編寫教案需要教師結合自己的教學經驗,符合學生的實際情況,靈活應用教學方法和手段。對于初中教師來說,擁有一些優秀的教案范文是非常有幫助的。
初中數學函數教案(通用18篇)篇一
教學目標:在復習指數函數與對數函數的特性之后,通過圖像對比使學生較快的學會不求值比較指數函數與對數函數值的大小及提高對復合型函數的定義域與值域的解題技巧。
難點:指導學生如何根據上述特性解決復合型函數的定義域與值域的問題。
教學方法:多媒體授課。
學法指導:借助列表與圖像法。
教具:多媒體教學設備。
教學過程:
初中數學函數教案(通用18篇)篇二
在函數教學中,我們不僅要在教會函數知識上下功夫,而且還應該追求解決問題的“常規方法”——基本函數知識中所蘊含的思想方法,要從數學思想方法的高度進行函數教學。在函數的教學中,應突出“類比”的思想和“數形結合”的思想。
2.注重“數學結合”的教學。
數形結合的思想方法是初中數學中一種重要的思想方法。數學是研究現實世界數量關系和空間形式的科學。而數形結合就是通過數與形之間的對應和轉化來解決數學問題。它包含以形助數和以數解形兩個方面,利用它可使復雜問題簡單化,抽象問題具體化,它兼有數的嚴謹與形的直觀之長。
(1)讓學生經歷繪制函數圖象的具體過程。
(2)切莫急于呈現畫函數圖象的簡單畫法。
(3)注意讓學生體會研究具體函數圖象規律的方法。
目標。
1、理解直線y=kx+b與y=kx之間的位置關系;。
2、會選擇兩個合適的點畫出一次函數的圖象;
3、掌握一次函數的性質.
過程與方法目標。
2、通過一次函數的圖象總結函數的性質,體驗數形結合法的應用,培養推理及抽象思維能力。
2、在探究一次函數的圖象和性質的活動中,通過一系列富有探究性的問題,滲透與他人交流、合作的意識和探究精神。
一次函數的圖象和性質。
由一次函數的圖像歸納得出一次函數的性質及對性質的理解。
初中數學函數教案(通用18篇)篇三
1、初步掌握函數概念,能判斷兩個變量間的關系是否可看作函數。
2、根據兩個變量間的關系式,給定其中一個量,相應地會求出另一個量的值。
3、會對一個具體實例進行概括抽象成為數學問題。
過程與方法。
1、通過函數概念,初步形成學生利用函數的觀點認識現實世界的意識和能力。
2、經歷具體實例的抽象概括過程,進一步發展學生的抽象思維能力。
情感與價值觀。
1、經歷函數概念的抽象概括過程,體會函數的模型思想。
2、讓學生主動地從事觀察、操作、交流、歸納等探索活動,形成自己對數學知識的理解和有效的學習模式。
1、掌握函數概念。
2、判斷兩個變量之間的關系是否可看作函數。
3、能把實際問題抽象概括為函數問題。
1、理解函數的概念。
2、能把實際問題抽象概括為函數問題。
一、創設問題情境,導入新課。
『師』:同學們,你們看下圖上面那個像車輪狀的物體是什么?
初中數學函數教案(通用18篇)篇四
今天小編為大家精心整理了一篇有關初中數學教案之函數的相關內容,以供大家閱讀!函數教學目標:
1、進一步理解函數的概念,能從簡單的實際事例中,抽象出函數關系,列出函數解析式;
2、使學生分清常量與變量,并能確定自變量的取值范圍.3、會求函數值,并體會自變量與函數值間的對應關系.4、使學生掌握解析式為只含有一個自變量的簡單的整式、分式、二次根式的函數的自變量的取值范圍的求法.5、通過函數的教學使學生體會到事物是相互聯系的.是有規律地運動變化著的.教學重點:了解函數的意義,會求自變量的取值范圍及求函數值.教學難點:函數概念的抽象性.教學過程:(一)引入新課:
第1頁/共6頁式中的自變量與函數嗎?
