在編寫教案模板時,教師需要考慮學生的年齡、能力水平以及課程目標等因素。下面的教案模板是根據教學要求和學生特點精心設計的,希望可以給大家提供一些靈感。
探索勾股定理說課稿(專業19篇)篇一
本節課是九年制義務教育課程標準實驗教科書(蘇科版)八年級上冊第二章第一節“勾股定理”的第一課時.在本節課以前,學生已經學習了有關三角形的一些知識,如三角形的三邊不等關系,三角形全等的判定等。也學過不少利用圖形面積來探求數式運算規律的例子,如探求乘法公式、單項式乘多項式法則、多項式乘多項式法則等。在學生這些原有的認知水平基礎上,探求直角三角形的又一重要性質——勾股定理。讓學生的知識形成知識鏈,讓學生已具有的數學思維能力得以充分發揮和發展。
1、讓學生經歷從數到形再由形到數的轉化過程,經歷探求三個正方形面積間的關系轉化為三邊數量關系的過程。并從過程中讓學生體會數形結合思想,發展將未知轉化為已知,由特殊推測一般的合情推理能力。
3、能說出勾股定理,并能用勾股定理解決簡單問題.。
將邊不在格線上的圖形轉化為邊在格線上的圖形,以便于計算圖形面積.。
(一)創設情境提出問題。
2.如果又已知這兩邊的夾角,那么第三邊的長是多少?
(這是對三角形三邊的不等關系和三角形全等的判定的回顧,從學生從原有的認知水平出發,揭示這節課產生的根源,符合學生的認知心理,也自然地引出本節課的目標.讓學生體會到當一般性的問題不好解決時,可以先將一般問題轉化為特殊問題來研究.)。
(二)實踐探索猜想歸納。
1、用什么方法來探求板書:直角三角形三邊數量關系呢?
回憶我們曾經利用圖形面積探索過數學公式,大家還記得在哪用過嗎?
(學生討論)。
課件展示:平方差公式、完全平方公式、單項式乘多項式、多項式乘多項式.。
今天,讓我們試一試通過計算圖形的面積能不能得到直角三角形三邊數量關系.。
(從學生已有的學習經驗出發,將探求邊長之間的關系轉化為探求面積之間的關系,讓學生覺得解決今天問題的方法并不陌生,增強探索問題的信心.)。
(同位利用教師提供的學案,合作拼圖。)。
通過拼圖,你有什么發現?
(如圖3,以bc為邊的正方形面積與以ac為邊的正方形面積的和等于以ab為邊的正方形面積.拼圖活動,引發了學生的猜想,增加了研究的趣味性,鍛煉了學生的空間思維能力和動手能力.體現了活動——數學的思想.)。
3、拼圖活動引發我們的靈感;運算推演。
證實我們的猜想.為了計算面積方便,我們可。
(學生容易回答sp=9,sq=16。)。
你是如何得到的?
(可以數圖形中的小方格的個數,也可以通。
過正方形面積公式計算得到。)。
如何計算?
(的求法是這節課的難點,這時可讓學生先在學案上獨立分析,再通過小組交流,最后由小組代表到臺前展示.學生可能提出割(圖5)、補(圖6)、平移(圖7)、旋轉(圖8)等方法,旋轉這種方法只適用于斜邊為整數的情況,沒有一般性,若有學生提出,應提醒學生.)。
(把圖形進行“割”和“補”,即把不能利用網格線直接計算面積的'圖形轉化成可以利用網格線直接計算面積的圖形,讓學生體會將較難的問題轉化為簡單問題的思想)。
(這是轉化思想,也是“割補”方法的再一次應用.在。
前面的探求過程中有的學生沒能自己做出來,提供再一次的機會,可讓全體學生再次感受轉化思想,體驗成功的樂趣.)。
通過計算,你發現這三個正方形面積間有什么關系嗎?
(sp+sq=sr,要給學生留有思考時間.)。
(以直角邊為邊所作的正方形的面積和等于以斜邊為邊所作的正方形的面積。如果學生提出我們討論的都是邊長為整數的直角三角形情況,那么邊長是小數時,結論是否成立?教師就演示以下實驗。)。
將網格線去掉,利用《幾何畫板》的度量工具可以看到sp+sq=sr.。
(利用幾何畫板的高效性、動態性反映這一過程,讓學生體會到更多的特殊情形,從而為歸納提供基礎,這樣歸納的結論更具有一般性,學生的印象也更深刻.)。
(面積是邊長的平方,面積間的等量關系轉化為邊長間的等量關系,即直角三角形三邊的等量關系:兩直角邊的平方和等于下邊的平方.)。
(這一問題的結論是本節課的點睛之筆,應充分讓學生總結,交流,表達.)。
(這樣既活躍了課堂氣氛,又展現了勾股歷史,激發學生熱愛祖國悠久歷史文化,
激勵學生發奮學習的情感.)。
9、閱讀課本,提出問題。
(讓學生有將知識內化為自己的知識結構的過程,教師巡視,對有困難的同學給予幫助,促進全班同學共同進步,體現面向全體的教學原則.)。
(三)課堂練習鞏固新知。
1.完成課本第45頁練習第1題、第2題.。
(1)求下列直角三角形中未知邊的長:
(2)求下列圖中未知數x、y、z的值:
(充分利用課本,在前面閱讀的基礎上做課本上的練習題。提問學生口答,老師再規范板書一題.通過對勾股定理的基本應用,讓學生知道已知直角三角形三邊中的任意兩邊,可以求第三邊.)。
2、如圖:一塊長約80m、寬約60m的長方形草坪,被幾個不自覺的學生沿對角線踏出了一條斜“路”,這種情況在生活中時有發生。請問同學們:
(1)這幾位同學為什么不走正路,走斜“路”?
(2)他們知道走斜“路”比正路少走幾步嗎?
(3)他們這樣這樣做,值得嗎?
(這是一道貼近學生生活的實例,在勾股定理的運用中滲透了德育教育.)。
(四)課堂小結布置作業。
(學生總結本堂課的收獲,可以是知識、應用、數學思想方法以及獲取新知的途徑等.給學生自由的空間,鼓勵學生多說.這樣引導學生從多角度對本節課歸納總結,感悟點滴,使學生將知識系統化,提高學生的綜合表達能力.如果學生沒有提出繼續要探討的問題,教師可以引導學生思考:直角三角形的三邊有特殊的等量關系,一般三角形三邊是否也存在一種等量關系呢?再展示上課開始的問題:如果一個三角形的兩條邊分別長6和8,這兩邊的夾角確定了,你知道第三邊的長是多少?這是我們今后將要探討的內容,首尾呼應,激發學生不滿足于現狀,有不斷提出新問題的欲望,即培養學生的創新意識.)。
2、作業。
(1)課本第471頁第2題,并完成第45頁的實驗。
(2)在以下網頁中你可以找到有關勾股定理的豐富的內容,請你結合本節課的學習。
n
(作業的多元化、多層次,有利于全體學生的全面素質發展。)教育大全。
探索勾股定理說課稿(專業19篇)篇二
今天我說課的題目是《勾股定理的逆定理》。
新課標指出:數學課程要面向全體學生,適應學生個性發展的需要,使得人人都能獲得良好的數學教育,不同的人在數學上都能得到不同的發展。今天我將貫徹這一理念從教材分析、學情分析、教學過程等幾個方面展開我的說課。
首先來談一談我對教材的理解。
本節課選自人教版初中數學八年級下冊第十七章第二節《勾股定理的逆定理》,它是在學生掌握勾股定理及一般三角形性質的基礎上進行教學的。應用前面學習的勾股定理及三角形全等證明逆定理是本節課的關鍵步驟,同時本節課又豐富了三角形的性質,是后面幾何問題的基礎理論性知識。
接下來談談學生的實際情況。本階段的學生已經掌握了一定的基礎知識,處于由幾何內容的初級向高級行進的過程。他們的幾何思維正在逐步形成和發展,對幾何題目具有一定的分析、想象、概括能力,具有對未知事物的新鮮感和探求欲。同時也要注意到學生能力的不成熟,教學中鼓勵與引導并重。
根據以上對教材的分析以及對學情的把握,我制定了如下教學目標:
(一)知識與技能。
理解并掌握勾股定理的逆定理,會應用定理判定直角三角形;理解勾股定理與勾股定理逆定理的區別與聯系;理解原命題和逆命題的概念,知道二者的關系及二者真假性的關系。
(二)過程與方法。
經歷得出猜想、推理證明的過程,提升自主探究、分析問題、解決問題的能力。
(三)情感、態度與價值觀。
體會事物之間的聯系,感受幾何的魅力。
在教學目標的實現過程中,教學重點是勾股定理的逆定理及其證明,教學難點是勾股定理的逆定理的證明。
為了突破重點,解決難點,順利達成教學目標,教學中我將主要采用小組討論、自主探究的教學方法,輔以適量的教師講解和引導,把課堂還給學生。
下面我將重點談談我對教學過程的設計。
(一)導入新課。
課堂伊始,我采用復習舊知與創設情境相結合的導入方式。首先我會帶領學生復習勾股定理并明確其題設和結論,為后面提出逆命題、逆定理做鋪墊。接著提問學生如何畫直角三角形,學生很容易想到用三角尺或量角器。此時我會要求學生不能用繩子以外的工具,借助學生的困惑,給出古埃及人利用等長的3、4、5個繩結間距畫直角三角形的情境。以古埃及人所用方法中蘊含何道理為切入點引出課題。
