教學工作計劃的制定需要教師具備一定的教育教學理論知識和教學經驗的積累。最后是一些教學工作計劃的常見問題和解決方案,希望能對大家的教學工作有所幫助和啟發。
復數的概念教案(實用15篇)篇一
本節課的教學以學生為主體、教師是數學課堂活動的組織者、引導者和參與者,我一方面精心設計問題情景,引導學生主動探索。另一方面,依據本節為概念學習的特點,以問題的提出、問題的解決為主線,始終在學生知識的“最近發展區”設置問題,倡導學生主動參與,通過不斷探究、發現,在師生互動、生生互動中,讓學習過程成為學生心靈愉悅的主動認知過程。
學法方面,學生通過對新舊兩種函數定義的對比,在集合論的觀點下初步建構出函數的概念。在理解函數概念的基礎上,建構出函數的定義域、值域的概念,并初步掌握它們的求法。
復數的概念教案(實用15篇)篇二
教學目標:
(1)使學生理解三角形、三角形的邊、頂點、內角的概念;
(2)正確理解三角形的角平分線、中線、高這三個概念的含義、聯系及區別;
(3)能正確地畫出一個三角形的角平分線、中線和高;
(4)能用符號規范地表示一個三角形及六個元素;
(5)通過對三角形有關概念的教學,提高學生對概念的辨析能力和畫圖能力;
(6)讓學生結合具體形象敘述定義,訓練他們的語言表達能力,激發學生學習幾何的興趣。.
教學重點:明確組成三角形的六個元素,正確理解三角形的“高”、“角平分線”和“中線”這三個概念的含義、聯系和區別。
教學難點:三角形高的畫法。
教學用具:三角板、投影、微機。
教學方法:啟發探究法。
教學過程:
1、溫故知新,揭示課題。
引言之后,先讓學生:
(1)試說出三角形以及三角形的邊、頂點、角的概念。
(2)如圖1:試畫出的平分線、bc邊上的中線、bc邊上的高。
然后,在此基礎上,揭示課題,提出思考題:三角形是由三條線段組成的,這里要強調“首尾順次相接”為什么要加上這個條件?具備什么條件的線段才是三角形的角平分線、三角形的中線、三角形的高。
2、運用反例,揭示內涵。
3、討論歸納,深化定義。
引導啟發學生,歸納討論探索得到的結果:
定義1三角形的角平分線:三角形的一個角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段。
強調:三角形的.角平分線是一條線段,而角的平分線是一條射線。
定義2三角形的中線:在三角形中,連結一個頂點和它的對邊中點的線段。
強調:三角形中線是一條線段。
定義3三角形的高:從三角形的一個頂點向它對邊畫垂線,頂點和垂足間的線段。
強調:三角形的高是線段,而垂線是直線。
4、符號表示,加深理解。
通過符號的表述,使學生對三角形的角平分線、中線、高的理解得到加深和強化,在記憶上也趨于簡化。
5、初步運用,反復辨析。
練習的設計遵循由由淺入深、循序漸進的原則,三個題目,三個層次:
題1三角形的一條高是()。
a.直線b.射線c.垂線.d.垂線段。
題2畫鈍角三角形的高ae。
題3。
先讓學生思考練習,然后師生一起分析糾正,最后教師點撥小結。這環節運用電教手段,以增大教學容量和直觀性,提高效率。
6、歸納總結,強化思想。
這節課著重講了三角形的角平分線、中線和高,在集會理解上述定義時,必須注意到兩點:一是三條都是線段;二是鈍角三角形與直角三角形的高的畫法。
揭示了文字語言、圖形語言、符號語言在幾何中的作用,要求在學習時熟練三種語言的相互轉化。
7、布置作業,題目是:
(1)書面作業p30#2,3p41#5(做在書上)。
(2)交本作業p41#4。
(3)思考題1:
思考題2:
探究活動。
答案:1.4、7;。
2.能.三角形為等腰三角形.
