教案模板還能夠幫助教師有序地安排教學時間,合理分配教學資源。小編整理了一些經典的教案模板示范,希望對初入教育行業的教師們有所啟示。
正弦定理說課稿(精選19篇)篇一
“解三角形”既是高中數學的基本內容,又有較強的應用性,在這次課程改革中,被保留下來,并獨立成為一章。這部分內容從知識體系上看,應屬于三角函數這一章,從研究方法上看,也可以歸屬于向量應用的一方面。從某種意義講,這部分內容是用代數方法解決幾何問題的典型內容之一。而本課“正弦定理”,作為單元的起始課,是在學生已有的三角函數及向量知識的基礎上,通過對三角形邊角關系作量化探究,發現并掌握正弦定理(重要的解三角形工具),通過這一部分內容的學習,讓學生從“實際問題”抽象成“數學問題”的建模過程中,體驗“觀察——猜想——證明——應用”這一思維方法,養成大膽猜想、善于思考的品質和勇于求真的精神。同時在解決問題的過程中,感受數學的力量,進一步培養學生對數學的學習興趣和“用數學”的意識。
二、學情分析。
我所任教的學校是我縣一所農村普通中學,大多數學生基礎薄弱,對“一些重要的數學思想和數學方法”的應用意識和技能還不高。但是,大多數學生對數學的興趣較高,比較喜歡數學,尤其是象本節課這樣與實際生活聯系比較緊密的內容,相信學生能夠積極配合,有比較不錯的表現。
三、教學目標。
1、知識和技能:在創設的問題情境中,引導學生發現正弦定理的內容,推證正弦定理及簡單運用正弦定理解決一些簡單的解三角形問題。
過程與方法:學生參與解題方案的探索,嘗試應用觀察——猜想——證明——應用”等思想方法,尋求最佳解決方案,從而引發學生對現實世界的一些數學模型進行思考。
情感、態度、價值觀:培養學生合情合理探索數學規律的數學思想方法,通過平面幾何、三角形函數、正弦定理、向量的數量積等知識間的聯系來體現事物之間的普遍聯系與辯證統一。同時,通過實際問題的探討、解決,讓學生體驗學習成就感,增強數學學習興趣和主動性,鍛煉探究精神。樹立“數學與我有關,數學是有用的,我要用數學,我能用數學”的理念。
2、教學重點、難點。
教學重點:正弦定理的發現與證明;正弦定理的簡單應用。
四、教學方法與手段。
為了更好的達成上面的教學目標,促進學習方式的轉變,本節課我準備采用“問題教學法”,即由教師以問題為主線組織教學,利用多媒體和實物投影儀等教學手段來激發興趣、突出重點,突破難點,提高課堂效率,并引導學生采取自主探究與相互合作相結合的`學習方式參與到問題解決的過程中去,從中體驗成功與失敗,從而逐步建立完善的認知結構。
五、教學過程。
為了很好地完成我所確定的教學目標,順利地解決重點,突破難點,同時本著貼近生活、貼近學生、貼近時代的原則,我設計了這樣的教學過程:
(一)創設情景,揭示課題。
問題2:在現在的高科技時代,要想知道某座山的高度,沒必要親自去量,只需水平飛行的飛機從山頂一過便可測出,你知道這是為什么嗎?還有,交通警察是怎樣測出正在公路上行駛的汽車的速度呢?要想解決這些問題,其實并不難,只要你學好本章內容即可掌握其原理。(板書課題《解三角形》)。
[設計說明]引用教材本章引言,制造知識與問題的沖突,激發學生學習本章知識的興趣。
(二)特殊入手,發現規律。
引導啟發學生發現特殊情形下的正弦定理。
(三)類比歸納,嚴格證明。
[設計說明]此時放手讓學生自己完成,如果感覺自己解決有困難,學生也可以前后桌或同桌結組研究,鼓勵學生用不同的方法證明這個結論,在巡視的過程中讓不同方法的學生上黑板展示,如果沒有用向量的學生,教師引導提示學生能否用向量完成證明。
文檔為doc格式。
正弦定理說課稿(精選19篇)篇二
正弦定理是高中新教材人教a版必修五第一章1.1.1的內容,是學生在已有知識的基礎上,通過對三角形邊角關系的研究,發現并掌握三角形的邊長與角度之間的數量關系。提出兩個實際問題,并指出解決問題的關鍵在于研究三角形的邊、角關系,從而引導學生產生探索愿望,激發學生的學習興趣。在教學過程中,要引導學生自主探究三角形的邊角關系,先由特殊情況發現結論,再對一般三角形進行推導,并引導學生分析正弦定理可以解決兩類關于解三角形的問題:
(1)已知兩角和一邊,解三角形;。
(2)已知兩邊和其中一邊的對角,解三角形。
本節授課對象是高二學生,是在學生學習了必修四基本初等函數和三角恒等變換的.基礎上,由實際問題出發探索研究三角形邊角關系,得出正弦定理。高二學生對生產生活問題比較感興趣,由實際問題出發可以激發學生的學習興趣,使學生產生探索研究的愿望。
知識與技能目標。
能準確寫出正弦定理的符號表達式,能夠運用正弦定理理解三角形、初步解決某些測量和幾何計算有關的簡單的實際問題。
過程與方法目標。
通過對定理的證明和應用,鍛煉獨立解決問題的能力和體會分類討論和數形結合的思想方法。
情感態度價值觀目標。
通過對三角形邊角關系的探究學習,經歷數學探究活動的過程,體會由特殊到一般再由一般到特殊的認識事物規律,培養探索精神和創新意識。
重點。
難點。
正弦定理的推導與正弦定理的運用。
運用“發現問題——自主探究——嘗試指導——合作交流”的教學方式,整堂課圍繞“一切為了學生發展”的教學原則,突出:師生互動、共同探索,教師指導、循序漸進。
新課引入——提出問題,激發學生的求知欲。掌握正弦定理的推導證明——分類討論,數形結合動腦思考,由一般到特殊,組織學生自主探索,獲得正弦定理及證明過程。
例題處理——始終由問題出發,層層設疑,讓他們在探索中得到知識。鞏固練習,深化對正弦定理的理解。
(一)導入新課。
我采用的是設疑導入,進行口頭提問:
設計意圖:通過生活中的知識引入,激發學生學習需要和學習期待,以問題引起學生學習熱情和探索新知的欲望。讓學生積極主動的參與到課堂里面來,更好的調動學習氛圍。
(二)新課教學。
1.復習舊知。
帶動學生回憶以前學過的知識,并設置如下問題引導學生思考,減少學生對新知識的陌生感。
正弦定理說課稿(精選19篇)篇三
(一)教材所處的地位。
這節課是九年制義務教育課程標準實驗教科書八年級第一章第一節探索勾股定理第一課時,勾股定理是幾何中幾個重要定理之一,它揭示的是直角三角形中三邊的數量關系。它在數學的發展中起過重要的作用,在現時世界中也有著廣泛的作用。學生通過對勾股定理的學習,可以在原有的基礎上對直角三角形有進一步的認識和理解。
(二)根據課程標準,本課的教學目標是:
2、會初步運用勾股定理進行簡單的計算和實際運用。
3、在探索勾股定理的過程中,讓學生經歷“觀察—猜想—歸納—驗證”的數學思想,并體會數形結合和特殊到一般的思想方法。
4、通過介紹勾股定理在中國古代的研究,激發學生熱愛祖國,熱愛祖國悠久文化的思想,激勵學生發奮學習。
(三)本課的教學重點:探索勾股定理。
本課的教學難點:以直角三角形為邊的正方形面積的計算。