剛才所舉例子中的函數,都是利用數學式子即解析式表示的.這種用數學式子表示函數時,要考慮自變量的取值必須使解析式有意義.如第一題中的學生數n必須是正整數.例1、求下列函數中自變量x的取值范圍.(1)(2)(3)(4)(5)(6)。
第2頁/共6頁數大于、等于零.的被開方數是.。
(2)若估計前來停放的3500輛次自行車中,變速車的輛次。
收入在1225元至1330元之間。
總結。
:對于反映實際問題的函數關系,應使得實際問題有意義.這樣,就要求聯系實際,具體問題具體分析.對于函數,當自變量時,相應的函數y的值是.60叫做這個函數當時的函數值.例3、求下列函數當時的函數值:(1)(2)(3)(4)。
注:本例既鍛煉了學生的計算能力,又創設了情境,讓學生體會對于x的每一個值,y都有唯一確定的值與之對應.以此加深對函數的理解.(二)小結:
第5頁/共6頁往學的詞語、生活經驗聯系起來,在發展想象力中發展語言。如啄木鳥的嘴是長長的,尖尖的,硬硬的,像醫生用的手術刀―樣,給大樹開刀治病。通過聯想,幼兒能夠生動形象地描述觀察對象。
作業:習題13.2a組2、3、5死記硬背是一種傳統的教學方式,在我國有悠久的歷史。但隨著素質教育的開展,死記硬背被作為一種僵化的、阻礙學生能力發展的教學方式,漸漸為人們所摒棄;而另一方面,老師們又為提高學生的語文素養煞費苦心。其實,只要應用得當,“死記硬背”與提高學生素質并不矛盾。相反,它恰是提高學生語文水平的重要前提和基礎。今天的內容就介紹到這里了。
第6頁/共6頁。
初中數學函數教案(通用18篇)篇五
教學目標:
1、能利用反比例函數的相關的知識分析和解決一些簡單的實際問題。
3、在解決實際問題的過程中,進一步體會和認識反比例函數是刻畫現實世界中數量關系的一種數學模型。
教學重點、難點:
重點:能利用反比例函數的相關的知識分析和解決一些簡單的實際問題。
教學過程:
一、情景創設:
為了預防“非典”,某學校對教室采用藥熏消毒法進行消毒,已知藥物燃燒時,室內每立方米空氣中的含藥量y(mg)與時間x(min)成正比例.藥物燃燒后,y與x成反比例(如圖所示),現測得藥物8min燃畢,此時室內空氣中每立方米的含藥量為6mg,請根據題中所提供的信息,解答下列問題:。
(1)藥物燃燒時,y關于x的函數關系式為:________,自變量x的取值范圍是:_______,藥物燃燒后y關于x的函數關系式為_______.
二、新授:
(1)如果小明以每分種120字的.速度錄入,他需要多少時間才能完成錄入任務?
(3)小明希望能在3h內完成錄入任務,那么他每分鐘至少應錄入多少個字?
例2某自來水公司計劃新建一個容積為的長方形蓄水池。
(1)蓄水池的底部s與其深度有怎樣的函數關系?
(2)如果蓄水池的深度設計為5m,那么蓄水池的底面積應為多少平方米?
(3)由于綠化以及輔助用地的需要,經過實地測量,蓄水池的長與寬最多只能設計為100m和60m,那么蓄水池的深度至少達到多少才能滿足要求?(保留兩位小數)。
三、課堂練習。
1、一定質量的氧氣,它的密度(kg/m3)是它的體積v(m3)的反比例函數,當v=10m3時,=1.43kg/m3.(1)求與v的函數關系式;(2)求當v=2m3時求氧氣的密度.
2、某地上年度電價為0.8元度,年用電量為1億度.本年度計劃將電價調至0.55元至0.75元之間.經測算,若電價調至x元,則本年度新增用電量y(億度)與(x-0.4)(元)成反比例,當x=0.65時,y=-0.8.
(1)求y與x之間的函數關系式;
3、如圖,矩形abcd中,ab=6,ad=8,點p在bc邊上移動(不與點b、c重合),設pa=x,點d到pa的距離de=y.求y與x之間的函數關系式及自變量x的取值范圍.