復數的概念教案(實用15篇)篇三
情景1:提供一張表格,把上次運動會得分前10的情況填入表格,我報名次,學生提供分數。
名次。
1
2
3
4
5
6
7
8
9
10。
得分。
情景3:某市一天24小時內的氣溫變化圖:(圖略)。
提問(1):這三個例子中都涉及到了幾個變化的量?(兩個)。
提問(2):當其中一個變量取值確定后,另一個變量將如何?(它的值也隨之唯一確定)。
提問(3):這樣的關系在初中稱之為什么?(函數)引出課題。
[設計意圖]在創設本課開頭情境1、2的時候,我并沒有運用書中的前兩個例子。第一個例子我改成提供給學生一張運動會成績統計單。是為了創設和學生或者生活相近的情境,從而引起學生的興趣,調節課堂氣氛,引人入勝,第二個例子我改成一道簡單的速度與時間問題,是因為學生對重力加速度的問題還不是很熟悉。同時這兩個例子并沒有改變課本用三個實例分別代表三種表示函數方法的意圖。
這樣學生可以從熟悉的情景引入,提高學生的參與程度。符合學生的認知特點。
(二)探索新知,形成概念。
1、引導分析,探求特征。
思考:如何用集合的語言來闡述上述三個問題的共同特征?
[設計意圖]并不急著讓學生回答此問,為引導學生改變思路,換個角度思考問題,進入本節課的重點。這里也是教師作為教學的引導者的體現,及時對學生進行指引。
提問(4):觀察上述三問題,它們分別涉及到了哪些集合?(每個問題都涉及到了兩個集合,具體略)。
[設計意圖]引導學生觀察,培養觀察問題,分析問題的能力。
提問(5):兩個集合的元素之間具有怎樣的關系?(對應)。
及時給出單值對應的定義,并嘗試用輸入值,輸出值的概念來表達這種對應。
2、抽象歸納,引出概念。
提問(6):現在你能從集合角度說說這三個問題的共同點嗎?
[設計意圖]學生相互討論,并回答,引出函數的概念。訓練學生的歸納能力。
上述一系列問題,始終在學生知識的“最近發展區”,倡導學生主動參與,通過不斷探究、發現,在師生互動,生生互動中,在學生心情愉悅的氛圍中,突破本節課的重點。
3、探求定義,提出注意。
提問(7):你覺得這個定義中應注意哪些問題?
[設計意圖]剖析概念,使學生抓住概念的本質,便于理解記憶。
2、例題剖析,強化概念。
例1、判斷下列對應是否為函數:
(1)。
(2)。
[設計意圖]通過例1的教學,使學生體會單值對應關系在刻畫函數概念中的核心作用。
例2、(1);
(2)y=x-1;
(3);
(4)。
[設計意圖]首先對求函數的定義域進行方法引導,偶次方根必需注意的地方,其次,通過(2)(3)兩道題,強調只有對應法則與定義域相同的兩個函數,才是相同的函數。而與函數用什么字母表示無關,進一步理解函數符號的本質內涵。
例3、試求下列函數的定義域與值域:
(1)。
(2)。
[設計意圖]讓學體會理解函數的三要素。
4、鞏固練習,運用概念。
書本練習p24:1,2,3,4。
5、課堂小結,提升思想。
引導學生進行回顧,使學生對本節課有一個整體把握,將對學生形成的知識系統產生積極的影響。
復數的概念教案(實用15篇)篇四
對數函數中底數的認識,所以一定要真正了解它的由來。
關于圖象的繪制,雖然是用列表描點法,但在具體教學中應避免描點前的盲目列表計算,也應避免盲目的連點成線,要把表列在關鍵之處,要把點連在恰當之處,所以應在列表描點前先把函數的性質作一些簡單的討論,取得對要畫圖象的存在范圍,大致特征,變化趨勢的大概認識后,以此為指導再列表計算,描點得圖象。
復數的概念教案(實用15篇)篇五
把集合中的元素一一列舉出來(相鄰元素之間用逗號分隔),并寫在大括號內,以此來表示集合的方法叫做列舉法。
[答一答]。
1.什么類型的集合適合用列舉法表示?