通過這樣的導入方式,能夠帶領學生回顧上節課的內容,為本節課奠定好基礎,同時用情境激發學生的好奇心和求知欲,更好地展開教學。
(二)講解新知。
接下來是最重要的新授環節。
請學生思考3,4,5之間的關系,結合勾股定理的學習經驗明確。
出示數據2.5cm,6cm,6.5cm,請學生計算驗證數據滿足上述平方和關系,并畫出相應邊長的三角形檢驗是否為直角三角形。
學生活動:同桌兩人一組,將三邊換成其他滿足上述平方和關系的數據,如4cm,7.5cm,8.5cm,畫出相應邊長的三角形檢驗是否為直角三角形。
在得到肯定結論后,引導學生基于以上例子大膽猜想得出命題。
探索勾股定理說課稿(專業19篇)篇三
這節課是九年制義務教育課程標準實驗教科書八年級第一章第一節探索勾股定理第一課時,勾股定理是幾何中幾個重要定理之一,它揭示的是直角三角形中三邊的數量關系。它在數學的發展中起過重要的作用,在現時世界中也有著廣泛的作用。學生通過對勾股定理的學習,可以在原有的基礎上對直角三角形有進一步的認識和理解。
2、會初步運用勾股定理進行簡單的計算和實際運用。
3、在探索勾股定理的過程中,讓學生經歷“觀察—猜想—歸納—驗證”的數學思想,并體會數形結合和特殊到一般的思想方法。
4、通過介紹勾股定理在中國古代的研究,激發學生熱愛祖國,熱愛祖國悠久文化的思想,激勵學生發奮學習。
本課的教學難點:以直角三角形為邊的正方形面積的計算。
教法分析:針對初二年級學生的知識結構和心理特征,本節課可選擇引導探索法,由淺入深,由特殊到一般地提出問題。引導學生自主探索,合作交流,這種教學理念反映了時代精神,有利于提高學生的思維能力,能有效地激發學生的思維積極性,基本教學流程是:提出問題—實驗操作—歸納驗證—問題解決—課堂小結—布置作業六部分。
學法分析:在教師的組織引導下,采用自主探索、合作交流的研討式學習方式,讓學生思考問題,獲取知識,掌握方法,借此培養學生動手、動腦、動口的能力,使學生真正成為學習的主體。
首先創設這樣一個問題情境:某樓房三樓失火,消防隊員趕來救火,了解到每層樓高3米,消防隊員取來6.5米長的云梯,如果梯子的底部離墻基的距離是2.5米,請問消防隊員能否進入三樓滅火?問題設計具有一定的挑戰性,目的是激發學生的探究欲望,教師引導學生將實際問題轉化成數學問題,也就是“已知一直角三角形的兩邊,如何求第三邊?”的問題。學生會感到困難,從而教師指出學習了今天這一課后就有辦法解決了。這種以實際問題為切入點引入新課,不僅自然,而且反映了數學來源于實際生活,數學是從人的需要中產生這一認識的基本觀點,同時也體現了知識的發生過程,而且解決問題的過程也是一個“數學化”的過程。
1、投影課本圖1—1,圖1—2的有關直角三角形問題,讓學生計算正方形a,b,c的面積,學生可能有不同的方法,不管是通過直接數小方格的個數,還是將c劃分為4個全等的等腰直角三角形來求等等,各種方法都應予于肯定,并鼓勵學生用語言進行表達,引導學生發現正方形a,b,c的面積之間的數量關系,從而學生通過正方形面積之間的關系容易發現對于等腰直角三角形而言滿足兩直角邊的平方和等于斜邊的平方。這樣做有利于學生參與探索,感受數學學習的過程,也有利于培養學生的語言表達能力,體會數形結合的思想。
2、接著讓學生思考:如果是其它一般的直角三角形,是否也具備這一結論呢?于是投影圖1—3,圖1—4,同樣讓學生計算正方形的面積,但正方形c的面積不易求出,可讓學生在預先準備的方格紙上畫出圖形,在剪一剪,拼一拼后學生也不難發現對于一般的以整數為邊長的直角三角形也有兩直角邊的平方和等于斜邊的平方。這樣設計不僅有利于突破難點,而且為歸納結論打下了基礎,讓學生體會到觀察、猜想、歸納的思想,也讓學生的分析問題和解決問題的能力在無形中得到了提高,這對后面的學習及有幫助。
3、給出一個邊長為0.5,1.2,1.3,這種含小數的直角三角形,讓學生計算是否也滿足這個結論,設計的目的是讓學生體會到結論更具有一般性。
1、歸納通過對邊長為整數的等腰直角三角形到一般直角三角形再到邊長含小數的直角三角形三邊關系的研究,讓學生用數學語言概括出一般的結論,盡管學生可能講的不完全正確,但對于培養學生運用數學語言進行抽象、概括的能力是有益的,同時發揮了學生的主體作用,也便于記憶和理解,這比教師直接教給學生一個結論要好的多。
2、驗證為了讓學生確信結論的正確性,引導學生在紙上任意作一個直角三角形,通過測量、計算來驗證結論的正確性。這一過程有利于培養學生嚴謹、科學的學習態度。然后引導學生用符號語言表示,因為將文字語言轉化為數學語言是學習數學學習的一項基本能力。接著教師向學生介紹“勾,股,弦”的含義、勾股定理,進行點題,并指出勾股定理只適用于直角三角形。最后向學生介紹古今中外對勾股定理的研究,對學生進行愛國主義教育。
讓學生解決開頭的實際問題,前后呼應,學生從中能體會到成功的喜悅。完成課本“想一想”進一步體會勾股定理在實際生活中的應用,數學是與實際生活緊密相連的。
主要通過學生回憶本節課所學內容,從內容、應用、數學思想方法、獲取新知的途徑方面先進行小結,后由教師總結。
課本p6習題1.11,2,3,4一方面鞏固勾股定理,另一方面進一步體會定理與實際生活的聯系。另外,補充一道開放題。
1、本節課是公式課,根據學生的知識結構,我采用的教學流程是:提出問題—實驗操作—歸納驗證—問題解決—課堂小結—布置作業六部分,這一流程體現了知識發生、形成和發展的過程,讓學生體會到觀察、猜想、歸納、驗證的思想和數形結合的思想。
2、探索定理采用了面積法,引導學生利用實驗由特殊到一般再到更一般的對直角三角形三邊關系的研究,得出結論。這種方法是認識事物規律的重要方法之一,通過教學讓學生初步掌握這種方法,對于學生良好思維品質的形成有重要作用,對學生的終身發展也有一定的作用。
3、關于練習的設計,除兩個實際問題和課本習題以外,我準備設計一道開放題,大致思路是在已畫出斜邊上的高的直角三角形中讓學生盡量地找出線段之間的關系。
4、本課小結從內容,應用,數學思想方法,獲取知識的途徑等幾個方面展開,既有知識的總結,又有方法的提煉,這樣對于學生學知識,用知識的意識是有很大的促進的。
探索勾股定理說課稿(專業19篇)篇四
勾股定理是學生在已經掌握了直角三角形的有關性質的基礎上進行學習的,它是直角三角形的一條非常重要的性質,是幾何中最重要的定理之一。它揭示了一個三角形三條邊之間的數量關系,它可以解決直角三角形中的計算問題,是解直角三角形的主要根據之一。在實際生活中用途很大,教材在編寫時注意培養學生的動手操作能力和分析問題的能力,通過實際分析、拼圖等活動,讓學生獲得較為直觀的印象;通過聯系和比較,理解勾股定理,以利于正確的進行運用。
據此,制定教學目標如下:
2、能夠靈活地運用勾股定理及其計算。
3、培養學生觀察、比較、分析、推理的能力。
4、通過介紹中國古代勾股方面的成就,激發學生熱愛祖國與熱愛祖國悠久文化的思想感情,培養他們的民族自豪感和鉆研精神。
教法和學法是體現在整個教學過程中的,本課的教法和學法體現如下特點:
1、以自學輔導為主,充分發揮教師的主導作用;運用各種手段激發學生學習欲望和興趣,組織學生活動,讓學生主動參與學習全過程。
2、切實體現學生的主體地位,讓學生通過觀察、分析、討論、操作、歸納,理解定理。提高學生動手操作能力,以及分析問題和解決問題的能力。
3、通過演示實物,引導學生觀察、操作、分析、證明,使學生得到獲得新知的成功感受,從而激發學生鉆研新知的欲望。
本節內容的教學主要體現在學生動手、動腦方面,根據學生的認知規律和學習心理,教學程序設計如下:
(一)創設情境以古引新。
1、由故事引入,3000多年前有個叫商高的人對周公說,把一根直尺折成直角,兩端連接得到一個直角三角形,如果勾是3,股是4,那么弦等于5。這樣引起學生學習興趣,激發學生求知欲。
2、是不是所有的直角三角形都有這個性質呢?教師要善于激疑,使學生進入樂學狀態。
3、板書課題,出示學習目標。
(二)初步感知理解教材。
教師指導學生自學教材,通過自學感悟理解新知,體現了學生的自主學習意識,鍛煉學生主動探究知識,養成良好的自學習慣。
(三)質疑解難討論歸納。
1、教師設疑或學生提疑。如:怎樣證明勾股定理?學生通過自學,中等以上的學生基本掌握,這時能激發學生的表現欲。
2、教師引導學生按照要求進行拼圖,觀察并分析;
(1)這兩個圖形有什么特點?