教法分析:針對初二年級學生的知識結構和心理特征,本節課可選擇引導探索法,由淺入深,由特殊到一般地提出問題。引導學生自主探索,合作交流,這種教學理念反映了時代精神,有利于提高學生的思維能力,能有效地激發學生的思維積極性,基本教學流程是:提出問題—實驗操作—歸納驗證—問題解決—課堂小結—布置作業六部分。
學法分析:在教師的組織引導下,采用自主探索、合作交流的研討式學習方式,讓學生思考問題,獲取知識,掌握方法,借此培養學生動手、動腦、動口的能力,使學生真正成為學習的主體。
(一)提出問題:
首先創設這樣一個問題情境:某樓房三樓失火,消防隊員趕來救火,了解到每層樓高3米,消防隊員取來6.5米長的云梯,如果梯子的底部離墻基的距離是2.5米,請問消防隊員能否進入三樓滅火?問題設計具有一定的挑戰性,目的是激發學生的探究欲望,教師引導學生將實際問題轉化成數學問題,也就是“已知一直角三角形的兩邊,如何求第三邊?”的問題。學生會感到困難,從而教師指出學習了今天這一課后就有辦法解決了。這種以實際問題為切入點引入新課,不僅自然,而且反映了數學來源于實際生活,數學是從人的需要中產生這一認識的基本觀點,同時也體現了知識的發生過程,而且解決問題的過程也是一個“數學化”的過程。
(二)實驗操作:
1、投影課本圖1—1,圖1—2的有關直角三角形問題,讓學生計算正方形a,b,c的面積,學生可能有不同的方法,不管是通過直接數小方格的個數,還是將c劃分為4個全等的等腰直角三角形來求等等,各種方法都應予于肯定,并鼓勵學生用語言進行表達,引導學生發現正方形a,b,c的面積之間的數量關系,從而學生通過正方形面積之間的關系容易發現對于等腰直角三角形而言滿足兩直角邊的平方和等于斜邊的平方。這樣做有利于學生參與探索,感受數學學習的過程,也有利于培養學生的語言表達能力,體會數形結合的思想。
2、接著讓學生思考:如果是其它一般的直角三角形,是否也具備這一結論呢?于是投影圖1—3,圖1—4,同樣讓學生計算正方形的面積,但正方形c的面積不易求出,可讓學生在預先準備的方格紙上畫出圖形,在剪一剪,拼一拼后學生也不難發現對于一般的以整數為邊長的直角三角形也有兩直角邊的平方和等于斜邊的平方。這樣設計不僅有利于突破難點,而且為歸納結論打下了基礎,讓學生體會到觀察、猜想、歸納的思想,也讓學生的分析問題和解決問題的能力在無形中得到了提高,這對后面的學習及有幫助。
3、給出一個邊長為0.5,1.2,1.3,這種含小數的直角三角形,讓學生計算是否也滿足這個結論,設計的目的是讓學生體會到結論更具有一般性。
(三)歸納驗證:
1、歸納通過對邊長為整數的等腰直角三角形到一般直角三角形再到邊長含小數的直角三角形三邊關系的研究,讓學生用數學語言概括出一般的結論,盡管學生可能講的不完全正確,但對于培養學生運用數學語言進行抽象、概括的能力是有益的,同時發揮了學生的主體作用,也便于記憶和理解,這比教師直接教給學生一個結論要好的多。
2、驗證為了讓學生確信結論的正確性,引導學生在紙上任意作一個直角三角形,通過測量、計算來驗證結論的正確性。這一過程有利于培養學生嚴謹、科學的學習態度。然后引導學生用符號語言表示,因為將文字語言轉化為數學語言是學習數學學習的一項基本能力。接著教師向學生介紹“勾,股,弦”的含義、勾股定理,進行點題,并指出勾股定理只適用于直角三角形。最后向學生介紹古今中外對勾股定理的研究,對學生進行愛國主義教育。
(四)問題解決:
讓學生解決開頭的實際問題,前后呼應,學生從中能體會到成功的喜悅。完成課本“想一想”進一步體會勾股定理在實際生活中的應用,數學是與實際生活緊密相連的。
(五)課堂小結:
主要通過學生回憶本節課所學內容,從內容、應用、數學思想方法、獲取新知的途徑方面先進行小結,后由教師總結。
(六)布置作業:
課本p6習題1.11,2,3,4一方面鞏固勾股定理,另一方面進一步體會定理與實際生活的聯系。另外,補充一道開放題。
1、本節課是公式課,根據學生的知識結構,我采用的教學流程是:提出問題—實驗操作—歸納驗證—問題解決—課堂小結—布置作業六部分,這一流程體現了知識發生、形成和發展的過程,讓學生體會到觀察、猜想、歸納、驗證的思想和數形結合的思想。
2、探索定理采用了面積法,引導學生利用實驗由特殊到一般再到更一般的對直角三角形三邊關系的研究,得出結論。這種方法是認識事物規律的重要方法之一,通過教學讓學生初步掌握這種方法,對于學生良好思維品質的形成有重要作用,對學生的終身發展也有一定的作用。
3、關于練習的設計,除兩個實際問題和課本習題以外,我準備設計一道開放題,大致思路是在已畫出斜邊上的高的直角三角形中讓學生盡量地找出線段之間的關系。
4、本課小結從內容,應用,數學思想方法,獲取知識的途徑等幾個方面展開,既有知識的總結,又有方法的提煉,這樣對于學生學知識,用知識的意識是有很大的促進的。
正弦定理說課稿(精選19篇)篇四
勾股定理就是學生在已經掌握了直角三角形的有關性質的基礎上進行學習的,它就是直角三角形的一條非常重要的性質,是幾何中最重要的定理之一,它揭示了一個三角形三條邊之間的數量關系,它可以解決直角三角形中的計算問題,這就是解直角三角形的主要根據之一,在實際生活中用途很大。教材在編寫時注意培養學生的動手操作能力和分析問題的能力,通過實際分析、拼圖等活動,使學生獲得較為直觀的印象;通過聯系和比較,理解勾股定理,以利于正確的進行運用。
據此,制定教學目標如下:
1、理解并掌握勾股定理及其證明。
2、能夠靈活地運用勾股定理及其計算。
3、培養學生觀察、比較、分析、推理的能力。
4、通過介紹中國古代勾股方面的成就,激發學生熱愛祖國與熱愛祖國悠久文化的思想感情,培養他們的民族自豪感和鉆研精神。
教學重點:勾股定理的證明和應用。
教學難點:勾股定理的證明。
教法和學法就是體現在整個教學過程中的,本課的教法和學法體現如下特點:
1、以自學輔導為主,充分發揮教師的主導作用,運用各種手段激發學生學習欲望和興趣,組織學生活動,讓學生主動參與學習全過程。
2、切實體現學生的主體地位,讓學生通過觀察、分析、討論、操作、歸納,理解定理,提高學生動手操作能力,以及分析問題和解決問題的能力。
3、通過演示實物,要引導學生觀察、操作、分析、證明,使學生得到獲得新知的成功感受,從而激發學生鉆研新知的欲望。
本節內容的教學主要體現在學生動手、動腦方面,根據學生的認知規律和學習心理,教學程序設計如下:
1、由故事引入,3000多年前有個叫商高的人對周公說,把一根直尺折成直角,兩端連接得到一個直角三角形,如果勾是3,股是4,那么弦等于5。這樣引起學生學習興趣,激發學生求知欲。
2、是不是所有的直角三角形都有這個性質呢?教師要善于激疑,使學生進入樂學狀態。
3、板書課題,出示學習目標。
教師是指導學生自學教材,通過自學感悟理解新知,這也體現了學生的自主學習意識,鍛煉學生主動探究知識,養成良好的自學習慣。
1、教師設疑或學生提疑。如:怎樣證明勾股定理?學生通過自學,中等以上的學生基本掌握,這時能激發學生的表現欲。
2、教師引導學生按照要求進行拼圖,觀察并分析;
(1)這兩個圖形有什么特點呢?