提示:當集合中的元素較少時,用列舉法表示方便。
2.用列舉法表示集合的優點與缺點是什么?
提示:用列舉法表示集合的優點是元素清晰明確、一目了然;缺點是不易看出元素所具有的屬性。
復數的概念教案(實用15篇)篇六
1、x理解的定義,初步掌握的圖象,性質及其簡單應用。
2、x通過的圖象和性質的學習,培養學生觀察,分析,歸納的能力,進一步體會數形結合的思想方法。
3、x通過對的研究,使學生能把握函數研究的基本方法,激發學生的學習興趣。
復數的概念教案(實用15篇)篇七
各位專家、評委:大家好!
我說課的內容是數學人教版普通高中新課程標準實驗教科書必修1函數第一課時。我將從背景分析、教學目標設計、教法與學法選擇、教學過程設計、教學媒體選擇及教學評價設計六個方面來匯報我對這節課的教學設想.
一、背景分析。
1.學習任務分析。
函數是中學數學一個重要的基本概念,其核心內涵為非空數集到非空數集的一個對應,函數思想是整個高中數學最重要的數學思想之一,而函數概念是函數思想的基礎;它不僅對前面學習的集合作了鞏固和發展,而且它是學好后繼知識的基礎和工具.函數與代數式﹑方程﹑不等式﹑數列、三角函數、解析幾何、導數等內容的聯系也非常密切,函數的基礎知識在現實生活、社會、經濟及其他學科中有著廣泛的應用;函數概念及其反映出的數學思想方法已廣泛滲透到數學的各個領域,是進一步學習數學的重要基礎.為此本節課設定的教學重點是“函數概念的形成”.
2.學情分析。
從學生知識層面看:學生在初中初步探討了函數的相關知識,有一定的基礎;通過高一第一節“集合”的學習,對集合思想的認識也日漸提高,為重新定義函數,從根本上揭示函數的本質提供了知識保證.從學生能力層面看:通過以前的學習,學生已有一定的分析、推理和概括能力,初步具備了學習函數概念的基本能力.
教學中由實例抽象歸納出函數概念時,要求學生必須通過自己的努力探索才能得出,對學生的能力要求比較高.因此,我認為發展學生的抽象思維能力以及對函數概念本質的理解是本節課的教學難點.鑒于上述分析我制定了本節課的教學目標.
二、教學目標設計。
目標。
些簡單函數的定義域;。
滲透歸納推理、發展學生的抽象思維能力;。
會用集合與對應的語言來刻畫函數,體會對應關系在刻畫函數概念中的作用;體驗函數思想;通過師生互動、生生互動,讓學生在民主、和諧的課堂氛圍中,感受數學的抽象性和簡潔美.
[設計意圖]:這樣設計目標,可操作性強,容易檢測目標的達成度,同時也體現了素質教育的要求.