(2)你能寫出這兩個圖形的面積嗎?
(3)如何運用勾股定理?是否還有其他形式?
這時教師組織學生分組討論,調動全體學生的積極性,達到人人參與的效果,接著全班交流。先有某一組代表發言,說明本組對問題的理解程度,其他各組作評價和補充。教師及時進行富有啟發性的點撥,最后,師生共同歸納,形成一致意見,最終解決疑難。
(四)鞏固練習強化提高。
1、出示練習,學生分組解答,并由學生總結解題規律。課堂教學中動靜結合,以免引起學生的疲勞。
2、出示例1學生試解,師生共同評價,以加深對例題的理解與運用。針對例題再次出現鞏固練習,進一步提高學生運用知識的能力,對練習中出現的情況可采取互評、互議的形式,在互評互議中出現的具有代表性的問題,教師可以采取全班討論的形式予以解決,以此突出教學重點。
(五)歸納總結練習反饋。
引導學生對知識要點進行總結,梳理學習思路。分發自我反饋練習,學生獨立完成。
本課意在創設愉悅和諧的樂學氣氛,優化教學手段,借助電教手段提高課堂教學效率,建立平等、民主、和諧的師生關系。加強師生間的合作,營造一種學生敢想、感說、感問的課堂氣氛,讓全體學生都能生動活潑、積極主動地教學活動,在學習中創新精神和實踐能力得到培養。
探索勾股定理說課稿(專業19篇)篇五
如果說數學思想是解決數學問題的一首經典老歌,那么本節課蘊含的由特殊到一般的思想、數學建模的思想、轉化的思想就是歌中最為活躍的音符!本節的內容是在學習了二次根式之后的教學,是在學生已經掌握了直角三角形的有關性質的基礎上進行的后繼學習,是中學數學幾個重要定理之一。它揭示了直角三角形三條邊之間的數量關系,是解直角三角形的主要根據之一,是解決四邊形、圓等知識的靈魂,在實際生活中有著極其廣泛的應用。
勾股定理的發現、驗證和應用蘊含著豐富的文化價值,在理論上占有重要地位,因此本節在教材中起著承前啟后的橋梁作用。
新課標下的數學教學不僅是知識的教學,更應注重能力的培養及情感的教育,因此,根據本節在教學中的地位和作用,結合初二學生不愛表現、好靜不好動的特點,我確定本節教學目標如下:
1、探索并利用拼圖證明勾股定理。
2、利用勾股定理解決簡單的數學問題。
3、感受數學文化,體會解決問題方法的多樣性和數形結合的思想。
本著課標的要求,在吃透教材的基礎上,我確定本節的教學重點、難點、關鍵如下:
勾股定理的證明和簡單應用是本節的重點,用拼圖的方法證明勾股定理是難點,而解決難點的關鍵是充分利用圖形面積的各種表示方法構造恒等式。
為了講清重點、突破難點、抓住關鍵,使學生達到預定目標,我對教法和學法分析如下:
新課程標準強調要從學生已有的經驗出發,最大限度的激發學生學習積極性,新課程下的數學教師更應是學生學習活動的組織者、引導者、合作者,因此,鑒于教材的重點和初二學生的認知水平,我以學生充分預習為前提,以學生的動手操作、講解為中心,讓學生親歷親為,體會做數學的過程,激發學生的探索興趣,使課堂活躍起來,提高課堂效率。運用觀察法、歸納法、引導發現法、討論法等多種教學方法相結合的形式,讓學生充分展示預習成果,體驗成功的快樂,為終身學習和發展打下堅實的基礎。為了增大課堂容量、給學生創設高效的數學課堂,給學生提供足夠從事數學活動的時間,以導學案的形式、運用多媒體輔助教學。
學法是學生再生知識的法寶,為了把學生學習過程當作認知事物的過程來解決,教學中我首先引導學生先動手操作,再合作交流,培養學生良好的學習品質和與人合作的能力;接下來,我讓學生獨立思考,點撥學生用特殊到一般的思想大膽償試,水到渠成的突出勾股定理的探索這一重點,然后通過學生展示成果讓學生抓住用不同的方式拼出圖形,從而用不同的方式表示圖形面積建立恒等式這一關健,以自己拼圖操作、講解展示預習成果突破定理證明這一難點,指導學生嚴謹、合理的書寫格式,培養學生的邏輯思維能力和語言表達能力。
為了充分調動學生的學習積極性,創設優化高效的數學課堂,我以導學案的方式循序見進的設計教學流程。
1、勾股定理的探究:讓學生歷經量一量、算一算、想一想的由特殊到一般的數學思想引導好學生課前預習,再以檢查預習成果的形式為新知的探究作好鋪墊。
2、勾股定理的證明:以學生拼圖展示、講解預習成果的形式完成對定理的證明。
3、勾股定理的應用:以課堂練習、學生個性補充和老師適當的個性化追加的形式實現對定理的靈活應用。
4、學后反思:以學生小結的形式引導學生從知識、情感兩方面實現對本節內容的鞏固與升華。
為了給學生營造一個和諧、民主、平等而高效的數學課堂,我以新課程標準的基本理念和總體目標為指導思想,面向全體學生,選擇適當的起點和方法,充分發揮學生的主體地位與教師主導作用相統一的原則。教學中注重學生的動手操作能力的培養,化繁為簡,化抽象為直觀。例如我以展示預習成果為主線,以學生動手操作、講解等直觀方式代替老師畫圖、剪圖、講評費時費力的方式,既讓每個學生都能積極的參與進來,培養學生的語言表達能力、邏輯推理能力,又達到了直觀高效的效果。
教學中我注重人文環境的創設,使數學課堂充滿親切、民主的氣氛,例如整節課我以學生的操作、展示、講解、個性補充為主,拉近了數學與學生的距離,激發了學生的學習興趣;為了使不同的學生得到不同的發展,人人學有價值的數學,在教學中我創造性的使用教材,在不改變例題的本意為前提,創設身邊暖房工程為情境,體現數學的生活化;以一題多變、中考題改編等形式進行練習題的層層深入,體現數學的變化美。
以學生個性補充的形式促進課堂新的生成,最大限度的培養學生創新思維,使不同的人在數學上有不同的發展。本節課既做到了課程的開放,為充分發揮學生聰明智慧和創造性的思維提供了空間,又創設了具有獨特教學風格的作文式數學課堂。而多媒體教學的引入更為學生提供了廣闊的思考空間和時間;同時,我注重對學生進行數學文化的薰陶和數學思想的滲透,注重美育、德育與教育的三統一,如小結時由“勾股樹”到“智慧樹”的希望寄語。
探索勾股定理說課稿(專業19篇)篇六
勾股定理是學生在已經掌握了直角三角形的有關性質的基礎上進行學習的,它是直角三角形的一條非常重要的性質,是幾何中最重要的定理之一,它揭示了一個三角形三條邊之間的數量關系,它可以解決直角三角形中的計算問題,是解直角三角形的主要根據之一,在實際生活中用途很大。教材在編寫時注意培養學生的動手操作能力和分析問題的能力,通過實際分析、拼圖等活動,使學生獲得較為直觀的印象;通過聯系和比較,理解勾股定理,以利于正確的進行運用。
據此,制定教學目標如下:
2、能夠靈活地運用勾股定理及其計算。
3、培養學生觀察、比較、分析、推理的能力。
4、通過介紹中國古代勾股方面的'成就,激發學生熱愛祖國與熱愛祖國悠久文化的思想感情,培養他們的民族自豪感和鉆研精神。
教法和學法是體現在整個教學過程中的,本課的教法和學法體現如下特點:
1、以自學輔導為主,充分發揮教師的主導作用,運用各種手段激發學生學習欲望和興趣,組織學生活動,讓學生主動參與學習全過程。
2、切實體現學生的主體地位,讓學生通過觀察、分析、討論、操作、歸納,理解定理,提高學生動手操作能力,以及分析問題和解決問題的能力。
3、通過演示實物,引導學生觀察、操作、分析、證明,使學生得到獲得新知的成功感受,從而激發學生鉆研新知的欲望。
本節內容的教學主要體現在學生動手、動腦方面,根據學生的認知規律和學習心理,教學程序設計如下:
(一)創設情境以古引新。
1、由故事引入,3000多年前有個叫商高的人對周公說,把一根直尺折成直角,兩端連接得到一個直角三角形,如果勾是3,股是4,那么弦等于5。這樣引起學生學習興趣,激發學生求知欲。
2、是不是所有的直角三角形都有這個性質呢?教師要善于激疑,使學生進入樂學狀態。
3、板書課題,出示學習目標。
(二)初步感知理解教材。
教師指導學生自學教材,通過自學感悟理解新知,體現了學生的自主學習意識,鍛煉學生主動探究知識,養成良好的自學習慣。
(三)質疑解難討論歸納。
1、教師設疑或學生提疑。如:怎樣證明勾股定理?學生通過自學,中等以上的學生基本掌握,這時能激發學生的表現欲。
2、教師引導學生按照要求進行拼圖,觀察并分析;
(1)這兩個圖形有什么特點?