(2)你能寫出這兩個圖形的面積嗎?
(3)如何運用勾股定理?是否還有其他形式?
這時教師組織學生分組討論,調動全體學生的積極性,達到人人參與的效果,接著全班交流。先有某一組代表發言,說明本組對問題的理解程度,其他各組作評價和補充。教師及時進行富有啟發性的點撥,最后,師生共同歸納,形成一致意見,最終解決疑難。
1、出示練習,學生分組來解答,并由學生總結解題規律。課堂教學中動靜結合,以免引起學生的疲勞。
2、出示例1學生試解,師生共同評價,以加深對例題的理解與運用。針對例題再次出現鞏固練習,進一步提高學生運用知識的能力,對練習中出現的情況可采取互評、互議的形式,在互評互議中出現的具有代表性的問題,教師可以采取全班討論的形式予以解決,以此突出教學重點。
引導學生對知識要點進行總結,梳理學習思路。分發自我反饋練習,學生獨立完成。
本課意在創設愉悅和諧的樂學氣氛,優化教學手段,借助電教手段提高課堂教學效率,建立平等、民主、和諧的師生關系。加強師生間的合作,營造一種學生敢想、感說、感問的課堂氣氛,讓全體學生都能生動活潑、積極主動地教學活動,在學習中創新精神和實踐能力得到培養。
正弦定理說課稿(精選19篇)篇五
各位老師,大家好!
我是張苗,來自河北師范大學xxx級數信c班。今天我要說課的內容是正弦函數的圖像與性質的第一課時的內容,此節內容是人教b版高中數學必修四《基本初等函數二》當中的第一章第三節第一小節的內容。下面我將從教學材料的分析、學生學情的分析、教學方法的選擇、教學過程的設計、教學結果的反思五各方面來做教學說明。
在分析教學材料的時候我吧他們分為三個方面來討論:。
(1)教材的地位及作用。初中的時候我們已經學習了一次函數、二次函數等一些簡單的初等函數,今天學習的這個正弦函數是我們高中階段最后的一類初等函數,它是刻畫生活中周期現象問題的典型的函數模型,與教學大綱中的從實際出發相吻合。在初中的時候我們也學習了一些三角形及其誘導公式的知識,這些知識為我們的正弦函數的學習提供了良好的基礎。今天我們要正式的學習正弦函數的圖像及其性質。為以后學習余弦函數的圖像及其性質打下堅實的基礎。
(2)教學目標。數學課程標準在總體上把教學目標分解為“知識與技能”、“過程與方法”、“情感態度價值觀”三個不可分割、相互交融、相互滲透的維度。接下來我將從這三個角度來說明我的教學目標。:我將會用正弦線畫出正弦函數圖像、用“五點法”畫正弦函數簡圖作為知識與技能的目標,提升學生的觀察能力與作圖能力、滲透數形結合與轉化劃歸的數學思想方法、培養學生自主探索和和合作的能力作為我們講課時的過程與方法,最后通過作圖,使學生感受波形曲線的流暢美、對稱美。使學生體會事物周期變化的奧秘。
(3)教學的重點與難點。本節課是在教學生如何畫正弦函數的圖像,所以用五點作圖法畫函數的圖像時本節課的重點。而引入正弦函數的圖像時所用的正弦線對于學生來說,有些遺忘。吧正弦線重拾起來,并且將它引入正弦函數圖像是本節課的難點。
作為教師,我們面對的是活生生的個體,個體存在著不確定性。所以面對這各種各樣的不同層次的學生的時候,我們硬度他們進行全面的分析,并且準確的理解他們。(1)從學生知識層面看:通過初中正弦函數值相關知識的學習,學生具備了一定的知識經驗和基礎;通過必修一函數圖像的學習,對作圖也有了一定的認識。(2)從學生能力層面看:學生已有一定的分析、推理、概括能力,以及了解了一些抽象的理論知識,具備了運用數形結合思想解決問題的能力,但數形結合的意識和思維的深刻性還待進一步加強。(3)從學生情感培養方面看:思維較活躍,對具體形象的實例比較感興趣,具有一定的數學基礎及解決問題的能力。但對學習抽象知識具有抵觸情緒,缺乏主動性。
本課內容蘊含著數形結合等豐富的數學思想,是培養學生觀察能力、概括能力、探究能力和創新意識的重要素材。所以我決定采用啟發式教學與情景教學相結合的方式來進行我的教學活動,并使用多媒體輔助。
基于以上的種種,我決定設計以下的教學過程,將教學分成以下幾個層次:1,創設情境、提出問題,2,問題驅動、探索新知,3,實戰演練、鞏固新知,4,總結反思、提高認識,5,任務延后、自主探究。
在創設情境、提出問題中,我通過給同學展示一個生活中見過的例子,讓學生觀察了解日常生活中的實際問題轉化為數學問題,提高學生對數學的學習興趣。問題驅動、探索新知,在這一方面我通過舊知識來引導學生學習新知識,了解新技能,從中發現問題并學會怎么解決新問題,通過學生的實踐來獲得新知識使他們印象深刻。并有我講出本節課的重點“五點作圖法”實戰演練、鞏固新知,學習了新知識后我們得通過實際演練,歸納總結,讓學生迅速熟悉“五點作圖法”在給與一些變式讓同學自己動手去實踐。接著總結反思、提高認識,在這部分內容中,我決定讓學生自己去總結然后我去補充他們遺漏的那些內容,再次使學生明確教學內容以及教學的重點難點。任務延后、自主探究。在這塊設計中就是給學生留一些課后習題,以及對于不同個程度的學生來說,不同難度的思考題,讓他們依據自己自身的實際情況自主的增減練習。
本節課操作性較強,學生活動量較大新課從試驗演示入手,形成圖像的感知后,升級問題,探索正弦曲線的準確做法,形成理性認識,問題設置層層深入,引導學生發現問題,解決問題,并對方法進行歸納總結,體現了新課標以學生為主體,教師為主導的課堂教學理念,用多媒體課件可生動的表現出圖像的變化過程,更好的突破難點。
本節課所畫圖像較多,能迅速準確的畫出函數圖像對學生來說是一個較高的要求,重在學生動手操作,不要怕學生出錯,通過畫圖可以培養學生的動手能力,模仿能力。開始比較慢,尤其是五點法每個點都要準確的找到,然后畫出圖像。通過后面知識的學習實踐證明,本教學設計科學、高效,教學目標達成度良好。
這位老師,以上所說只是我預設的一種方案,但課堂是千變萬化的,應隨著學生與教師的靈性發揮隨機應變。預設效果如何,最終還有待于課堂教學實踐的檢驗。不足之處希望各位老師給與批評指正,謝謝。
正弦定理說課稿(精選19篇)篇六