三、教法與學法選擇。
復數的概念教案(實用15篇)篇八
2、能力目標。
(1)能夠把一句話一個事件用集合的方式表示出來。
(2)準確理解集合與及集合內的元素之間的關系。
3、情感目標。
通過本節的把實際事件用集合的方式表示出來,從而培養數學敏感性,了解到數學于生活中。
復數的概念教案(實用15篇)篇九
本次說課的內容是人教版高一數學必修一第一單元第一節《集合》(第一課時)。集合這一課里,首先從初中代數與幾何涉及的集合實例入手,引出集合與集合的元素的概念,并且結合實例對集合的概念作了說明。然后,介紹了集合的常用表示方法,集合元素的特征以及常用集合的表示。把集合的初步知識安排在高中數學的最開始,是因為在高中數學中,這些知識與其他內容有著密切聯系,它們是學習、掌握以及使用數學語言的基礎。從知識結構上來說是為了引入函數的定義。因此在高中數學的模塊中,集合就顯得格外的舉足輕重了。
(2)說教學目標。
根據教材結構和內容以及教材地位和作用,考慮到學生已有的認知結構與心理特征,依據新課標制定如下教學目標:
1.知識與技能:掌握集合的基本概念及表示方法。了解"屬于"關系的意義,掌握集合元素的特征。
2.過程與方法:通過情景設置提出問題,揭示課題,培養學生主動探究新知的習慣。并通過"自主、合作與探究"實現"一切以學生為中心"的理念。
3.情感態度與價值觀:感受數學的人文價值,提高學生的學習數學的興趣,由集合的學習感受數學的簡潔美與和諧統一美。同時通過自主探究領略獲取新知識的喜悅。
(3)說教學重點和難點。
依據課程標準和學生實際,我確定本課的教學重點為。
教學重點:集合的基本概念及元素特征。
教學難點:掌握集合元素的三個特征,體會元素與集合的屬于關系。
復數的概念教案(實用15篇)篇十
這次有幸聆聽了董老師的《算法與流程圖》一課,感覺受益匪淺。這節課讓我看到了董老師出色的課堂設計、組織、駕馭能力,及其優秀的教師個人素養。具體來說有以下幾點:
一、課堂設計別具匠心。
《算法與流程圖》是九年級教材的開篇內容,是后續的vb程序設計初步學習的基石。然而這部分知識是理論性比較強的,而且比較抽象、分散的,如何巧妙的組織和引導學習是個難點。董老師先以《農夫過河》的flash小游戲引入,迅速吸引了學生的注意力,請學生自己摸索并講解過河方法,引出算法的概念,然后進一步拋出如何從12個外形相同的球中找出一個較輕的.球的問題,請學生分析方法,由此小結算法的優劣,落實了學生對算法的理解,接著,以觀摩實驗的形式提出如何將兩杯不同的飲料互換,過渡到兩個變量的互換,引導學生認識流程圖,并提供學案給學生練習鞏固流程圖的知識。
二、課堂組織體現學為中心。
課堂中,董教師教態自然、大方,富有感染力,語言親切、生動,創建了一個平等而寬松的課堂環境,并以ppt課件、flash小游戲、ppt學案等為輔助,為學生營造了良好的自主探究學習氛圍。
然而,課堂教學是一門缺憾的藝術,沒有最好只有更好,這節課中也存在些微值得探討之處:
對于兩個變量的互換,直接從兩杯飲料的互換過渡過來,有些學生還是在理解上有點難度,個人認為可以在課件中增加從杯子到變量存儲空間、從飲料到變量的過渡及其交換過程用動畫演示,讓其變得更清晰、形象直觀,便于學生理解。
在學生練習環節,由于放手時間較長,學生漸漸變得散漫,個人認為可以注意加強交流與控制節奏。
復數的概念教案(實用15篇)篇十一
教學目標。
(1)掌握,如虛數、純虛數、復數的實部與虛部、兩復數相等、復平面、實軸、虛軸、共軛復數、共軛虛數的概念。
(2)正確對復數進行分類,掌握數集之間的從屬關系;
(3)理解復數的幾何意義,初步掌握復數集c和復平面內所有的點所成的集合之間的一一對應關系。
復數的概念教案(實用15篇)篇十二