(2)你能寫出這兩個圖形的面積嗎?
(3)如何運用勾股定理?是否還有其他形式?
這時教師組織學生分組討論,調動全體學生的積極性,達到人人參與的效果,接著全班交流。先有某一組代表發言,說明本組對問題的理解程度,其他各組作評價和補充。教師及時進行富有啟發性的點撥,最后,教師學生共同歸納,形成一致意見,最終解決疑難。
(四)鞏固練習強化提高。
1、出示練習,學生分組解答,并由學生總結解題規律。課堂教學中動靜結合,以免引起學生的疲勞。
2、出示例1學生試解,教師學生共同評價,以加深對例題的理解與運用。針對例題再次出現鞏固練習,進一步提高學生運用知識的能力,對練習中出現的情況可采取互評、互議的形式,在互評互議中出現的具有代表性的問題,教師可以采取全班討論的形式予以解決,以此突出教學重點。
(五)歸納總結練習反饋。
引導學生對知識要點進行總結,梳理學習思路。分發自我反饋練習,學生獨立完成。
本課意在創設愉悅和諧的樂學氣氛,優化教學手段,借助電教手段提高課堂教學效率,建立平等、民主、和諧的教師學生關系。加強教師學生間的合作,營造一種學生敢想、感說、感問的課堂氣氛,讓全體學生都能生動活潑、積極主動地教學活動,在學習中創新精神和實踐能力得到培養。
探索勾股定理說課稿(專業19篇)篇七
勾股定理就就是學生在已經掌握了直角三角形的有關性質的基礎上進行學習的,它就就是直角三角形的一條非常重要的性質,就就是幾何中最重要的定理之一,它揭示了一個三角形三條邊之間的數量關系,它可以解決直角三角形中的計算問題,就就是解直角三角形的主要根據之一,在實際生活中用途很大。教材在編寫時注意培養學生的動手操作能力和分析問題的能力,通過實際分析、拼圖等活動,使學生獲得較為直觀的印象;通過聯系和比較,理解勾股定理,以利于正確的進行運用。
據此,制定教學目標如下:
2、能夠靈活地運用勾股定理及其計算。
3、培養學生觀察、比較、分析、推理的能力。
4、通過介紹中國古代勾股方面的成就,激發學生熱愛祖國與熱愛祖國悠久文化的思想感情,培養他們的民族自豪感和鉆研精神。
教法和學法就就是體現在整個教學過程中的,本課的教法和學法體現如下特點:
1、以自學輔導為主,充分發揮教師的主導作用,運用各種手段激發學生學習欲望和興趣,組織學生活動,讓學生主動參與學習全過程。
2、切實體現學生的主體地位,讓學生通過觀察、分析、討論、操作、歸納,理解定理,提高學生動手操作能力,以及分析問題和解決問題的能力。
3、通過演示實物,引導學生觀察、操作、分析、證明,使學生得到獲得新知的成功感受,從而激發學生鉆研新知的欲望。
本節內容的教學主要體現在學生動手、動腦方面,根據學生的認知規律和學習心理,教學程序設計如下:
(一)創設情境以古引新。
1、由故事引入,3000多年前有個叫商高的人對周公說,把一根直尺折成直角,兩端連接得到一個直角三角形,如果勾就就是3,股就就是4,那么弦等于5。這樣引起學生學習興趣,激發學生求知欲。
2、就就是不就就是所有的直角三角形都有這個性質呢?教師要善于激疑,使學生進入樂學狀態。
3、板書課題,出示學習目標。
(二)初步感知理解教材。
教師指導學生自學教材,通過自學感悟理解新知,體現了學生的自主學習意識,鍛煉學生主動探究知識,養成良好的自學習慣。
(三)質疑解難討論歸納。
1、教師設疑或學生提疑。如:怎樣證明勾股定理?學生通過自學,中等以上的學生基本掌握,這時能激發學生的表現欲。
2、教師引導學生按照要求進行拼圖,觀察并分析;
(1)這兩個圖形有什么特點?
(2)你能寫出這兩個圖形的面積嗎?
(3)如何運用勾股定理?就就是否還有其他形式?
這時教師組織學生分組討論,調動全體學生的積極性,達到人人參與的效果,接著全班交流。先有某一組代表發言,說明本組對問題的理解程度,其他各組作評價和補充。教師及時進行富有啟發性的點撥,最后,師生共同歸納,形成一致意見,最終解決疑難。
(四)鞏固練習強化提高。
1、出示練習,學生分組解答,并由學生總結解題規律。課堂教學中動靜結合,以免引起學生的疲勞。
2、出示例1學生試解,師生共同評價,以加深對例題的理解與運用。針對例題再次出現鞏固練習,進一步提高學生運用知識的能力,對練習中出現的情況可采取互評、互議的形式,在互評互議中出現的具有代表性的問題,教師可以采取全班討論的形式予以解決,以此突出教學重點。
(五)歸納總結練習反饋。
引導學生對知識要點進行總結,梳理學習思路。分發自我反饋練習,學生獨立完成。
本課意在創設愉悅和諧的樂學氣氛,優化教學手段,借助電教手段提高課堂教學效率,建立平等、民主、和諧的`師生關系。加強師生間的合作,營造一種學生敢想、感說、感問的課堂氣氛,讓全體學生都能生動活潑、積極主動地教學活動,在學習中創新精神和實踐能力得到培養。
探索勾股定理說課稿(專業19篇)篇八
(一)教材所處的地位。
這節課是華師大九年制義務教育課程標準實驗教科書八年級總第19章第2節探索勾股定理,勾股定理是幾何中幾個重要定理之一,它揭示的是直角三角形中三邊的數量關系。它在數學的發展中起過重要的作用,在現時世界中也有著廣泛的作用。學生通過對勾股定理的學習,可以在原有的基礎上對直角三角形有進一步的認識和理解。
(二)根據課程標準,本課的教學目標是:
2、會初步運用勾股定理進行簡單的計算和實際運用。
3、在探索勾股定理的過程中,讓學生經歷“觀察—猜想—歸納—驗證”的數學思想,并體會數形結合和特殊到一般的思想方法。
4、通過介紹勾股定理在中國古代的研究,激發學生熱愛祖國,熱愛祖國悠久文化的思想,激勵學生發奮學習。
(三)本課的教學重點:探索勾股定理。
本課的教學難點:以直角三角形為邊的正方形面積的計算。
教法分析:針對初二年級學生的知識結構和心理特征,本節課可選擇引導探索法,由淺入深,由特殊到一般地提出問題。引導學生自主探索,合作交流,這種教學理念反映了時代精神,有利于提高學生的思維能力,能有效地激發學生的思維積極性,基本教學流程是:提出問題—實驗操作—歸納驗證—問題解決—課堂小結—布置作業六部分。
學法分析:在教師的組織引導下,采用自主探索、合作交流的研討式學習方式,讓學生思考問題,獲取知識,掌握方法,借此培養學生動手、動腦、動口的能力,使學生真正成為學習的主體。
以畢達哥拉斯發現勾股定理引入新課,不僅自然,而且反映了數學來源于實際生活,數學是從人的需要中產生這一認識的基本觀點,同時也體現了知識的發生過程,而且解決問題的過程也是一個“數學化”的過程。
1、投影課本圖的有關直角三角形問題,讓學生計算正方形a,b,c的面積,學生可能有不同的方法,不管是通過直接數小方格的個數,還是將c劃分為4個全等的等腰直角三角形來求等等,各種方法都應予于肯定,并鼓勵學生用語言進行表達,引導學生發現正方形a,b,c的面積之間的數量關系,從而學生通過正方形面積之間的關系容易發現對于等腰直角三角形而言滿足兩直角邊的平方和等于斜邊的平方。這樣做有利于學生參與探索,感受數學學習的過程,也有利于培養學生的語言表達能力,體會數形結合的思想。
2、接著讓學生思考:如果是其它一般的直角三角形,是否也具備這一結論呢?于是投影圖1—3,圖1—4,同樣讓學生計算正方形的面積,但正方形c的面積不易求出,可讓學生在預先準備的方格紙上畫出圖形,在剪一剪,拼一拼后學生也不難發現對于一般的以整數為邊長的直角三角形也有兩直角邊的平方和等于斜邊的平方。這樣設計不僅有利于突破難點,而且為歸納結論打下了基礎,讓學生體會到觀察、猜想、歸納的思想,也讓學生的分析問題和解決問題的能力在無形中得到了提高,這對后面的學習及有幫助。
3、給出一個邊長單位為5,12,13,這種含小數的直角三角形,讓學生計算是否也滿足這個結論,設計的目的是讓學生體會到結論更具有一般性。
1、歸納通過對邊長為整數的等腰直角三角形到一般直角三角形再到邊長含小數的直角三角形三邊關系的研究,讓學生用數學語言概括出一般的結論,盡管學生可能講的不完全正確,但對于培養學生運用數學語言進行抽象、概括的能力是有益的,同時發揮了學生的主體作用,也便于記憶和理解,這比教師直接教給學生一個結論要好的多。
2、驗證為了讓學生確信結論的正確性,引導學生在紙上任意作一個直角三角形,通過動手操作拼圖來驗證結論的正確性和廣泛性。這一過程有利于培養學生嚴謹、科學的學習態度。然后引導學生用符號語言表示,因為將文字語言轉化為數學語言是學習數學學習的一項基本能力。接著教師向學生介紹“勾,股,弦”的含義、勾股定理,進行點題,并指出勾股定理只適用于直角三角形。最后向學生介紹古今中外對勾股定理的研究,對學生進行愛國主義教育和數學文化熏陶。
讓學生解決生活中的實際問題,學生從中能體會到成功的喜悅。完成課本“想一想”進一步體會勾股定理在實際生活中的應用,數學是與實際生活緊密相連的。
主要通過學生回憶本節課所學內容,從內容、應用、數學思想方法、獲取新知的途徑方面先進行小結,后由教師總結。
習題19.2(1-5)。
有興趣的同學可以查找另外的證明方法,寫出1-2種出來。
1、本節課是公式課,根據學生的知識結構,我采用的教學流程是:提出問題—實驗操作—歸納驗證—問題解決—課堂小結—布置作業六部分,這一流程體現了知識發生、形成和發展的過程,讓學生體會到觀察、猜想、歸納、驗證的思想和數形結合的思想。
2、探索定理采用了面積法,引導學生利用實驗由特殊到一般再到更一般的對直角三角形三邊關系的探索和研究,得出結論。這種一般化的思想方法是認識事物規律的重要方法之一,通過教學讓學生初步掌握這種方法,對于學生良好思維品質的形成有重要作用,對學生的終身發展也有一定的作用。
4、本課小結從內容,應用,數學思想方法,獲取知識的途徑等幾個方面展開,既有知識的總結,又有方法的提煉,這樣對于學生學數學、用數學的意識是有很大的裨益的。
探索勾股定理說課稿(專業19篇)篇九
勾股定理就是繼續學習的一個直角三角形的判斷定理,下面就是小編整理的勾股定理說課稿蘇教版,歡迎來參考!