四、小結。
五、作業。
30.31、2、3。
初中數學函數教案(通用18篇)篇六
1.質疑問難是學生自主學習的重要表現,優化課堂結構,激活學生的主體意識,必須鼓勵學生質疑問難。教師要創造和諧融合的課堂氣氛,允許學生隨時“插嘴”、提問、爭辯,甚至提出與教師不同的看法。
2.二次函數是初中階段繼一次函數、反比例函數之后,學生要學習的最后一類重要的代數函數,它也是描述現實世界變量之間關系的重要的數學模型。
3.學生有疑而問、質疑問難,是用心思考、自主學習、主動探究的可貴表現,理應得到老師的熱情鼓勵和贊揚。現在對學生的隨時“插嘴”,提出的各種疑難問題,應抱歡迎、鼓勵的態度給與肯定,并做出正確的解釋。
4.初中階段主要研究二次函數的概念、圖像和性質,用二次函數的觀點審視一元二次方程,用二次函數的相關知識分析和解決簡單的實際問題。
文檔為doc格式。
初中數學函數教案(通用18篇)篇七
2、能正確且較為熟練地運用去括號的符號法則去化簡代數式過程與方法目標學習目標。
1、通過觀察、合作交流、討論總結等活動得出去括號的符號法則,培養學生觀察、分析、總結的能力。
2、通過例題講解,和鞏固練習,培養學生的計算能力班級:初一四班nn。
1、數學知識:
2、數學思想方法:布置作業:板書設計nn教學反思nn。
初中數學函數教案(通用18篇)篇八
1.掌握對數函數的概念,圖象和性質,且在掌握性質的基礎上能進行初步的應用。
(1)能在指數函數及反函數的概念的基礎上理解對數函數的定義,了解對底數的要求,及對定義域的要求,能利用互為反函數的兩個函數圖象間的關系正確描繪對數函數的圖象。
(2)能把握指數函數與對數函數的實質去研究認識對數函數的性質,初步學會用對數函數的性質解決簡單的問題。
2.通過對數函數概念的學習,樹立相互聯系相互轉化的觀點,通過對數函數圖象和性質的學習,滲透數形結合,分類討論等思想,注重培養學生的觀察,分析,歸納等邏輯思維能力。
3.通過指數函數與對數函數在圖象與性質上的對比,對學生進行對稱美,簡潔美等審美教育,調動學生學習數學的積極性。
(1)對數函數又是函數中一類重要的基本初等函數,它是在學生已經學過對數與常用對數,反函數以及指數函數的基礎上引入的。故是對上述知識的應用,也是對函數這一重要數學思想的進一步認識與理解。對數函數的概念,圖象與性質的學習使學生的知識體系更加完整,系統,同時又是對數和函數知識的拓展與延伸。它是解決有關自然科學領域中實際問題的重要工具,是學生今后學習對數方程,對數不等式的基礎。
(2)本節的教學重點是理解對數函數的定義,掌握對數函數的圖象性質。難點是利用指數函數的圖象和性質得到對數函數的圖象和性質。由于對數函數的概念是一個抽象的形式,學生不易理解,而且又是建立在指數與對數關系和反函數概念的基礎上,故應成為教學的重點。
(3)本節課的主線是對數函數是指數函數的反函數,所有的問題都應圍繞著這條主線展開。而通過互為反函數的兩個函數的關系由已知函數研究未知函數的性質,這種方法是第一次使用,學生不適應,把握不住關鍵,所以應是本節課的難點。
(1)對數函數在引入時,就應從學生熟悉的指數問題出發,通過對指數函數的認識逐步轉化為對對數函數的認識,而且畫對數函數圖象時,既要考慮到對底數的分類討論而且對每一類問題也可以多選幾個不同的底,畫在同一個坐標系內,便于觀察圖象的特征,找出共性,歸納性質。
(2)在本節課中結合對數函數教學的特點,一定要讓學生動手做,動腦想,大膽猜,要以學生的研究為主,教師只是不斷地反函數這條主線引導學生思考的方向。這樣既增強了學生的參與意識又教給他們思考問題的方法,獲取知識的途徑,使學生學有所思,思有所得,練有所獲,,從而提高學習興趣。
初中數學函數教案(通用18篇)篇九
(3)能正確使用“區間”及相關符號,能正確求解各類的定義域.。
2.通過概念的學習,使學生在符號表示,運算等方面的能力有所提高.。
(1)對記號有正確的理解,準確把握其含義,了解(為常數)與的區別與聯系;
(2)在求定義域中注意運算的合理性與簡潔性.。
3.通過定義由變量觀點向映射觀點的過渡,是學生能從發展的角度看待數學的學習.。
1.教材分析。
(1)知識結構。
(2)重點難點分析。
是的定義和符號的認識與使用.。
2.教法建議。
初中數學函數教案(通用18篇)篇十
2.能較熟練地運用指數函數的性質解決指數函數的平移問題;。
指數函數的性質的應用;。
指數函數圖象的平移變換.