教法與學法是互相聯系和統一的,不能孤立去研究。什么樣的教法必帶來相應的學法,以遵循啟發性原則為出發點,就本節課而言,我采用"生活實例與數學實例"相結合,"師生互動與課堂布白"相輔助的方法。通過不同層次的練習體驗,憑借有趣、實用的教學手段,突出重點,突破難點。然而,學生是學習的主人,以學生為主體,創造條件讓學生參與探究活動,不僅提高了學生探究能力,更讓學生獲得學習的技能和激發學生的學習興趣。因此,本次活動采用的學法有自主探究、觀察發現、合作交流、歸納總結等。
總之,不管采取什么教法和學法,每節課都應不斷研究學生的學習心理機制,不斷優化教師本身的教學行為,自始至終以學生為主體,為學生創造和諧的課堂氛圍。
復數的概念教案(實用15篇)篇十三
1、使學生掌握的概念,圖象和性質。
(1)能根據定義判斷形如什么樣的函數是,了解對底數的限制條件的合理性,明確的定義域。
(2)能在基本性質的指導下,用列表描點法畫出的圖象,能從數形兩方面認識的性質。
(3)x能利用的性質比較某些冪形數的大小,會利用的圖象畫出形如x的圖象。
2、x通過對的概念圖象性質的學習,培養學生觀察,分析歸納的能力,進一步體會數形結合的思想方法。
3、通過對的研究,讓學生認識到數學的應用價值,激發學生學習數學的興趣。使學生善于從現實生活中數學的發現問題,解決問題。
(1)x是在學生系統學習了函數概念,基本掌握了函數的性質的基礎上進行研究的,它是重要的基本初等函數之一,作為常見函數,它既是函數概念及性質的第一次應用,也是今后學習對數函數的基礎,同時在生活及生產實際中有著廣泛的應用,所以應重點研究。
(2)x本節的教學重點是在理解定義的基礎上掌握的圖象和性質。難點是對底數x在x和x時,函數值變化情況的區分。
(3)是學生完全陌生的一類函數,對于這樣的函數應怎樣進行較為系統的理論研究是學生面臨的重要問題,所以從的研究過程中得到相應的結論固然重要,但更為重要的是要了解系統研究一類函數的方法,所以在教學中要特別讓學生去體會研究的方法,以便能將其遷移到其他函數的研究。
(1)關于的定義按照課本上說法它是一種形式定義即解析式的特征必須是x的樣子,不能有一點差異,諸如x,x等都不是。
(2)對底數x的限制條件的理解與認識也是認識的重要內容。如果有可能盡量讓學生自己去研究對底數,指數都有什么限制要求,教師再給予補充或用具體例子加以說明,因為對這個條件的認識不僅關系到對的認識及性質的分類討論,還關系到后面對數函數中底數的認識,所以一定要真正了解它的由來。
關于圖象的繪制,雖然是用列表描點法,但在具體教學中應避免描點前的盲目列表計算,也應避免盲目的連點成線,要把表列在關鍵之處,要把點連在恰當之處,所以應在列表描點前先把函數的性質作一些簡單的討論,取得對要畫圖象的存在范圍,大致特征,變化趨勢的大概認識后,以此為指導再列表計算,描點得圖象。
1、x理解的定義,初步掌握的圖象,性質及其簡單應用。
2、x通過的圖象和性質的學習,培養學生觀察,分析,歸納的能力,進一步體會數形結合的思想方法。
3、x通過對的研究,使學生能把握函數研究的基本方法,激發學生的學習興趣。
重點是理解的定義,把握圖象和性質。
難點是認識底數對函數值影響的認識。
投影儀。
啟發討論研究式。
一、x引入新課。
我們前面學習了指數運算,在此基礎上,今天我們要來研究一類新的.常見函數。
1、6、(板書)。
這類函數之所以重點介紹的原因就是它是實際生活中的一種需要。比如我們看下面的問題:
由學生回答:x與x之間的關系式,可以表示為x。
問題2:有一根1米長的繩子,第一次剪去繩長一半,第二次再剪去剩余繩子的一半,……剪了x次后繩子剩余的長度為x米,試寫出x與x之間的函數關系。
由學生回答:x。
在以上兩個實例中我們可以看到這兩個函數與我們前面研究的函數有所區別,從形式上冪的形式,且自變量x均在指數的位置上,那么就把形如這樣的函數稱為。