勾股定理就是學生在已經掌握了直角三角形的有關性質的基礎上進行學習的,它就是直角三角形的一條非常重要的性質,就是幾何中最重要的定理之一,它揭示了一個三角形三條邊之間的數量關系,它可以解決直角三角形中的計算問題,就是解直角三角形的主要根據之一,在實際生活中用途很大。教材在編寫時注意培養學生的動手操作能力和分析問題的能力,通過實際分析、拼圖等活動,使學生獲得較為直觀的印象;通過聯系和比較,理解勾股定理,以利于正確的進行運用。
據此,制定教學目標如下:
1、理解并掌握勾股定理及其證明。
2、能夠靈活地運用勾股定理及其計算。
3、培養學生觀察、比較、分析、推理的能力。
4、通過介紹中國古代勾股方面的成就,激發學生熱愛祖國與熱愛祖國悠久文化的思想感情,培養他們的民族自豪感和鉆研精神。
教學重點:勾股定理的證明和應用。
教學難點:勾股定理的證明。
教法和學法就是體現在整個教學過程中的,本課的教法和學法體現如下特點:
1、以自學輔導為主,充分發揮教師的主導作用,運用各種手段激發學生學習欲望和興趣,組織學生活動,讓學生主動參與學習全過程。
2、切實體現學生的主體地位,讓學生通過觀察、分析、討論、操作、歸納,理解定理,提高學生動手操作能力,以及分析問題和解決問題的能力。
3、通過演示實物,引導學生觀察、操作、分析、證明,使學生得到獲得新知的成功感受,從而激發學生鉆研新知的欲望。
本節內容的教學主要體現在學生動手、動腦方面,根據學生的認知規律和學習心理,教學程序設計如下:
(一)創設情境 以古引新
1、由故事引入,3000多年前有個叫商高的人對周公說,把一根直尺折成直角,兩端連接得到一個直角三角形,如果勾就是3,股就是4,那么弦等于5。這樣引起學生學習興趣,激發學生求知欲。
2、就是不就是所有的直角三角形都有這個性質呢?教師要善于激疑,使學生進入樂學狀態。
3、板書課題,出示學習目標。
(二)初步感知 理解教材
教師指導學生自學教材,通過自學感悟理解新知,體現了學生的自主學習意識,鍛煉學生主動探究知識,養成良好的自學習慣。
1、教師設疑或學生提疑。如:怎樣證明勾股定理?學生通過自學,中等以上的學生基本掌握,這時能激發學生的表現欲。
2、教師引導學生按照要求進行拼圖,觀察并分析;
(1)這兩個圖形有什么特點?
(2)你能寫出這兩個圖形的面積嗎?
(3)如何運用勾股定理?就是否還有其他形式?
這時教師組織學生分組討論,調動全體學生的積極性,達到人人參與的效果,接著全班交流。先有某一組代表發言,說明本組對問題的理解程度,其他各組作評價和補充。教師及時進行富有啟發性的點撥,最后,師生共同歸納,形成一致意見,最終解決疑難。
1、出示練習,學生分組解答,并由學生總結解題規律。課堂教學中動靜結合,以免引起學生的疲勞。
2、出示例1學生試解,師生共同評價,以加深對例題的理解與運用。針對例題再次出現鞏固練習,進一步提高學生運用知識的能力,對練習中出現的情況可采取互評、互議的形式,在互評互議中出現的具有代表性的問題,教師可以采取全班討論的形式予以解決,以此突出教學重點。
引導學生對知識要點進行總結,梳理學習思路。分發自我反饋練習,學生獨立完成。
本課意在創設愉悅和諧的樂學氣氛,優化教學手段,借助電教手段提高課堂教學效率,建立平等、民主、和諧的師生關系。加強師生間的合作,營造一種學生敢想、感說、感問的課堂氣氛,讓全體學生都能生動活潑、積極主動地教學活動,在學習中創新精神和實踐能力得到培養。
探索勾股定理說課稿(專業19篇)篇十
上周三有幸聽了何老師的一節數學課——《勾股定理》。勾股定理的證明方法有三四百種,本節課主要用面積法來證明勾股定理。何老師對這節課的教學內容把握的比較準確。
何老師開課便出示了本節課的學習目標,并讓學生獨立閱讀學習目標。我很欣賞這種開門見山,直接導入的方式。學生了解本節課的教學目標,做到心中有數,也給學生指明了這節課需要努力的'方向。這樣也有助于學生自查本節課的學習效果------目標是否達成。
接著何老師向學生出示了生活中常見的,用勾股定理解決的三個問題:
1、蝸牛走的路程。
2、小鳥飛行的距離。
3、輪船航海的距離。
通過這一環節的設置,使學生明白學習勾股定理的作用所在,解決了“為什么要學習勾股定理”的問題,讓學生感受勾股定理在生活中的應用。我們是在學習有價值的數學。
何老師在“勾股定理的應用”這一環節,讓學生解決課前提到的三個問題。這種前后呼應讓學生小試牛刀,感受到學有所用。增加學習數學的信心。
“勾股定理”是幾何中極其重要的一個定理,它揭示了直角三角形三邊之間的數量關系,將數與形密切地聯系起來。課堂上何老師充分利用學校先進的教學設備-----多媒體電子白板教學。
學生在匯報交流時,直接在老師準備好的課件上進行作圖,這樣直觀地,便捷地把學生的想法呈現于屏幕上,有利于全體同學了解做題者的思路。便于學生之間的交流,更能節省課堂教學時間,提高課堂實效。
通過本節課的學習我收獲很大!對初中數學課的課堂模式也有了新的認識。
探索勾股定理說課稿(專業19篇)篇十一
勾股定理是平面幾何有關度量的最基本定理,它從邊的角度進一步刻畫了直角三角形的特點。學習勾股定理極其逆定理是進一步認識和理解直角三角形的需要,也是后續有關幾何度量運算和代數學習的必然基礎?!?0xx版數學課程標準》對勾股定理教學內容的要求是:
1、在研究圖形性質和運動等過程中,進一步發展空間觀念;
2、在多種形式的數學活動中,發展合情推理能力;
3、經歷從不同角度分析問題和解決問題的方法的過程,體驗解決問題方法的多樣性;
4、探索勾股定理及其逆定理,并能運用它們解決一些簡單的實際問題。
本節《勾股定理的應用》是北師大版八年級數學上冊第一章《勾股定理》第3節、具體內容是運用勾股定理及其逆定理解決簡單的實際問題、在這些具體問題的解決過程中,需要經歷幾何圖形的抽象過程,需要借助觀察、操作等實踐活動,這些都有助于發展學生的分析問題、解決問題能力和應用意識;有些探究活動具有一定的難度,需要學生相互間的合作交流,有助于發展學生合作交流的能力。
本節課的教學目標是:
1、能正確運用勾股定理及其逆定理解決簡單的實際問題。
2、經歷實際問題抽象成數學問題的過程,學會選擇適當的數學模型解決實際問題,提高學生分析問題、解決問題的能力并體會數學建模的思想。
教學重點和難點:
應用勾股定理及其逆定理解決實際問題是重點。
把實際問題化歸成數學模型是難點。
二、教學設想。
根據新課標提出的“要從學生已有的生活經驗出發,讓學生親身經歷將實際問題抽象成數學模型并進行解釋和運用的同時,在思維能力情感態度和價值觀等方面得到進步和發展”的理念,我想盡量給學生創設豐富的.實際問題情境,使教學活動充滿趣味性和吸引力,讓他們在自主探究,合作交流中分析問題,建立數學模型,利用勾股定理及其逆定理解決問題。在教學過程中,采用一題多變的形式拓寬學生視野,訓練學生思維的靈活性,滲透化歸的思想以及分類討論思想,方程思想等,使學生在獲得知識的同時提高能力。
在教學設計中,盡量考慮到不同學習水平的學生,注意知識由易到難的層次性,在課堂上,要照顧到接受較慢的學生。使不同學生有不同的收獲和發展。
三、教學過程分析。
本節課設計了七個環教學設計節、第一環節:情境引入;第二環節:合作探究;第三環節:變式訓練;第四環節:議一議;第五環節:做一做;第六環節:交流小結;第七環節:布置作業。
第一環節:情境引入。
情景1:復習提問:勾股定理的語言表述以及幾何語言表達?