1.復習指數函數的概念、圖象和性質。
練習:函數y=ax(a0且a1)的定義域是_____,值域是______,函數圖象所過的定點坐標為.若a1,則當x0時,y1;而當x0時,y1.若00時,y1;而當x0時,y1.
例1解不等式:
(1);(2);。
(3);(4).
小結:解關于指數的不等式與判斷幾個指數值的大小一樣,是指數性質的運用,關鍵是底數所在的范圍.
例2說明下列函數的圖象與指數函數y=2x的圖象的關系,并畫出它們的示意圖:
(1);(2);(3);(4).
小結:指數函數的平移規律:y=f(x)左右平移y=f(x+k)(當k0時,向左平移,反之向右平移),上下平移y=f(x)+h(當h0時,向上平移,反之向下平移).
練習:
(1)將函數f(x)=3x的圖象向右平移3個單位,再向下平移2個單位,可以得到函數的圖象.
(2)將函數f(x)=3x的圖象向右平移2個單位,再向上平移3個單位,可以得到函數的圖象.
(3)將函數圖象先向左平移2個單位,再向下平移1個單位所得函數的解析式是.
(4)對任意的a0且a1,函數y=a2x1的圖象恒過的定點的坐標是.函數y=a2x-1的圖象恒過的定點的坐標是.
小結:指數函數的定點往往是解決問題的突破口!定點與單調性相結合,就可以構造出函數的簡圖,從而許多問題就可以找到解決的突破口.
(5)如何利用函數f(x)=2x的圖象,作出函數y=2x和y=2|x2|的圖象?
(6)如何利用函數f(x)=2x的圖象,作出函數y=|2x-1|的圖象?
小結:函數圖象的對稱變換規律.
例3已知函數y=f(x)是定義在r上的奇函數,且x0時,f(x)=1-2x,試畫出此函數的圖象.
例4求函數的最小值以及取得最小值時的x值.
小結:復合函數常常需要換元來求解其最值.
練習:
(1)函數y=ax在[0,1]上的最大值與最小值的和為3,則a等于;。
(2)函數y=2x的值域為;。
(4)當x0時,函數f(x)=(a2-1)x的值總大于1,求實數a的取值范圍.
1.指數函數的性質及應用;。
2.指數型函數的定點問題;。
3.指數型函數的草圖及其變換規律.
課本p55-6,7.
(1)函數f(x)的定義域為(0,1),則函數的定義域為.
(2)對于任意的x1,x2r,若函數f(x)=2x,試比較的大小.
初中數學函數教案(通用18篇)篇十一
3.能夠綜合運用各種法則求函數的導數.。
函數的和、差、積、商的求導法則的推導與應用.。
1.問題情境.。
(1)常見函數的導數公式:(默寫)。
(2)求下列函數的`導數:;;.。
(3)由定義求導數的基本步驟(三步法).。
2.探究活動.。
例1求的導數.。
思考已知,怎樣求呢?
函數的和差積商的導數求導法則:
練習課本p22練習1~5題.。
點評:正確運用函數的四則運算的求導法則.。
函數的和差積商的導數求導法則.。
1.見課本p26習題1.2第1,2,5~7題.。
初中數學函數教案(通用18篇)篇十二
2、把已知條件(自變量與函數對應值)代入解析式,得到關于待定系數的方程(組);。
3、解方程(組),求出待定系數;。
4、將求得的待定系數的值代回所設的函數解析式,從而得到所求函數解析式。
例、已知:一次函數的圖象經過點(2,--1)和點(1,-2).