如果說數學思想是解決數學問題的一首經典老歌,那么本節課蘊含的由特殊到一般的思想、數學建模的思想、轉化的思想就是歌中最為活躍的音符!本節的內容是在學習了二次根式之后的教學,是在學生已經掌握了直角三角形的有關性質的基礎上進行的后繼學習,是中學數學幾個重要定理之一。它揭示了直角三角形三條邊之間的數量關系,是解直角三角形的主要根據之一,是解決四邊形、圓等知識的靈魂,在實際生活中有著極其廣泛的應用。
勾股定理的發現、驗證和應用蘊含著豐富的文化價值,在理論上占有重要地位,因此本節在教材中起著承前啟后的橋梁作用。
新課標下的數學教學不僅是知識的教學,更應注重能力的培養及情感的教育,因此,根據本節在教學中的地位和作用,結合初二學生不愛表現、好靜不好動的特點,我確定本節教學目標如下:
1、探索并利用拼圖證明勾股定理。
2、利用勾股定理解決簡單的數學問題。
3、感受數學文化,體會解決問題方法的多樣性和數形結合的思想。
本著課標的要求,在吃透教材的基礎上,我確定本節的教學重點、難點、關鍵如下:
勾股定理的證明和簡單應用是本節的重點,用拼圖的方法證明勾股定理是難點,而解決難點的關鍵是充分利用圖形面積的各種表示方法構造恒等式。
為了講清重點、突破難點、抓住關鍵,使學生達到預定目標,我對教法和學法分析如下:
新課程標準強調要從學生已有的經驗出發,最大限度的激發學生學習積極性,新課程下的數學教師更應是學生學習活動的組織者、引導者、合作者,因此,鑒于教材的重點和初二學生的認知水平,我以學生充分預習為前提,以學生的動手操作、講解為中心,讓學生親歷親為,體會做數學的過程,激發學生的探索興趣,使課堂活躍起來,提高課堂效率。運用觀察法、歸納法、引導發現法、討論法等多種教學方法相結合的形式,讓學生充分展示預習成果,體驗成功的快樂,為終身學習和發展打下堅實的基礎。為了增大課堂容量、給學生創設高效的數學課堂,給學生提供足夠從事數學活動的時間,以導學案的形式、運用多媒體輔助教學。
學法是學生再生知識的法寶,為了把學生學習過程當作認知事物的過程來解決,教學中我首先引導學生先動手操作,再合作交流,培養學生良好的學習品質和與人合作的能力;接下來,我讓學生獨立思考,點撥學生用特殊到一般的思想大膽償試,水到渠成的突出勾股定理的探索這一重點,然后通過學生展示成果讓學生抓住用不同的方式拼出圖形,從而用不同的方式表示圖形面積建立恒等式這一關健,以自己拼圖操作、講解展示預習成果突破定理證明這一難點,指導學生嚴謹、合理的書寫格式,培養學生的邏輯思維能力和語言表達能力。
為了充分調動學生的學習積極性,創設優化高效的數學課堂,我以導學案的方式循序見進的設計教學流程。
1、勾股定理的探究:讓學生歷經量一量、算一算、想一想的由特殊到一般的數學思想引導好學生課前預習,再以檢查預習成果的形式為新知的探究作好鋪墊。
2、勾股定理的證明:以學生拼圖展示、講解預習成果的形式完成對定理的證明。
3、勾股定理的應用:以課堂練習、學生個性補充和老師適當的個性化追加的形式實現對定理的靈活應用。
4、學后反思:以學生小結的形式引導學生從知識、情感兩方面實現對本節內容的鞏固與升華。
為了給學生營造一個和諧、民主、平等而高效的數學課堂,我以新課程標準的基本理念和總體目標為指導思想,面向全體學生,選擇適當的起點和方法,充分發揮學生的主體地位與教師主導作用相統一的原則。教學中注重學生的動手操作能力的培養,化繁為簡,化抽象為直觀。例如我以展示預習成果為主線,以學生動手操作、講解等直觀方式代替老師畫圖、剪圖、講評費時費力的方式,既讓每個學生都能積極的參與進來,培養學生的語言表達能力、邏輯推理能力,又達到了直觀高效的效果。
教學中我注重人文環境的創設,使數學課堂充滿親切、民主的氣氛,例如整節課我以學生的操作、展示、講解、個性補充為主,拉近了數學與學生的距離,激發了學生的學習興趣;為了使不同的學生得到不同的發展,人人學有價值的數學,在教學中我創造性的使用教材,在不改變例題的本意為前提,創設身邊暖房工程為情境,體現數學的生活化;以一題多變、中考題改編等形式進行練習題的層層深入,體現數學的變化美。
以學生個性補充的形式促進課堂新的生成,最大限度的培養學生創新思維,使不同的人在數學上有不同的發展。本節課既做到了課程的開放,為充分發揮學生聰明智慧和創造性的思維提供了空間,又創設了具有獨特教學風格的作文式數學課堂。而多媒體教學的引入更為學生提供了廣闊的思考空間和時間;同時,我注重對學生進行數學文化的薰陶和數學思想的滲透,注重美育、德育與教育的三統一,如小結時由“勾股樹”到“智慧樹”的希望寄語。
正弦定理說課稿(精選19篇)篇七
大家好,今天我向大家說課的題目是《正弦定理》。下面我將從以下幾個方面介紹我這堂課的教學設計。
一、教材分析。
本節知識是必修五第一章《解三角形》的第一節內容,與初中學習的三角形的邊和角的基本關系有密切的聯系與判定三角形的全等也有密切聯系,在日常生活和工業生產中也時常有解三角形的問題,而且解三角形和三角函數聯系在高考當中也時常考一些解答題。因此,正弦定理和余弦定理的知識非常重要。
根據上述教材內容分析,考慮到學生已有的認知結構心理特征及原有知識水平,制定如下教學目標:
認知目標:在創設的問題情境中,引導學生發現正弦定理的內容,推證正弦定理及簡單運用正弦定理與三角形的內角和定理解斜三角形的兩類問題。
能力目標:引導學生通過觀察,推導,比較,由特殊到一般歸納出正弦定理,培養學生的創新意識和觀察與邏輯思維能力,能體會用向量作為數形結合的工具,將幾何問題轉化為代數問題。
情感目標:面向全體學生,創造平等的教學氛圍,通過學生之間、師生之間的交流、合作和評價,調動學生的主動性和積極性,給學生成功的體驗,激發學生學習的`興趣。
教學重點:正弦定理的內容,正弦定理的證明及基本應用。
教學難點:正弦定理的探索及證明,已知兩邊和其中一邊的對角解三角形時判斷解的個數。
二、教法。
正弦定理說課稿(精選19篇)篇八
通過正弦定理讓我們更容易的了解數學,正弦定理的教學內容有哪些呢?以下是本站小編為大家整理的關于《正弦定理》教案,給大家作為參考,歡迎閱讀!