設計意圖:溫習舊知識,規范語言及數學表達,體現數學的嚴謹性和規范性?!豆垂啥ɡ淼膽谩贰?/p>
情景2:腦筋急轉彎一個三角形的兩條邊是3和4,第三邊是多少?
設計意圖:既靈活考察學生對勾股定理的理解,又增加了趣味性,還能考察學生三角形三邊關系。
第二環節:合作探究(圓柱體表面路程最短問題)。
情景3:課本引例(螞蟻怎樣走最近)。
第三環節:變式訓練(由圓柱體表面路程最短問題逐步變為長方體表面的距離最短問題)。
設計意圖:將問題的條件稍做改變,讓學生嘗試獨立解決,拓展學生視野,又加深他們對知識的理解和鞏固。再將圓柱問題變為正方體長方體問題,學生有了之前的經驗,自然而然的將立體轉化為平面,利用勾股定理解決,此處長方體問題中學生會有不同的做法,正好透分類討論思想。
第四環節:議一議。
內容:李叔叔想要檢測雕塑底座正面的ad邊和bc邊是否分別垂直于底邊ab,但他隨身只帶了卷尺,《勾股定理的應用》教。
你能替他想辦法完成任務嗎?
設計意圖:
第五環節:方程與勾股定理。
在我國古代數學著作《九章算術》中記載了一道有趣的問題,這個問題的意思是:有一個水池,水面是一個邊長為10尺的正方形,在水池的中央有《勾股定理的應用》教學設計一根新生的蘆葦,它高出水面1尺,如果把這根蘆葦垂直拉向岸邊,它的頂端恰好到達岸邊的水面,請問這個水池的深度和這根蘆葦的長度各是多少尺?《勾股定理的應用》教學設計意圖:學生可以進一步了解勾股定理的悠久歷史和廣泛應用,了解我國古代人民的聰明才智;學會運用方程的思想借助勾股定理解決實際問題。
第六環節:交流小結內容:師生相互交流總結:
1、解決實際問題的方法是建立數學模型求解。
2、在尋求最短路徑時,往往把空間問題平面化,利用勾股定理及其逆定理解決實際問題。
3、在直角三角形中,已知一條邊和另外兩條邊的關系,借助方程可以求出另外兩條邊。
意圖:鼓勵學生結合本節課的學習談自己的收獲和感想,體會到勾股定理及其逆定理的廣泛應用及它們的悠久歷史。
探索勾股定理說課稿(專業19篇)篇十二
教材所處的地位與作用。
“探索勾股定理”是人教版八年級《數學》下冊內容?!肮垂啥ɡ怼笔前才旁趯W生學習了三角形、全等三角形、等腰三角形等有關知識之后,它揭示了直角三角形三邊之間的一種美妙關系,將數與形密切聯系起來,在幾何學中占有非常重要的位置。同時勾股定理在生產、生活中也有很大的用途。
二、教學目標。
綜上分析及教學大綱要求,本課時教學目標制定如下:
1、知識目標。
知道勾股定理的由來,初步理解割補拼接的面積證法。
掌握勾股定理,通過動手操作利用等積法理解勾股定理的證明過程。
2、能力目標。
在探索勾股定理的過程中,讓學生經歷“觀察——合理猜想——歸納——驗證”的數學思想,并體會數形結合以及由特殊到一般的思想方法,培養學生的觀察力、抽象概括能力、創造想象能力以及科學探究問題的能力。
3、情感目標。
通過觀察、猜想、拼圖、證明等操作,使學生深刻感受到數學知識的發生、發展過程。
介紹“趙爽弦圖”,讓學生感受到中國古代在勾股定理研究方面所取得的偉大成就,激發學生的數學激情及愛國情感。
三、教學重難點。
本課重點是掌握勾股定理,讓學生深刻感悟到直角三角形三邊所具備的特殊關系。由于八年級學生構造能力較低以及對面積證法的不熟悉,因此本課的難點便是勾股定理的證明。
四、教學問題診斷。
本節主要攻克的問題就是本節的難點:勾股定理的證明。我打算采用面積法來講解,但這種借助于圖形的面積來探索、驗證數學結論的數形結合思想,對于學生來說,有些陌生,難以理解,又加之數學課本身的課程特征,在講解時,沒有文科那么深動形象,所以針對這一現狀,我在教法和學法上都進行了改進。
五、教法與學法分析。
[教學方法與手段]針對八年級學生的知識結構和心理特征,本節課選擇引導探索法,由淺入深,由特殊到一般地提出問題,引導學生自主探索,合作交流,并利用多媒體進行教學。
[學法分析]在教師組織引導下,采用自主探索、合作交流的方式,讓學生自己實驗,自己獲取知識,并感悟學習方法,借此培養學生動手、動口、動腦能力,使學生真正成為學習的主體。讓學生感受到自己是學習的主體,增強他們的主動感和責任感,這樣對掌握新知會事半功倍。
1、創設情境,引入新課。
本節課開始利用多媒體介紹了在北京召開的國際數學家大會的會標,其圖案為“趙爽弦圖”,由此導入新課,是為了激發學生的興趣和民族自豪感,它是課堂教學的重要一環?!昂玫拈_始是成功的一半”,在課的起始階段迅速集中學生注意力,把他們的思緒帶進特定的學習情境中,激發學生濃厚的學習興趣和強烈的求知欲。多媒體展示這一有意義的圖案,可有效開啟學生思維的閘門,激勵探究,使學生的學習狀態由被動變為主動,在輕松愉悅的氛圍中學到知識。
2、觀察發現,類比猜想。
讓學生仔細觀察畢達哥拉斯朋友家的瓷磚(圖1),從而得到特殊的等腰直角三角形三邊關系,緊接著由特殊到一般,讓學生合理猜測:是否任意直角三角形都符合這個“三邊關系”的結論?同學們很輕易的得到了結論。最后對此結論通過在網格中數格子進行驗證,讓學生經歷了“觀察——合理猜測——歸納——驗證”的這一數學思想。在數格子的驗證過程中,發現任意直角三角形(圖2)斜邊上長出的正方形中網格不規則,沒法數出。通過同學們的.討論,發現數不出來的原因是格子不規則,從而想到了用補或割的方法進行計算,其原則就是由不規則經過割補變為規則。
3、實驗探究,證明結論。
因為勾股定理的出現,使數學從單一的純計算進入了幾何圖形的證明,所以為了讓學生感受數形結合這一數學思想,讓學生親自動手,互相協作,拿一塊由a2和b2組成的不規則的平面圖形經割補,變為規則的c2,又因兩塊割補前后面積相等,從而得到勾股定理:a2+b2=c2,也因此引入了“等積法”證明勾股定理。
4、練兵之際。
這是“總統證法”,此時讓學生自己探索,然后討論。選用“總統證法”,第一是為了讓同學們熟悉“等積法”,第二讓學生感受數學的地位之高,第三在沒有講解的情況下,學生自己得出了“總統證法”,大大增強了學生的自信心和自豪感。
5、自己動手,拼出弦圖。
讓同學們拿出了提前準備好的四個全等的邊長為a、b、c的直角三角形進行拼圖,小組活動,拼出自己喜愛的圖形,但有一個前提是所拼出的圖形必須能夠用等積法證明勾股定理。此時已經是把課堂全部還給了學生,讓他們在數學的海洋中馳騁,提供這種學習方式就是為了讓孩子們更加開闊,更加自主,更方便于他們到廣闊的海洋中去尋找寶藏,學生們拼得很好,并且都給出了正確的證明,在黑板上盡情地展示了一番。
6、總結反思。
通過這一堂課,我認為數學教學的核心不是知識本身,而是數學的思維方式,而培養這種數學思維方式需要豐富的數學活動。在活動中學生可以用自己創造與體驗的方法來學習數學,這樣才能真正的掌握數學,真正擁有數學的思維方式,這一課的學習就是通過讓學生自主探索知識,從而將其轉化為自己的,真正做到了先激發興趣,再合作交流,最后展示成果的自主學習,教學模式也從教師講授為主轉為了學生動腦、動手、自主研究,小組學習討論交流為主,把數學課堂轉化為“數學實驗室”,學生通過自己活動得出結論,使創新精神與實踐能力得到了發展。
七、設計說明。
1、根據學生的知識結構,我采用的數學流程是:創設情境引入新課——觀察發現類比猜想——實驗探究證明結論——自己動手拼出弦圖——總結反思這五部分。這一流程體現了知識的發生、形成和發展的過程,讓學生經歷了觀察——猜想——歸納——驗證的思想和數形結合的思想。
2、探索定理采用了面積法,引導學生利用實驗由特殊到一般的數學思想對直角三角形三邊關系進行了研究,并得出了結論。這種方法是認識事物規律的重要方法之一,通過教學讓學生初步掌握這種方法,對于學生良好的思維品質的形成有重要作用,對學生終身發展也有很大作用。
探索勾股定理說課稿(專業19篇)篇十三
勾股定理是我國古數學的一項偉大成就.勾股定理為我們提供了直角三角形的三邊間的數量關系,它的逆定理為我們提供了判斷三角形是否屬于直角三角形的依據,也是判定兩條直線是否互相垂直的一個重要方法,這些成果被廣泛應用于數學和實際生活的各個方面.教材在編寫時注意培養學生的動手操作能力和分析問題的能力,通過實際分析,使學生獲得較為直觀的印象,通過聯系和比較,了解勾股定理在實際生活中的廣泛應用.據此,制定教學目標如下:。
1.知識和方法目標:通過對一些典型題目的思考,練習,能正確熟練地進行勾股定理有關計算,深入對勾股定理的理解.2.過程與方法目標:通過對一些題目的探討,以達到掌握知識的目的.