(1)求此一次函數的解析式;(2)求此一次函數與x軸、y軸的交點坐標。
分析:一般一次函數有兩個待定字母k、b.要求解析式,只須將兩個獨立條件代入,再解方程組即可.凡涉及求兩個函數圖象的交點坐標時,一般方法是將兩個函數的解析式組成方程組,求出方程組的解就求出了交點坐標.
解:(1)設函數解析式為y=kx+b.
(2)當y=0時x=3,當x=0時y=-3。可得直線與x軸交點(3,0)、與y軸交點(0,-3)。
評析:用待定系數法求函數解析式,求直線的交點均與解方程(組)有關,因此必須重視函數與方程之間的關系.
初中數學函數教案(通用18篇)篇十三
一次函數和代數式以及方程有著密不可分的聯系。如一次函數和正比例函數仍然是函數,同時,等號的兩邊又都是代數式。需要注意的是,與一般代數式有很大區別。首先,一次函數和正比例函數都只能存在兩個變量,而代數式可以是多個變量;其次,一次函數中的變量指數只能是1,而代數式中變量指數還可以是1以外的數。另外,一次函數解析式也可以理解為二元一次方程。
初中數學函數教案(通用18篇)篇十四
1、知識與技能:
(1)結合實例,了解正整數指數函數的概念.
(2)能夠求出正整數指數函數的解析式,進一步研究其性質.
2、過程與方法:
(1)讓學生借助實例,了解正整數指數函數,體會從具體到一般,從個別到整體的研究過程和研究方法.
(2)從圖像上觀察體會正整數指數函數的性質,為這一章的學習作好鋪墊.
3、情感.態度與價值觀:使學生通過學習正整數指數函數體會學習指數函數的重要意義,增強學習研究函數的積極性和自信心.
正整數指數函數的定義.教學難點:正整數指數函數的解析式的確定.
:學生觀察、思考、探究.教學方法:探究交流,講練結合。
(一)新課導入。
[互動過程1]:
(1)請你用列表表示1個細胞分裂次數分別。
為1,2,3,4,5,6,7,8時,得到的細胞個數;。
(2)請你用圖像表示1個細胞分裂的次數n()與得到的細。
胞個數y之間的關系;。
(3)請你寫出得到的細胞個數y與分裂次數n之間的關系式,試用。
科學計算器計算細胞分裂15次、20次得到的細胞個數.
解:。
(1)利用正整數指數冪的運算法則,可以算出1個細胞分裂1,2,3,。
4,5,6,7,8次后,得到的細胞個數。
分裂次數12345678。
細胞個數248163264128256。
(3)細胞個數與分裂次數之間的關系式為,用科學計算器算得,。
所以細胞分裂15次、20次得到的細胞個數分別為32768和1048576.
小結:從本題中可以看出我們得到的細胞分裂個數都是底數為2的指數,而且指數是變量,取值為正整數.細胞個數與分裂次數之間的關系式為.細胞個數隨著分裂次數的增多而逐漸增多.
[互動過程2]:問題2.電冰箱使用的氟化物的釋放破壞了大氣上層的臭氧層,臭氧含量q近似滿足關系式q=q00.9975t,其中q0是臭氧的初始量,t是時間(年),這里設q0=1.
(1)計算經過20,40,60,80,100年,臭氧含量q;。
(2)用圖像表示每隔20年臭氧含量q的變化;。
(3)試分析隨著時間的增加,臭氧含量q是增加還是減少.
(2)用圖像表示每隔20年臭氧含量q的變化如圖所。
示,它的圖像是由一些孤立的點組成.
(3)通過計算和觀察圖形可以知道,隨著時間的增加,。
臭氧含量q在逐漸減少.
探究:從本題中得到的函數來看,自變量和函數值分別。
又是什么?此函數是什么類型的函數?,臭氧含量q隨著。
時間的增加發生怎樣變化?你從哪里看出?