x的概念(板書)。
1、定義:形如x的函數稱為。(板書)。
教師在給出定義之后再對定義作幾點說明。
2、幾點說明x(板書)。
(1)x關于對x的規定:
教師首先提出問題:為什么要規定底數大于0且不等于1呢?(若學生感到有困難,可將問題分解為若x會有什么問題?如x,此時x,x等在實數范圍內相應的函數值不存在。
若x對于x都無意義,若x則x無論x取何值,它總是1,對它沒有研究的必要。為了避免上述各種情況的發生,所以規定x且x。
(2)關于的定義域x(板書)。
教師引導學生回顧指數范圍,發現指數可以取有理數。此時教師可指出,其實當指數為無理數時,x也是一個確定的實數,對于無理指數冪,學過的有理指數冪的"性質和運算法則它都適用,所以將指數范圍擴充為實數范圍,所以的定義域為x。擴充的另一個原因是因為使她它更具代表更有應用價值。
(3)關于是否是的判斷(板書)。
剛才分別認識了中底數,指數的要求,下面我們從整體的角度來認識一下,根據定義我們知道什么樣的函數是,請看下面函數是否是。
(4)x,x。
(5)x。
學生回答并說明理由,教師根據情況作點評,指出只有(1)和(3)是,其中(3)x可以寫成x,也是指數圖象。
最后提醒學生的定義是形式定義,就必須在形式上一摸一樣才行,然后把問題引向深入,有了定義域和初步研究的函數的性質,此時研究的關鍵在于畫出它的圖象,再細致歸納性質。
3、歸納性質。
作圖的用什么方法。用列表描點發現,教師準備明確性質,再由學生回答。
函數。
1、定義域x:
2、值域:
3、奇偶性x:既不是奇函數也不是偶函數。
4、截距:在x軸上沒有,在x軸上為1。
對于性質1和2可以兩條合在一起說,并追問起什么作用。(確定圖象存在的大致位置)對第3條還應會證明。對于單調性,我建議找一些特殊點。,先看一看,再下定論。對最后一條也是指導函數圖象畫圖的依據。(圖象位于x軸上方,且與x軸不相交。)。
在此基礎上,教師可指導學生列表,描點了。取點時還要提醒學生由于不具備對稱性,故x的值應有正有負,且由于單調性不清,所取點的個數不能太少。
此處教師可利用計算機列表描點,給出十組數據,而學生自己列表描點,至少六組數據。連點成線時,一定提醒學生圖象的變化趨勢(當x越小,圖象越靠近x軸,x越大,圖象上升的越快),并連出光滑曲線。
二、圖象與性質(板書)。
1、圖象的畫法:性質指導下的列表描點法。
2、草圖:
當畫完第一個圖象之后,可問學生是否需要再畫第二個?它是否具有代表性?(教師可提示底數的條件是且x,取值可分為兩段)讓學生明白需再畫第二個,不妨取x為例。
此時畫它的圖象的方法應讓學生來選擇,應讓學生意識到列表描點不是唯一的方法,而圖象變換的方法更為簡單。即x=x與x圖象之間關于x軸對稱,而此時x的圖象已經有了,具備了變換的條件。讓學生自己做對稱,教師借助計算機畫圖,在同一坐標系下得到x的圖象。
最后問學生是否需要再畫。(可能有兩種可能性,若學生認為無需再畫,則追問其原因并要求其說出性質,若認為還需畫,則教師可利用計算機再畫出如x的圖象一起比較,再找共性)。
由于圖象是形的特征,所以先從幾何角度看它們有什么特征。教師可列一個表,如下:
以上內容學生說不齊的,教師可適當提出觀察角度讓學生去描述,然后再讓學生將幾何的特征,翻譯為函數的性質,即從代數角度的描述,將表中另一部分填滿。
填好后,讓學生仿照此例再列一個x的表,將相應的內容填好。為進一步整理性質,教師可提出從另一個角度來分類,整理函數的性質。
3、性質。
(1)無論x為何值,x都有定義域為x,值域為x,都過點x。
(2)x時,x在定義域內為增函數,x時,x為減函數。
(3)x時,x,xx時,x。
總結之后,特別提醒學生記住函數的圖象,有了圖,從圖中就可以能讀出性質。