3.情感與態度目標:感受數學在生活中的應用,感受數學定理的美.
教學重點:勾股定理的應用.教學難點:勾股定理的正確使用.
教學關鍵:在現實情境中捕抓直角三角形,確定好直角三角形之后,再應用勾股定理.
1.以自學輔導為主,充分發揮教師的主導作用,運用各種手段激發學習欲望和興趣,組織學生活動,讓學生主動參與學習全過程.
2.切實體現學生的主體地位,讓學生通過觀察,分析,討論,操作,歸納理解定理,提高學生動手操作能力,以及分析問題和解決問題的能力.
3.通過演示實物,引導學生觀察,操作,分析,證明,使學生獲得新知的成功感受,從而激發學生鉆研新知的欲望.
教學程序本節內容的教學主要體現在學生的動手,動腦方面,根據學生的認知規律和學習心理,教學程序設置如下:回顧問:勾股定理的內容是什么?勾股定理揭示了直角三角形三邊之間的關系,今天我們來學習這個定理在實際生活中的應用.
探索勾股定理說課稿(專業19篇)篇十四
“探索勾股定理”是人教版八年級《數學》下冊內容?!肮垂啥ɡ怼笔前才旁趯W生學習了三角形、全等三角形、等腰三角形等有關知識之后,它揭示了直角三角形三邊之間的一種美妙關系,將數與形密切聯系起來,在幾何學中占有非常重要的位置。同時勾股定理在生產、生活中也有很大的用途。
綜上分析及教學大綱要求,本課時教學目標制定如下:
知道勾股定理的由來,初步理解割補拼接的面積證法。
掌握勾股定理,通過動手操作利用等積法理解勾股定理的證明過程。
在探索勾股定理的過程中,讓學生經歷“觀察——合理猜想——歸納——驗證”的數學思想,并體會數形結合以及由特殊到一般的思想方法,培養學生的觀察力、抽象概括能力、創造想象能力以及科學探究問題的能力。
通過觀察、猜想、拼圖、證明等操作,使學生深刻感受到數學知識的發生、發展過程。
介紹“趙爽弦圖”,讓學生感受到中國古代在勾股定理研究方面所取得的偉大成就,激發學生的數學激情及愛國情感。
本課重點是掌握勾股定理,讓學生深刻感悟到直角三角形三邊所具備的特殊關系。由于八年級學生構造能力較低以及對面積證法的不熟悉,因此本課的難點便是勾股定理的證明。
本 節主要攻克的問題就是本節的難點:勾股定理的證明。我打算采用面積法來講解,但這種借助于圖形的面積來探索、驗證數學結論的數形結合思想,對于學生來說, 有些陌生,難以理解,又加之數學課本身的課程特征,在講解時,沒有文科那么深動形象,所以針對這一現狀,我在教法和學法上都進行了改進。
[教學方法與手段] 針對八年級學生的知識結構和心理特征,本節課選擇引導探索法,由淺入深,由特殊到一般地提出問題,引導學生自主探索,合作交流,并利用多媒體進行教學。
[學法分析] 在教師組織引導下,采用自主探索、合作交流的方式,讓學生自己實驗,自己獲取知識,并感悟學習方法,借此培養學生動手、動口、動腦能力,使學生真正成為學習的主體。讓學生感受到自己是學習的主體,增強他們的主動感和責任感,這樣對掌握新知會事半功倍。
本節課開始利用多媒體介紹了在北京召開的20xx年 國際數學家大會的會標,其圖案為“趙爽弦圖”,由此導入新課,是為了激發學生的興趣和民族自豪感,它是課堂教學的重要一環。“好的開始是成功的一半”,在 課的起始階段迅速集中學生注意力,把他們的思緒帶進特定的學習情境中,激發學生濃厚的學習興趣和強烈的求知欲。多媒體展示這一有意義的圖案,可有效開啟學 生思維的閘門,激勵探究,使學生的學習狀態由被動變為主動,在輕松愉悅的氛圍中學到知識。
讓學生仔細觀察畢達哥拉斯朋友家的瓷磚(圖1), 從而得到特殊的等腰直角三角形三邊關系,緊接著由特殊到一般,讓學生合理猜測:是否任意直角三角形都符合這個“三邊關系”的結論?同學們很輕易的得到了結 論。最后對此結論通過在網格中數格子進行驗證,讓學生經歷了“觀察——合理猜測——歸納——驗證”的這一數學思想。在數格子的驗證過程中,發現任意直角三 角形(圖2)斜邊上長出的正方形中網格不規則,沒法數出。通過同學們的討論,發現數不出來的原因是格子不規則,從而想到了用補或割的方法進行計算,其原則就是由不規則經過割補變為規則。
因為勾股定理的出現,使數學從單一的純計算進入了幾何圖形的證明,所以為了讓學生感受數形結合這一數學思想,讓學生親自動手,互相協作,拿一塊由a2和b2組成的不規則的平面圖形經割補,變為規則的c2,又因兩塊割補前后面積相等,從而得到勾股定理:a2+b2= c2,也因此引入了“等積法”證明勾股定理。
這是“總統證法”,此時讓學生自己探索,然后討論。選用“總統證法”,第一是為了讓同學們熟悉“等積法”,第二讓學生感受數學的地位之高,第三在沒有講解的情況下,學生自己得出了“總統證法”,大大增強了學生的自信心和自豪感。
5、自己動手,拼出弦圖
讓同學們拿出了提前準備好的四個全等的邊長為a、b、c的 直角三角形進行拼圖,小組活動,拼出自己喜愛的圖形,但有一個前提是所拼出的圖形必須能夠用等積法證明勾股定理。此時已經是把課堂全部還給了學生,讓他們 在數學的海洋中馳騁,提供這種學習方式就是為了讓孩子們更加開闊,更加自主,更方便于他們到廣闊的海洋中去尋找寶藏,學生們拼得很好,并且都給出了正確的 證明,在黑板上盡情地展示了一番。
6、總結反思
通 過這一堂課,我認為數學教學的核心不是知識本身,而是數學的思維方式,而培養這種數學思維方式需要豐富的數學活動。在活動中學生可以用自己創造與體驗的方 法來學習數學,這樣才能真正的掌握數學,真正擁有數學的思維方式,這一課的學習就是通過讓學生自主探索知識,從而將其轉化為自己的,真正做到了先激發興 趣,再合作交流,最后展示成果的自主學習,教學模式也從教師講授為主轉為了學生動腦、動手、自主研究,小組學習討論交流為主,把數學課堂轉化為“數學實驗 室”,學生通過自己活動得出結論,使創新精神與實踐能力得到了發展。
1、根據學生的知識結構,我采用的數學流程是:創設情境引入新課——觀察發現類比猜想——實驗探究證明結論——自己動手拼出弦圖——總結反思這五部分。這一流程體現了知識的發生、形成和發展的過程,讓學生經歷了觀察——猜想——歸納——驗證的思想和數形結合的思想。
2、探索定理采用了面積法,引導學生利用實驗由特殊到一般的數學思想對直角三角形三邊關系進行了研究,并得出了結論。這種方法是認識事物規律的重要方法之一,通過教學讓學生初步掌握這種方法,對于學生良好的思維品質的形成有重要作用,對學生終身發展也有很大作用。
探索勾股定理說課稿(專業19篇)篇十五
首先,何老師是位非常有經驗的教師,從他這節課中,我對初中課堂有了進一步的了解,也學習到了許多。
這節課給我最大的感受就是順,這個順包含幾個方面:
第一,這節課按照學案的設計結構很順利的講下來了,一個環節連著一個環節,很順利,沒有遇到太多的問題。首先從3個問題導入,明確了“學什么”,這節課結束后我們要會解決這3個問題,然后根據3個正方形一起探索等腰直角三角形三邊之間的關系,再到探索一般直角三角形三邊之間的關系,總結出“勾股定理”,最后通過一些練習來進行鞏固,這時和課前又很好的聯系到了一起,這時候檢驗學生“學會沒”,這個時候這節課的內容基本完成。
第二,順在何老師把知識化繁為簡,《勾股定理》應該是一個非常重要而且復雜的知識,但是在何老師的課堂中,你感覺不到,沒覺得這個知識是一個非常難的知識,學生在這種輕松的氛圍中學會了“勾股定理”,會運用了。
第三,順在課堂氣氛,學生也很好的被調動起來了。何老師也是盡量拋出問題,讓學生積極思考,討論,探索,比如探索完等腰直角三角形后到一般直角三角形的提問,在這個時候,學生學到的的是思考問題的方法,這才是數學的精華。
當然,在這個節課順的同時,我發覺太順了,感覺缺少了一些亮點,沒什么亮點能抓住我的眼球,給我很不一樣的東西。
另外,我覺得,“勾股定理”還沒有完全的展開,僅僅只讓學生掌握了“勾股定理”遠遠還不夠,關于“勾股定理”很多的數學史沒有一點介紹,“勾股定理”又稱為“畢達哥拉斯定理”,這是一個非常有意義的定理,我們不能簡簡單單的拿出就用,“勾”“股”“弦”是誰提出來的?我覺得,要學習“勾股定理”,必須了解這個數學史,了解畢達哥斯拉,了解菲珈爾德。
上面是我個人的一點不成熟的看法,說的不對,還請批評指正,謝謝!