小結:從本題中可以看出我們得到的臭氧含量q都是底數為0.9975的指數,而且指數是變量,取值為正整數.臭氧含量q近似滿足關系式q=0.9975t,隨著時間的增加,臭氧含量q在逐漸減少.
正整數指數函數的定義:一般地,函數叫作正整數指數函數,其中是自變量,定義域是正整數集.
說明:1.正整數指數函數的圖像是一些孤立的點,這是因為函數的定義域是正整數集.2.在研究增長問題、復利問題、質量濃度問題中常見這類函數.
(二)、例題:某地現有森林面積為1000,每年增長5%,經過年,森林面積為.寫出,間的函數關系式,并求出經過5年,森林的面積.
分析:要得到,間的函數關系式,可以先一年一年的增長變化,找出規律,再寫出,間的函數關系式.
解:根據題意,經過一年,森林面積為1000(1+5%);經過兩年,森林面積為1000(1+5%)2;經過三年,森林面積為1000(1+5%)3;所以與之間的函數關系式為,經過5年,森林的面積為1000(1+5%)5=1276.28(hm2).
練習:課本練習1,2。
解:一個月后他應取回的錢數為y=20xx(1+2.38%),二個月后他應取回的錢數為y=20xx(1+2.38%)2;,三個月后他應取回的錢數為y=20xx(1+2.38%)3,,n個月后他應取回的錢數為y=20xx(1+2.38%)n;所以n與y之間的關系為y=20xx(1+2.38%)n(nn+),一年后他全部取回,他能取回的錢數為y=20xx(1+2.38%)12.
(三)、小結:1.正整數指數函數的圖像是一些孤立的點,這是因為函數的定義域是正整數集.2.在研究增長問題、復利問題、質量濃度問題中常見這類函數.
(四)、作業:課本習題3-11,2,3。
初中數學函數教案(通用18篇)篇十五
(二)解析:本節課要學的內容指的是會判定函數在某個區間上的單調性、會確定函數的單調區間、能證明函數的單調性,其關鍵是利用形式化的定義處理有關的單調性問題,理解它關鍵就是要學會轉換式子。學生已經掌握了函數單調性的定義、代數式的變換、函數的概念等知識,本節課的內容就是在此基礎上的應用。教學的重點是應用定義證明函數在某個區間上的單調性,解決重點的關鍵是嚴格按過程進行證明。
二、教學目標及解析。
(一)教學目標:
掌握用定義證明函數單調性的步驟,會求函數的單調區間,提高應用知識解決問題的能力。
(二)解析:
會證明就是指會利用三步曲證明函數的單調性;會求函數的單調區間就是指會利用函數的圖象寫出單調增區間或減區間;應用知識解決問題就是指能利用函數單調性的意義去求參變量的取值情況或轉化成熟悉的問題。
三、問題診斷分析。
在本節課的教學中,學生可能遇到的問題是如何才能準確確定的符號,產生這一問題的原因是學生對代數式的恒等變換不熟練。要解決這一問題,就是要根據學生的實際情況進行知識補習,特別是因式分解、二次根式中的分母有理化的補習。
在本節課的教學中,準備使用(),因為使用(),有利于()。
初中數學函數教案(通用18篇)篇十六
函數與方程是中學數學的重要內容,是銜接初等數學與高等數學的紐帶,再加上函數與方程還是中學數學四大數學思想之一,是具體事例與抽象思想相結合的體現,在教學過程中,我采用了自主探究教學法。通過教學情境的設置,讓學生由特殊到一般,有熟悉到陌生,讓學生從現象中發現本質,以此激發學生的成就感,激發學生的學習興趣和學習熱情。在現實生活中函數與方程都有著十分重要的應用,因此函數與方程在整個高中數學教學中占有非常重要的地位。