一、教學內容分析。
本節課是高一數學第五章《三角比》第三單元中正弦定理的第一課時,它既是初中“解直角三角形”內容的直接延拓,也是坐標法等知識在三角形中的具體運用,是生產、生活實際問題的重要工具,正弦定理揭示了任意三角形的邊角之間的一種等量關系,它與后面的余弦定理都是解三角形的重要工具。
本節課其主要任務是引入證明正弦定理及正弦定理的基本應用,在課型上屬于“定理教學課”。因此,做好“正弦定理”的教學,不僅能復習鞏固舊知識,使學生掌握新的有用的知識,體會聯系、發展等辯證觀點,學生通過對定理證明的探究和討論,體驗到數學發現和創造的歷程,進而培養學生提出問題、解決問題等研究性學習的能力。
二、學情分析。
對高一的學生來說,一方面已經學習了平面幾何,解直角三角形,任意角的三角比等知識,具有一定觀察分析、解決問題的能力;但另一方面對新舊知識間的聯系、理解、應用往往會出現思維障礙,思維靈活性、深刻性受到制約。根據以上特點,教師恰當引導,提高學生學習主動性,注意前后知識間的聯系,引導學生直接參與分析問題、解決問題。
三、設計思想:
培養學生學會學習、學會探究是全面發展學生能力的重要方面,也是高中新課程改革的主要任務。如何培養學生學會學習、學會探究呢?建構主義認為:“知識不是被動吸收的,而是由認知主體主動建構的。”這個觀點從教學的角度來理解就是:知識不僅是通過教師傳授得到的,更重要的是學生在一定的情境中,運用已有的學習經驗,并通過與他人(在教師指導和學習伙伴的幫助下)協作,主動建構而獲得的,建構主義教學模式強調以學生為中心,視學生為認知的主體,教師只對學生的意義建構起幫助和促進作用。本節“正弦定理”的教學,將遵循這個原則而進行設計。
四、教學目標:
1、在創設的問題情境中,讓學生從已有的幾何知識和處理幾何圖形的常用方法出發,探索和證明正弦定理,體驗坐標法將幾何問題轉化為代數問題的優越性,感受數學論證的嚴謹性。
2、理解三角形面積公式,能運用正弦定理解決三角形的兩類基本問題,并初步認識用正弦定理解三角形時,會有一解、兩解、無解三種情況。
3、通過對實際問題的探索,培養學生的數學應用意識,激發學生學習的興趣,讓學生感受到數學知識既來源于生活,又服務與生活。
五、教學重點與難點。
教學重點:正弦定理的探索與證明;正弦定理的基本應用。
教學難點:正弦定理的探索與證明。
主體下給于適當的提示和指導。
一、復習引入:
結論:
證明:(向量法)過a作單位向量j垂直于ac,由ac+cb=ab邊同乘以單位向量。
正弦定理:在一個三角形中,各邊和它所對角的正弦的比相等。
本節是“正弦定理”定理的第一節,在備課中有兩個問題需要精心設計。一個是問題的引入,一個是定理的證明。通過兩個實際問題引入,讓學生體會為什么要學習這節課,從學生的“最近發展區”入手進行設計,尋求解決問題的方法。具體的思路就是從解決課本的實際問題入手展開,將問題一般化導出三角形中的邊角關系——正弦定理。因此,做好“正弦定理”的教學既能復習鞏固舊知識,也能讓學生掌握新的有用的知識,有效提高學生解決問題的能力。
1.在教學過程中,我注重引導學生的思維發生,發展,讓學生體會數學問題是如何解決的,給學生解決問題的一般思路。從學生熟悉的直角三角形邊角關系,把銳角三角形和鈍角三角形的問題也轉化為直角三角形的性,從而得到解決,并滲透了分類討論思想和數形結合思想等思想。
2.在教學中我恰當地利用多媒體技術,是突破教學難點的一個重要手段。利用《幾何畫板》探究比值的值,由動到靜,取得了很好的效果,加深了學生的印象。
3.由于設計的內容比較的多,教學時間的超時,這說明我自己對學生情況的把握不夠準確到位,致使教學過程中時間的分配不夠適當,教學語言不夠精簡,今后我一定避免此類問題,爭取更大的進步。
正弦定理說課稿(精選19篇)篇九
正弦定理是初中數學中比較重要和難理解的部分,很多同學甚至老師都對其感到頭疼。但是,正弦定理不僅是數學中的重要概念,還有著豐富的實際應用。在學習正弦定理后,我從中學到了很多有益的知識和經驗,下面我將分享我的心得體會。
正弦定理是指一個三角形中,邊長和對應的角度的關系公式。其中一個角度的正弦等于與其對邊的長度之一的比例,即sinA=a/b。正弦定理可以通過cosB,cosC的余弦公式而推出,可以方便計算三角形的邊長和角度。對于初學者來說,重要的是能夠理解公式的本質,同時也體會到了科學的推理方法。
第三段:在計算中的應用。
正弦定理在生活和學習中都有很大的應用價值。例如,在航海和導航中,我們經常需要利用正弦定理計算船或車等運動物體的位置和角度。在建筑方面,正弦定理甚至可以計算出大樓、橋梁和塔等構造物的高度和角度。除此之外,正弦定理在數學應用中也是非常重要的,能夠解決許多難題,如解三角函數方程、求角度等。
第四段:學習體會。
在學習正弦定理的過程中,我發現一個重要的問題就是需要對三角函數有清晰的認識。也就是說,在學習正弦定理之前,我們需要認真學習三角函數的其他部分,例如正切和余弦等。同時,不斷練習,多做習題對于記住和掌握公式也是非常有益的。此外,我也學會了在認真理解和熟練應用的同時,將其運用到實際問題的解決中,這不僅可以提高學習興趣,還能拓展解決問題的思路。
第五段:結論。
總體來說,正弦定理不僅是數學中的重要概念,也有廣泛而且實際應用價值。學習正弦定理可以提高數學應用能力和推理思維能力,同時也能減少發生計算錯誤的可能。在學習的過程中,我們需要認真學習和理解每一個公式,多經過練習和應用,最后將其應用到實際問題中。相信一定可以有所收獲,提高自身的學習和應用能力。
正弦定理說課稿(精選19篇)篇十
“正弦定理”既是初中“解直角三角形”內容的直接延拓,也是三角函數一般知識和平面向量知識在三角形中的具體運用,是解可轉化為三角形計算問題的其它數學問題及生產、生活實際問題的重要工具,因此具有廣泛的應用價值。本節課是第七章的第一課時:“正弦定理”教學的第一節課,其主要任務是證明正弦定理并準確應用正弦定理。在備課中有兩個問題需要精心設計.一個是定理的證明,一個是正弦定理的應用的問題串。
課本通過一個實際問題引入,但沒有深入展開下去,只是點出繼續學習“解三角形”問題的`意義;正弦定理的證明方法很多,如利用三角形的面積公式、利用三角形的外接圓、利用向量證明等。
從中職學生的認知出發,設計從直角三角形出發,通過學生的探究活動,引導學生提出問題,通過證明、歸納、應用為線索,把問題展現給學生,從而引入并證明正弦定理。因此,做好“正弦定理”的教學既能復習鞏固舊知識,也能讓學生掌握新的有用的知識,有效提高學生解決問題的能力。本節設計注重知識建構過程和學生主題地位的體現,從學生熟悉的直角三角形邊角關系,到銳角三角形、鈍角三角形的討論,滲透了分類討論思想和數形結合思想。從學生的“最近發展區”入手去設計問題,從特殊到一般,從歸納猜想到實驗證明,培養學生的探究問題的科學方法,思路自然,是學生們易于接受的一種證明方法。但在具體的推導時,要注意尊重學生思維的發展的過程,這是一種理念,也是一種能力.