探索勾股定理說課稿(專業19篇)篇十六
由于目前一直在小學部任教,很少聽中學的課了,所以對中學的課堂模式由熟悉轉為了陌生。下面將自己的一些觀點和各位分享一下:
首先,何老師是位非常有經驗的教師,從他這節課中,我對初中課堂有了進一步的了解,也學習到了許多。
這節課給我最大的感受就是順,這個順包含幾個方面:
第一,這節課按照學案的設計結構很順利的講下來了,一個環節連著一個環節,很順利,沒有遇到太多的問題。首先從3個問題導入,明確了“學什么”,這節課結束后我們要會解決這3個問題,然后根據3個正方形一起探索等腰直角三角形三邊之間的關系,再到探索一般直角三角形三邊之間的關系,總結出“勾股定理”,最后通過一些練習來進行鞏固,這時和課前又很好的聯系到了一起,這時候檢驗學生“學會沒”,這個時候這節課的內容基本完成。
第二,順在何老師把知識化繁為簡,《勾股定理》應該是一個非常重要而且復雜的知識,但是在何老師的課堂中,你感覺不到,沒覺得這個知識是一個非常難的知識,學生在這種輕松的氛圍中學會了“勾股定理”,會運用了。
第三,順在課堂氣氛,學生也很好的被調動起來了。何老師也是盡量拋出問題,讓學生積極思考,討論,探索,比如探索完等腰直角三角形后到一般直角三角形的提問,在這個時候,學生學到的的是思考問題的方法,這才是數學的精華。
當然,在這個節課順的同時,我發覺太順了,感覺缺少了一些亮點,沒什么亮點能抓住我的眼球,給我很不一樣的東西。
另外,我覺得,“勾股定理”還沒有完全的`展開,僅僅只讓學生掌握了“勾股定理”遠遠還不夠,關于“勾股定理”很多的數學史沒有一點介紹,“勾股定理”又稱為“畢達哥拉斯定理”,這是一個非常有意義的定理,我們不能簡簡單單的拿出就用,“勾”“股”“弦”是誰提出來的?我覺得,要學習“勾股定理”,必須了解這個數學史,了解畢達哥斯拉,了解菲珈爾德。
上面是我個人的一點不成熟的看法,說的不對,還請批評指正,謝謝!
探索勾股定理說課稿(專業19篇)篇十七
(2)了解互逆命題、互逆定理.
2.目標解析。
目標(2)能根據原命題寫出它的逆命題,并了解原命題為真命題時,逆命題不一定為真命題.
三、教學問題診斷分析。
勾股定理的逆定理的證明是先作一個合適的直角三角形,再證明有已知條件的三角形和直角三角形全等等,這種證法學生不容易想到,難以理解,在教學時應該注意啟發引導.
本課的教學難點是證明勾股定理的逆定理.
1.創設問題情境。
師生活動:學生獨立回憶勾股定理,師生共同分析得出其題設和結論,教師引導指出勾股定理是從形的特殊性得出三邊之間的數量關系.
追問1:你能把勾股定理的題設與結論交換得到一個新的命題嗎?
師生活動:師生共同得出新的命題,教師指出其為勾股定理的逆命題.
追問2:“如果三角形三邊長、b、c滿足,那么這個三角形是直角三角形.”能否把它作為判定直角三角形的依據呢?本節課我們一起來研究這個問題.
探索勾股定理說課稿(專業19篇)篇十八
本節課教學目標明確,教學設計合理,通過國際數學家大會的會徽圖片激起了學生認識和學習勾股定理的興趣。教學過程中,學生通過老師設計的引導題目一步步進行了自主探索,合作交流,得出結論的過程。在用拼圖法證明勾股定理的過程中,動畫的設計使學生更直觀的掌握定理的內容。在合作交流過程中,學生參與度高,學習氣氛熱烈,通過課后練習發現學生對知識點的把握到位,能很好的運用勾股定理來解決實際問題,有效地實現了本節課的知識目標。
在講課過程中,教師引導學生自己觀察圖形,猜測結論,得出命題,并合作討論一起驗證了命題的準確性,最終得出結論。并在猜想的過程中,發現了從特殊的等腰直角三角形到一般的直角三角形的數學方法。在驗證命題的過程中學會用圖形來幫助自己解題,也初步意識到了數形結合的思想。整個過程都是學生為主,教師為輔,基本上較好的完成了過程與方法的.目標。
整節課教師教態自然,很好地引導了學生的學習過程,對重難點的把握也比較到位。最后的小結過程中引導學生要發現生活中的數學,把數學知識應用到生活,這樣使學生更加熱愛數學,實現了本節課的情感目標。
但有些語言略有啰嗦,課后給學生做題的時間有點少,希望下次改進。
探索勾股定理說課稿(專業19篇)篇十九
亮點一:學案設計簡潔,到位,有梯度。簡潔體現在整張學案圍繞勾股定理,分為探索和應用部分,沒有旁枝末節,沒有虛張聲勢,直指核心。到位體現在,把握了大綱的要求,讓學生新身經歷探索的過程,并能靈活運用。有梯度體現在練習題的設計上。習題有梯度,有層次。
亮點二:語言簡煉,重點突出。非重點處,惜時如金,重點處,濃墨重彩。如,探索一般直角三角形部分,最大的正方形的面積是25,一般的學生不知道怎么數?在這個環節,舍得花時間,讓學生操作,用割和補這2種方法去求。小環節的處理可體現教師的智慧。
亮點三:教師功底扎實,能站在高處,指導學生學習,發散。發散必須在我們每個老師的心中。我一直有個觀點,數學最重要的是思維訓練,思維訓練中最核心的是發散,是舉一反三,觸類旁通。有這幾處細節,讓我記憶深刻。如第三組勾股數6、8、10,教師問:它和3、4、5相比分別是3、4、5的幾倍?那你能不能創造一組勾股數?我相信好的學生能迅速領會。習題中也能凸顯發散。求一條斜邊的是基礎題,求三條斜邊的和,我認為這個發散練習設計得好,有利于拓寬學生視野。
接下來,我想就在觀課中發現的一個問題,和大家一起探討:
原因有二:1、思維定勢。三邊的關系,首先會想到相等,但一看,不相等,不知所措。2、第1個問題和第2個問題之間,學生看不出聯系。不會把正方形的面積轉化為邊的平方。何老師的學案設計本身沒有任何問題,如果面對的是重點班的學生,會很流暢很順暢。但面對我們這里的學生,呈現出一種理想很美好,但現實很骨感的狀態:絕大部分學生這幾分鐘都在絞盡腦汁想這一題,后面的題目沒有去完成。也就是說,其實探索環節實效性不高。那針對學情,學案該怎樣設計?我建議:凸顯正方形的面積和邊長之間的關系。
(1)正方形p的面積=(1)=(ac)。
正方形q的面積=()=();
正方形r的面積=()=()。
(2)直角三角形面積之間的關系是:,這個關系也可表示為()+()=()。
(3)觀察思考上面的式子,你能發現直角三角形三邊之間的關系嗎?請寫下來。
所以,這是我的第一個建議:部分設計要調低難度,搭設橋梁。要針對學情。
建議二:解題過程的書寫教學重視得不夠。我觀察有部分好的學生會做,但都直接寫在圖上,解題過程不知怎么下筆。解題過程的書寫直接影響中考成績,所以我建議從初一年級起,要手把手教,要帶著學生寫解題過程。并且嚴格要求,每天的學案收上來,檢查,督促學生寫好。不積細流,無以成江河。
建議三:小細節的處理上,還可以再精益求精。3個練習題,我感覺第1題要構造三個直角三角形,求三段斜邊的和,難度比2、3題要大一些,如調整一下順序,把第1題放在第3題的位置,可能層次性會更突出。板書方面,建議:勾股定理一定要板書在黑板上。學生用割的方法分那個面積是25的三角形時,由于三角形的底色紅色太突出,顯眼。導致分割線不明顯,影響學生的理解掌握。
總之,我認為這堂課設計凸顯智慧,教師在隨意中透著嚴謹,在細節中彰顯功底,是一節值得肯定、值得我學習、借鑒的好課。感謝何老師。