本節課是《普通高中課程標準》的新增內容之一,選自《普通高中課程標準實驗教課書數學i必修本(a版)》第94—95頁的第三章第一課時3、1、1方程的根與函數的的零點。
本節通過對二次函數的圖象的研究判斷一元二次方程根的存在性以及根的個數的判斷建立一元二次方程的根與相應的二次函數的零點的聯系,然后由特殊到一般,將其推廣到一般方程與相應的函數的情形、它既揭示了初中一元二次方程與相應的二次函數的內在聯系,也引出對函數知識的總結拓展。之后將函數零點與方程的根的關系在利用二分法解方程中(3、1、2)加以應用,通過建立函數模型以及模型的求解(3、2)更全面地體現函數與方程的關系,逐步建立起函數與方程的聯系、滲透“方程與函數”思想。
總之,本節課滲透著重要的數學思想“特殊到一般的歸納思想”“方程與函數”和“數形結合”的思想,教好本節課可以為學好中學數學打下一個良好基礎,因此教好本節是至關重要的。
知識與技能:
1、結合方程根的幾何意義,理解函數零點的定義;
2、結合零點定義的探究,掌握方程的實根與其相應函數零點之間的'等價關系;
3、結合幾類基本初等函數的圖象特征,掌握判斷函數的零點個數和所在區間的方法。
情感、態度與價值觀:
2、培養學生鍥而不舍的探索精神和嚴密思考的良好學習習慣;
3、使學生感受學習、探索發現的樂趣與成功感。
教學重點:函數零點與方程根之間的關系;連續函數在某區間上存在零點的判定方法。
教學難點:發現與理解方程的根與函數零點的關系;探究發現函數存在零點的方法。
導學案,自主探究,合作學習,電子交互白板。
(一)、問題引人:
請同學們思考這個問題。用屏幕顯示判斷下列方程是否有實根,有幾個實根?
學生活動:回答,思考解法。
學生活動:思考作答。
設計意圖:通過設疑,讓學生對高次方程的根產生好奇。
(二)、概念形成:
預習展示1:
學生活動:觀察圖像,思考作答。
教師活動:我們來認真地對比一下。用投影展示學生填寫表格。
一元二次方程。
方程的根。
二次函數。
函數的圖象。
(簡圖)。
圖象與軸交點的坐標。
函數的零點。
問題1:你能通過觀察二次方程的根及相應的二次函數圖象,找出方程的根,圖象與。
軸交點的坐標以及函數零點的關系嗎?
學生活動:得到方程的實數根應該是函數圖象與x軸交點的橫坐標的結論。
教師活動:我們就把使方程成立的實數x稱做函數的零點、(引出零點的概念)。
根據零點概念,提出問題,零點是點嗎?零點與函數方程的根有何關系?
學生活動:經過觀察表格,得出(請學生總結)。
2)函數零點的意義:函數的零點就是方程實數根,亦即函數的圖象與軸交點的橫坐標、
3)方程有實數根函數的圖象與軸有交點函數有零點。
教師活動:引導學生仔細體會上述結論。
再提出問題:如何并根據函數零點的意義求零點?
學生活動:可以解方程而得到(代數法);
可以利用函數的圖象找出零點、(幾何法)、
設計意圖:由學生最熟悉的二次方程和二次函數出發,發現一般規律,并嘗試的去總結零點,根與交點三者的關系。
(三)探究性質:
(四)探索研究(可根據時間和學生對知識的接受程度適當調整)。
討論:請大家給方程的一個解的大約范圍,看誰找得范圍更小?