問題是思維的起點,是學生主動探索的動力.本節課通過對課本引例的解決、展開,引導學生在問題解決中發現結論.符合認識問題的思維規律,對激發學生探究問題興趣是非常有益的.傳統式的課傳授完新知識后,一般教師都會馬上以“舉一反三”的模式來鞏固新知識。但在此我進行了小小的設計,讓學生分析正弦定理的特點和幾種變形;涉及了三角形哪些元素?可以解決哪類數學問題?讓學生做到“學會數學,會學數學”。新的環節引起了學生濃厚的興趣,教室內學生熱烈的討論,爭論也出現了,特別是已知二邊一角的問題,哪種能直接應用,哪種不能直接應用,學生有一個系統的認知。這又為后續課程—余弦定理打下了伏筆。
本節課雖然在教師的引導下,基本完成了教學任務,由于教學時間的超時,說明教學存在對學生情況的把握不夠準確到位,教學設計的是否恰當?教學過程中時間的分配不夠適當,師生配合的程度是否默契?教學語言不夠精簡,今后一定避免此類問題,爭取更大的進步。
正弦定理說課稿(精選19篇)篇十一
本節課是“正弦定理”教學的第二節課,其主要任務是通過對正弦定理的進一步理解,明確它在“已知三角形的兩邊及一邊所對的角解三角形”方面的應用和運用正弦定理的變式來求三角形中的角和判斷三角形的形狀。
在知識目標方面:通過創設適宜的數學情境,引導鼓勵學生大膽地提出問題、引導學生對所提的問題進行分析、整理,篩選出有價值的問題,注意啟發學生揭示問題的數學實質,將提問推向深入。通過問題的提出、解題方法的探索、到問題的解決、方法的總結、及練習題中方法的應用,都能緊抓公式及公式的變式,運用從特殊到一般、再從一般到特殊的思想方法達成知識目標。通過練習及六個變式問題調動學生的學習熱情,進而采用“正弦定理”、“大邊對大角”、“三角形內角和定理”、“數形結合”等知識與方法有效突破本節課的教學難點。使學生明白這一類數學問題該怎樣解,讓學生做到“學會數學,會學數學”
在能力目標方面:通過例題、練習及六個變式問題,培養學生觀察、歸納、概括新知識的能力;通過“故意出錯”,讓學生“質疑”、“找錯”、“改錯”,從而使學生的思維具有批判性,優化他們的思維品質;通過課后練習及課后思考,進一步培養學生的數學意識,解決數學問題的能力。
在情感態度與價值觀方面:本節課也很注重對學生非智力因素的培養,注重情感交流與情感的建立與培養。并在教學過程中做到:與學生真誠相處、平等交流;依據自己的個人特點采取適當的'方法與技巧,注重充分發揮教師的個人人格魅力,而非千篇一律的“柔聲細語”;能借助信息技術及其它手段,營造一種氛圍,一種情境,通過“課前音樂背景”的設置,“課堂上的掌聲鼓勵”“形體語言與語言藝術”的運用等,力爭營造一種愉快、輕松的氛圍,創建一個有助于師生,生生思維交流的“情感場”,使數學教學更具有生命力,感染力。使學生在感悟數學的過程中感受數學的魅力,體驗數學產生的美感與幸福感。
通過這節課的學習,不僅復習鞏固了舊知識,使學生掌握了新的有用的知識,體會聯系、發展等辯證觀點,而且培養了學生的應用意識和實踐操作能力,以及提出問題、解決問題等研究性學習的能力。
文檔為doc格式。
正弦定理說課稿(精選19篇)篇十二
聽了何老師的勾股定理,感觸比較多。整節課,可以說是化繁為簡、重點突出、條理清晰、層次分明。
讓我印象最深刻,也是值得我學習的地方,應該是利用正方形的面積來推導勾股定理這一部分,這也是本節課的難點與重點。從找正方形面積之間的關系,來推導出中間所圍的三角形三邊之間的關系,無疑是一個很巧妙的思維,在網格中找正方形面積的時候,學生可以充分利用所學過的割補法的知識,用不同的方法,得到面積,思維上得到了發散。接下來利用了一個有效的設問“對于等腰直角三角形三邊所滿足的這一關系,是否一般的直角三角形也滿足呢?聚攏了發散的思維,并明確了勾股定理。整個過程條理清晰、層次分明,學生在一步一步的探索中學到了新的`知識。符合學生的認知水平。
練習分為兩部分,第一部分是:蝸牛的行走路徑、小鳥飛行路程、輪船航行。這一部分在課程開始時,以動畫的形式吸引學生的注意,并設置了求解的疑問,在勾股定理明確之后,讓學生做、學生講解、老師點撥。從中加深學生對勾股定理的印象:一是一定要在直角三角形中使用,如果沒有直角三角形,則首先要構造出直角三角形。二是,得到了三組勾股數,為勾股數的規律做鋪墊。第二部分的練習是給學生們課下練習的。
整個課堂中,教師的教學功底通過對課堂節奏的掌控、教師用語的提煉、ppt技巧的掌握得到了充分的展現。很值得我學習!
正弦定理說課稿(精選19篇)篇十三
“探索勾股定理”是人教版八年級《數學》下冊內容。“勾股定理”是安排在學生學習了三角形、全等三角形、等腰三角形等有關知識之后,它揭示了直角三角形三邊之間的一種美妙關系,將數與形密切聯系起來,在幾何學中占有非常重要的位置。同時勾股定理在生產、生活中也有很大的用途。
綜上分析及教學大綱要求,本課時教學目標制定如下:
知道勾股定理的由來,初步理解割補拼接的面積證法。
掌握勾股定理,通過動手操作利用等積法理解勾股定理的證明過程。
在探索勾股定理的過程中,讓學生經歷“觀察——合理猜想——歸納——驗證”的數學思想,并體會數形結合以及由特殊到一般的思想方法,培養學生的觀察力、抽象概括能力、創造想象能力以及科學探究問題的能力。
通過觀察、猜想、拼圖、證明等操作,使學生深刻感受到數學知識的發生、發展過程。
介紹“趙爽弦圖”,讓學生感受到中國古代在勾股定理研究方面所取得的偉大成就,激發學生的數學激情及愛國情感。
本課重點是掌握勾股定理,讓學生深刻感悟到直角三角形三邊所具備的特殊關系。由于八年級學生構造能力較低以及對面積證法的不熟悉,因此本課的難點便是勾股定理的證明。
本 節主要攻克的問題就是本節的難點:勾股定理的證明。我打算采用面積法來講解,但這種借助于圖形的面積來探索、驗證數學結論的數形結合思想,對于學生來說, 有些陌生,難以理解,又加之數學課本身的課程特征,在講解時,沒有文科那么深動形象,所以針對這一現狀,我在教法和學法上都進行了改進。
[教學方法與手段] 針對八年級學生的知識結構和心理特征,本節課選擇引導探索法,由淺入深,由特殊到一般地提出問題,引導學生自主探索,合作交流,并利用多媒體進行教學。
[學法分析] 在教師組織引導下,采用自主探索、合作交流的方式,讓學生自己實驗,自己獲取知識,并感悟學習方法,借此培養學生動手、動口、動腦能力,使學生真正成為學習的主體。讓學生感受到自己是學習的主體,增強他們的主動感和責任感,這樣對掌握新知會事半功倍。
本節課開始利用多媒體介紹了在北京召開的20xx年 國際數學家大會的會標,其圖案為“趙爽弦圖”,由此導入新課,是為了激發學生的興趣和民族自豪感,它是課堂教學的重要一環。“好的開始是成功的一半”,在 課的起始階段迅速集中學生注意力,把他們的思緒帶進特定的學習情境中,激發學生濃厚的學習興趣和強烈的求知欲。多媒體展示這一有意義的圖案,可有效開啟學 生思維的閘門,激勵探究,使學生的學習狀態由被動變為主動,在輕松愉悅的氛圍中學到知識。