三、簡單應用x(板書)。
1、利用單調性比大小。x(板書)。
一類函數研究完它的概念,圖象和性質后,最重要的是利用它解決一些簡單的問題。首先我們來看下面的問題。
例1、x比較下列各組數的大小。
(1)x與x;x(2)x與x;。
(3)x與1x。(板書)。
首先讓學生觀察兩個數的特點,有什么相同?由學生指出它們底數相同,指數不同。再追問根據這個特點,用什么方法來比較它們的大小呢?讓學生聯想,提出構造函數的方法,即把這兩個數看作某個函數的函數值,利用它的單調性比較大小。然后以第(1)題為例,給出解答過程。
解:x在x上是增函數,且x。(板書)。
教師最后再強調過程必須寫清三句話:
(1)x構造函數并指明函數的單調區間及相應的單調性。
(2)x自變量的大小比較。
(3)x函數值的大小比較。
后兩個題的過程略。要求學生仿照第(1)題敘述過程。
例2。比較下列各組數的大小。
(1)x與x;x(2)x與x;。
(3)x與x。(板書)。
先讓學生觀察例2中各組數與例1中的區別,再思考解決的方法。引導學生發現對(1)來說x可以寫成x,這樣就可以轉化成同底的問題,再用例1的方法解決,對(2)來說x可以寫成x,也可轉化成同底的,而(3)前面的方法就不適用了,考慮新的轉化方法,由學生思考解決。(教師可提示學生的函數值與1有關,可以用1來起橋梁作用)。
最后由學生說出x1,1。
解決后由教師小結比較大小的方法。
(1)x構造函數的方法:x數的特征是同底不同指(包括可轉化為同底的)。
(2)x搭橋比較法:x用特殊的數1或0。
四、鞏固練習。
練習:比較下列各組數的大小(板書)。
(1)x與xx(2)x與x;。
(3)x與x;x(4)x與x。解答過程略。
五、小結。
1、的概念。
2、的圖象和性質。
3、簡單應用。
六、板書設計。
復數的概念教案(實用15篇)篇十四
1.教材所處的地位和作用:
本節內容在全書和章節中的作用是:《》是中數學教材第冊第章第節內容。在此之前學生已學習了基礎,這為過渡到本節的學習起著鋪墊作用。本節內容是在中,占據的地位。以及為其他學科和今后的學習打下基礎。
2.教育教學目標:
根據上述教材分析,考慮到學生已有的認知結構心理特征,制定如下教學目標:
(1)知識目標:
(2)能力目標:通過教學初步培養學生分析問題,解決實際問題,讀圖分析,收集處理信息,團結協作,語言表達能力以及通過師生雙邊活動,初步培養學生運用知識的能力,培養學生加強理論聯系實際的能力。
(3)情感目標:通過教學引導學生從現實的生活經歷與體驗出發,激發學生學習興趣。
3.重點,難點以及確定依據:
下面,為了講清重難上點,使學生能達到本節課設定的目標,再從教法和學法上談談:
復數的概念教案(實用15篇)篇十五
湖北省黃岡中學是聞名全國的重點中學.該校全面貫徹教育(-上網第一站xfhttp教育網)方針,積極推進素質教育(-上網第一站xfhttp教育網),堅持教學改革與研究,取得豐碩成果.該校學生在國際中學生數學、物理奧林匹克競賽中共獲得3金、3銀、1銅共7枚獎牌.高考成績顯著,多年來該校高考升學率、優秀率一直位于湖北省前列.。
物理概念是反映物理現象和過程的本質屬性的思維方式,是物理事實的抽象.它不僅是物理基礎理論知識的一個重要組成部分,而且也是構成物理規律和公式的理論基礎.學生在學習物理的過程中,就是要不斷地建立物理概念,如果概念不清,就不可能真正掌握物理基礎知識.因此,在中學物理教學中,概念教學是一個重點,也是一個難點.因此,在中學物理教學中,對概念教學進行專題研究,總結出了概念教學的基本規律.下面就怎樣上好概念課進行具體分析:
概念教學中,要重視概念引入的必要性和重要性.。
(一)概念引入的目的。
(二)引入概念的常用方法。
[1][2][3][4][5]。