有待進一步提高的學習現狀和認知特點,本課采用類比發現式教學法.
3.教學目標
依據上面的教材分析和學情分析,制定如下教學目標.
⑴ 知識技能
① 理解點到直線的距離公式的推導過程;
② 掌握點到直線的距離公式;
③ 掌握點到直線的距離公式的應用.
⑵ 數學思考
① 通過點到直線的距離公式的探索和推導過程,滲透算法的思想;
② 通過自學教材上利用直角三角形的面積公式的證明過程,培養學生的數學閱讀能力;
③ 通過靈活應用公式的過程,提高學生類比化歸、數形結合的能力.
⑶ 解決問題
① 通過問題獲得數學知識,經歷“發現問題—提出問題—解決問題”的過程;
② 由探索點 到直線 的距離,推廣到探索點 到直線 的距離的過程,使學生體會從特殊到一般、由具體到抽象的數學研究方法.
⑷ 情感態度
結合現實模型,將教材知識和實際生活聯系起來,使學生感受數學的實用性,有效激發學生的學習興趣.