讓學生仔細觀察畢達哥拉斯朋友家的瓷磚(圖1), 從而得到特殊的等腰直角三角形三邊關系,緊接著由特殊到一般,讓學生合理猜測:是否任意直角三角形都符合這個“三邊關系”的結論?同學們很輕易的得到了結 論。最后對此結論通過在網格中數格子進行驗證,讓學生經歷了“觀察——合理猜測——歸納——驗證”的這一數學思想。在數格子的驗證過程中,發現任意直角三 角形(圖2)斜邊上長出的正方形中網格不規則,沒法數出。通過同學們的討論,發現數不出來的原因是格子不規則,從而想到了用補或割的方法進行計算,其原則就是由不規則經過割補變為規則。
因為勾股定理的出現,使數學從單一的純計算進入了幾何圖形的證明,所以為了讓學生感受數形結合這一數學思想,讓學生親自動手,互相協作,拿一塊由a2和b2組成的不規則的平面圖形經割補,變為規則的c2,又因兩塊割補前后面積相等,從而得到勾股定理:a2+b2= c2,也因此引入了“等積法”證明勾股定理。
這是“總統證法”,此時讓學生自己探索,然后討論。選用“總統證法”,第一是為了讓同學們熟悉“等積法”,第二讓學生感受數學的地位之高,第三在沒有講解的情況下,學生自己得出了“總統證法”,大大增強了學生的自信心和自豪感。
5、自己動手,拼出弦圖
讓同學們拿出了提前準備好的四個全等的邊長為a、b、c的 直角三角形進行拼圖,小組活動,拼出自己喜愛的圖形,但有一個前提是所拼出的圖形必須能夠用等積法證明勾股定理。此時已經是把課堂全部還給了學生,讓他們 在數學的海洋中馳騁,提供這種學習方式就是為了讓孩子們更加開闊,更加自主,更方便于他們到廣闊的海洋中去尋找寶藏,學生們拼得很好,并且都給出了正確的 證明,在黑板上盡情地展示了一番。
6、總結反思
通 過這一堂課,我認為數學教學的核心不是知識本身,而是數學的思維方式,而培養這種數學思維方式需要豐富的數學活動。在活動中學生可以用自己創造與體驗的方 法來學習數學,這樣才能真正的掌握數學,真正擁有數學的思維方式,這一課的學習就是通過讓學生自主探索知識,從而將其轉化為自己的,真正做到了先激發興 趣,再合作交流,最后展示成果的自主學習,教學模式也從教師講授為主轉為了學生動腦、動手、自主研究,小組學習討論交流為主,把數學課堂轉化為“數學實驗 室”,學生通過自己活動得出結論,使創新精神與實踐能力得到了發展。
1、根據學生的知識結構,我采用的數學流程是:創設情境引入新課——觀察發現類比猜想——實驗探究證明結論——自己動手拼出弦圖——總結反思這五部分。這一流程體現了知識的發生、形成和發展的過程,讓學生經歷了觀察——猜想——歸納——驗證的思想和數形結合的思想。
2、探索定理采用了面積法,引導學生利用實驗由特殊到一般的數學思想對直角三角形三邊關系進行了研究,并得出了結論。這種方法是認識事物規律的重要方法之一,通過教學讓學生初步掌握這種方法,對于學生良好的思維品質的形成有重要作用,對學生終身發展也有很大作用。
正弦定理說課稿(精選19篇)篇十四
尊敬的各位考官:
大家好,我是xx號考生,今天我說課的題目是《勾股定理的逆定理》。新課標指出:數學課程要面向全體學生,適應學生個性發展的需要,使得人人都能獲得良好的數學教育,不同的人在數學上都能得到不同的發展。今天我將貫徹這一理念從教材分析、學情分析、教學過程等幾個方面展開我的說課。
首先來談一談我對教材的理解。
本節課選自人教版初中數學八年級下冊第十七章第二節《勾股定理的逆定理》,它是在學生掌握勾股定理及一般三角形性質的基礎上進行教學的。應用前面學習的勾股定理及三角形全等證明逆定理是本節課的關鍵步驟,同時本節課又豐富了三角形的性質,是后面幾何問題的基礎理論性知識。
接下來談談學生的實際情況。本階段的學生已經掌握了一定的基礎知識,處于由幾何內容的初級向高級行進的過程。他們的幾何思維正在逐步形成和發展,對幾何題目具有一定的分析、想象、概括能力,具有對未知事物的新鮮感和探求欲。同時也要注意到學生能力的不成熟,教學中鼓勵與引導并重。
根據以上對教材的分析以及對學情的把握,我制定了如下教學目標:
(一)知識與技能。
理解并掌握勾股定理的逆定理,會應用定理判定直角三角形;理解勾股定理與勾股定理逆定理的區別與聯系;理解原命題和逆命題的概念,知道二者的關系及二者真假性的關系。
(二)過程與方法。
經歷得出猜想、推理證明的過程,提升自主探究、分析問題、解決問題的能力。
(三)情感、態度與價值觀。
體會事物之間的聯系,感受幾何的魅力。
在教學目標的實現過程中,教學重點是勾股定理的逆定理及其證明,教學難點是勾股定理的逆定理的證明。
為了突破重點,解決難點,順利達成教學目標,教學中我將主要采用小組討論、自主探究的教學方法,輔以適量的教師講解和引導,把課堂還給學生。
下面我將重點談談我對教學過程的設計。
(一)導入新課。
課堂伊始,我采用復習舊知與創設情境相結合的導入方式。首先我會帶領學生復習勾股定理并明確其題設和結論,為后面提出逆命題、逆定理做鋪墊。接著提問學生如何畫直角三角形,學生很容易想到用三角尺或量角器。此時我會要求學生不能用繩子以外的工具,借助學生的困惑,給出古埃及人利用等長的3、4、5個繩結間距畫直角三角形的情境。以古埃及人所用方法中蘊含何道理為切入點引出課題。
通過這樣的導入方式,能夠帶領學生回顧上節課的內容,為本節課奠定好基礎,同時用情境激發學生的好奇心和求知欲,更好地展開教學。
(二)講解新知。
接下來是最重要的新授環節。
請學生思考3,4,5之間的關系,結合勾股定理的學習經驗明確。
出示數據2.5cm,6cm,6.5cm,請學生計算驗證數據滿足上述平方和關系,并畫出相應邊長的三角形檢驗是否為直角三角形。
學生活動:同桌兩人一組,將三邊換成其他滿足上述平方和關系的數據,如4cm,7.5cm,8.5cm,畫出相應邊長的三角形檢驗是否為直角三角形。
在得到肯定結論后,引導學生基于以上例子大膽猜想得出命題2。
正弦定理說課稿(精選19篇)篇十五
本節是“正弦定理”定理的第一節,設計從直角三角形出發,通過學生的探究活動,引導學生提出問題,通過證明、歸納、應用為線索,把問題展現給學生,從而引入并證明正弦定理。因此,做好“正弦定理”的教學既能復習鞏固舊知識,也能讓學生掌握新的有用的.知識,有效提高學生解決問題的能力。
本節設計注重知識建構過程和學生主題地位的體現,從學生熟悉的直角三角形邊角關系,到銳角三角形、鈍角三角形的討論,滲透了分類討論思想和數形結合思想。
在正弦定理的推導過程中,引導學生采用不同方法證明正弦定理,學生比較容易聯想到利用三角函數定義或三角形面積進行論證,使學生不斷發現規律,得出在斜三角形中邊與角的關系,多種方法的證明有利于學生思維能力的拓展,有助于加強學生解題的靈活度。
由于教學時間的超時,說明教學存在對學生情況的把握不夠準確到位,教學過程中時間的分配不夠適當,教學語言不夠精簡,今后一定避免此類問題,爭取更大的進步。
正弦定理說課稿(精選19篇)篇十六
初略統計,何老師在課堂上,共提出以下8個問題:
(1)在一般的直角三角形中,有這樣的結論成立嗎?
(3)使用勾股定理,需要弄清楚什么?
(4)為什么用減法?(在勾股定理的簡單應用這一環節,用到。
(5)我們是否應該在這個表格中創造直角三角形呢?(引導學。
(6)那你還能創造出其它勾股數嗎?
(7)怎么理解東南方向、東北方向?
(8)勾股定理,難道只是為了求斜邊嗎?(在本課小結環節)。
以上八個問題環環緊扣,出現的時機恰到好處。比如,在應用勾股定理時,沒有現成的直角三角形,學生無從下手。何老師,不失時機地問了一句:是否應該構造一個直角三角形呢?這樣一個問題,既非常好地點撥了學生,又讓學生深刻地領悟到了勾股定理的使用是有條件的。
發現定理到證明定理,再到應用定理,板塊分明,學生聽的真切。思路清晰,三個情景:蝸牛爬行、小鳥飛行、輪船航海,貫穿整個課堂,從三個情景里模糊感知定理,從三個情景里充分應用定理,并擴充延展定理。
蝸牛爬行涉及到直角三角形的構造,回答了第2個問題;小鳥飛行涉及到勾和股的確定,回答了第3個問題;輪船航海涉及到直角三角形的尋找。
如果我是一名學生,很愿意跟著何老師學習。他有種讓學生很安心很靜心的能力,讓學生有踏實感,覺得跟著這位老師學習一定能學到東西。
正弦定理說課稿(精選19篇)篇十七
一、教學內容:
本節課主要通過對實際問題的探索,構建數學模型,利用數學實驗猜想發現正弦定理,并從理論上加以證實,最后進行簡單的應用。
二、教材分析:
1、教材地位與作用:本節內容安排在《普通高中課程標準實驗教科書。數學必修5》(a版)第一章中,是在高二學生學習了三角等知識之后安排的,顯然是對三角知識的應用;同時,作為三角形中的一個定理,也是對初中解直角三角形內容的直接延伸,而定理本身的應用(定理應用放在下一節專門研究)又十分廣泛,因此做好該節內容的教學,使學生通過對任意三角形中正弦定理的探索、發現和證實,感受“類比--猜想--證實”的科學研究問題的思路和方法,體會由“定性研究到定量研究”這種數學地思考問題和研究問題的思想,養成大膽猜想、善于思考的品質和勇于求真的精神。
2、教學重點和難點:重點是正弦定理的發現和證實;難點是三角形外接圓法證實。
三、教學目標:
1、知識目標:
2、能力目標:
(1)通過對實際問題的探索,培養學生數學地觀察問題、提出問題、分析問題、解決問題的能力。
(2)增強學生的協作能力和數學交流能力。
(3)發展學生的創新意識和創新能力。
3、情感態度與價值觀:
(1)通過學生自主探索、合作交流,親身體驗數學規律的發現,培養學生勇于探索、善于發現、不畏艱辛的創新品質,增強學習的成功心理,激發學習數學的愛好。
(2)通過實例的社會意義,培養學生的愛國主義情感和為祖國努力學習的責任心。
本節課采用探究式課堂教學模式,即在教學過程中,在教師的啟發引導下,以學生獨立自主和合作交流為前提,以“正弦定理的發現”為基本探究內容,以四周世界和生活實際為參照對象,為學生提供充分自由表達、質疑、探究、討論問題的機會,讓學生通過個人、小組、集體等多種解難釋疑的嘗試活動,將自己所學知識應用于對任意三角形性質的深入探討。讓學生在“活動”中學習,在“主動”中發展,在“合作”中增知,在“探究”中創新。設計思路如下:
正弦定理說課稿(精選19篇)篇十八
在備這節課時,我有兩個問題需要精心設計。一個是問題的引入,一個是定理的證明。本節課以學生為主體,“問題提出---問題解決為主線”,采用探究式課堂教學模式,即在教學過程中,在教師的啟發引導下,以學生獨立自主和合作交流為前提,以“正弦定理的發現”為基本探究內容,以生活實際為參照對象,讓學生的思維由問題開始,到猜想的得出,猜想的探究,定理的推導,并逐步得到深化。
上完這節課,讓我有這樣一些體會:
1、問題是思維的起點,是學生主動探索的動力。本節課在教學過程中充分發揮學生主體作用,始終以問題的形式引導學生主動參與,在師生互動、生生互動中讓學習過程成為學生心靈愉悅的主動認知過程,做到了把握重點、突破難點。
2、在教學中恰當地利用多媒體技術,是突破教學難點的一個重要手段。本節課利用《幾何畫板》探究比值,的值,由動到靜,取得了很好的效果。”
3、做練習時,有學生提出解三角形時,正弦定理可以解決哪些問題?學生有這樣歸納的意識,在課堂及時肯定,表揚,并在課后刻意留一道思考題,任務后延,自主探究,使學生發現用正弦定理解決兩邊一對角問題時可能會出現兩解,一解或無解的情況,那么自然過渡到下一節內容,已知兩邊和其中一邊的對角解三角形時判斷解的個數問題。
4、正弦定理的證明方法很多,如利用三角形的面積公式、利用三角形的外接圓、利用向量證明等,本節課將斜三角形的邊角關系轉化為直角三角形的邊角關系導出正弦定理,采用轉化,分類討論的的數學思想,是學生們易于接受的一種證明方法。但在具體的推導時,發現學生可以想到對三角形進行分類討論,并將斜三角形轉化成直角三角形證明,但在轉化時,不僅可以通過作高,還可以有別的方法,比如外接圓法。但在證明時只用了作高這種方法,這種思路雖然簡單,但不是從學生的頭腦中產生的,而是教師強加給學生的,只注意教學的結果而沒有注意學生思維過程的發展,思路再好對學生的也沒有指導意義。所以今后要注意尊重學生思維的發展的過程,這是一種理念,也是一種能力。上好一堂課不僅有好的教學設計,還應有靈活應變的能力,要尊重學生的思路,善于發現學生的閃光點,并及時引導,才不會為了進度而導下,將學生強拉進自己事先設計好的軌道。
5、在教學設計和課堂教學中應充分了解學生、研究學生,備課不僅是備知識,更重要的是備學生。作為教師只有真正樹立以學生的發展為本的教學理念,才能尊重學生思維過程的發生、發展,才能從學生的知識水平和理解能力出發,創設合理的教學情境,才能為學生提供充分的數學活動和交流的機會,使學生從單純的知識接受者轉變為數學學習的主人。
正弦定理說課稿(精選19篇)篇十九
《正弦定理》是人教版教材必修五第一章《解三角形》的第一節內容,也是三角形理論中的一個重要內容,與初中學習的三角形的邊和角的基本關系有密切的聯系。在此之前,學生已經學習過了正弦函數和余弦函數,知識儲備已足夠。它是后續課程中解三角形的理論依據,也是解決實際生活中許多測量問題的工具。因此熟練掌握正弦定理能為接下來學習解三角形打下堅實基礎,并能在實際應用中靈活變通。
二、教學目標。
根據上述教材內容分析,考慮到學生已有的認知結構心理特征及原有知識水平,制定如下教學目標:
知識目標:理解并掌握正弦定理的證明,運用正弦定理解三角形。
能力目標:探索正弦定理的證明過程,用歸納法得出結論,并能掌握多種證明方法。
情感目標:通過推導得出正弦定理,讓學生感受數學公式的整潔對稱美和數學的實際應用價值。
三、教學重難點。
教學重點:正弦定理的內容,正弦定理的證明及基本應用。
教學難點:正弦定理的探索及證明,已知兩邊和其中一邊的對角解三角形時判斷解的個數。
四、教法分析。
依據本節課內容的特點,學生的認識規律,本節知識遵循以教師為主導,以學生為主體的指導思想,采用與學生共同探索的教學方法,命題教學的發生型模式,以問題實際為參照對象,激發學生學習數學的好奇心和求知欲,讓學生的思維由問題開始,到猜想的得出,猜想的探究,定理的推導,并逐步得到深化,并且運用例題和習題來強化內容的掌握,突破重難點。即指導學生掌握“觀察——猜想——證明——應用”這一思維方法。學生采用自主式、合作式、探討式的學習方法,這樣能使學生積極參與數學學習活動,培養學生的合作意識和探究精神。
五、教學過程。
本節知識教學采用發生型模式:
1、問題情境。
此題可運用做輔助線bc邊上的高來間接求解得出。
提問:有沒有根據已提供的數據,直接一步就能解出來的方法?
2、歸納命題。
我們從特殊的三角形直角三角形中來探討邊與角的數量關系:
在如圖rt三角形abc中,根據正弦函數的定義。