[師生互動]。
師:把學生分成小組共同探究,給學生足夠的自主學習時間,讓學生充分研究,發揮其主觀能動性。也可以讓各組把這幾個題做為小課題來研究,激發學生學習潛能和熱情。老師用多媒體演示,直觀地演示根的存在性及根存在的區間大小情況。
生:分組討論,各抒己見。在探究學習中得到數學能力的提高。
第五階段設計意圖:
一是為用二分法求方程的近似解做準備。
二是小組探究合作學習培養學生的創新能力和探究意識,本組探究題目就是為了培養學生的探究能力,此組題目具有較強的開放性,探究性,基本上可以達到上述目的。
(五)、課堂小結:
零點概念。
零點存在性的判斷。
零點存在性定理的應用注意點:零點個數判斷以及方程根所在區間。
(六)、鞏固練習(略)。
初中數學函數教案(通用18篇)篇十七
教學目標:
知識與技能。
1、初步掌握函數概念,能判斷兩個變量間的關系是否可看作函數。
2、根據兩個變量間的關系式,給定其中一個量,相應地會求出另一個量的值。
3、會對一個具體實例進行概括抽象成為數學問題。
過程與方法。
1、通過函數概念,初步形成學生利用函數的觀點認識現實世界的意識和能力。
2、經歷具體實例的抽象概括過程,進一步發展學生的抽象思維能力。
情感與價值觀。
1、經歷函數概念的抽象概括過程,體會函數的模型思想。
2、讓學生主動地從事觀察、操作、交流、歸納等探索活動,形成自己對數學知識的理解和有效的學習模式。
教學重點:
1、掌握函數概念。
2、判斷兩個變量之間的關系是否可看作函數。
3、能把實際問題抽象概括為函數問題。
教學難點:
1、理解函數的概念。
2、能把實際問題抽象概括為函數問題。
教學過程設計:
一、創設問題情境,導入新課。
『師』:同學們,你們看下圖上面那個像車輪狀的物體是什么?
初中數學函數教案(通用18篇)篇十八
一、教學目標:
1、知識與技能:
(1)結合實例,了解正整數指數函數的概念.
(2)能夠求出正整數指數函數的解析式,進一步研究其性質.
2、過程與方法:
(1)讓學生借助實例,了解正整數指數函數,體會從具體到一般,從個別到整體的研究過程和研究方法.
(2)從圖像上觀察體會正整數指數函數的性質,為這一章的學習作好鋪墊.
3、情感.態度與價值觀:使學生通過學習正整數指數函數體會學習指數函數的重要意義,增強學習研究函數的積極性和自信心.
二、教學重點:正整數指數函數的定義.教學難點:正整數指數函數的解析式的確定.
三、學法指導:學生觀察、思考、探究.教學方法:探究交流,講練結合。
四、教學過程。
(一)新課導入。
[互動過程1]:
(2)請你用圖像表示1個細胞分裂的次數n()與得到的細胞個數y之間的關系;。
(3)請你寫出得到的細胞個數y與分裂次數n之間的關系式,試用科學計算器計算細胞分裂15次、20次得到的細胞個數.
解:
分裂次數12345678。
細胞個數248163264128256。
(3)細胞個數與分裂次數之間的關系式為,用科學計算器算得,所以細胞分裂15次、20次得到的細胞個數分別為32768和1048576.
小結:從本題中可以看出我們得到的細胞分裂個數都是底數為2的指數,而且指數是變量,取值為正整數.細胞個數與分裂次數之間的關系式為.細胞個數隨著分裂次數的增多而逐漸增多.
[互動過程2]:問題2.電冰箱使用的氟化物的釋放破壞了大氣上層的臭氧層,臭氧含量q近似滿足關系式q=q00.9975t,其中q0是臭氧的初始量,t是時間(年),這里設q0=1.
(1)計算經過20,40,60,80,1,臭氧含量q;。
(2)用圖像表示每隔臭氧含量q的變化;。
(3)試分析隨著時間的增加,臭氧含量q是增加還是減少.
(2)用圖像表示每隔20年臭氧含量q的變化,它的圖像是由一些孤立的點組成.
(3)通過計算和觀察圖形可以知道,隨著時間的增加,臭氧含量q在逐漸減少.
小結:從本題中可以看出我們得到的臭氧含量q都是底數為0.9975的指數,而且指數是變量,取值為正整數.臭氧含量q近似滿足關系式q=0.9975t,隨著時間的增加,臭氧含量q在逐漸減少.
正整數指數函數的定義:一般地,函數叫作正整數指數函數,其中是自變量,定義域是正整數集.
說明:1.正整數指數函數的圖像是一些孤立的點,這是因為函數的定義域是正整數集.2.在研究增長問題、復利問題、質量濃度問題中常見這類函數.
(二)、例題:某地現有森林面積為1000,每年增長5%,經過年,森林面積為.寫出,間的函數關系式,并求出經過5年,森林的面積.
分析:要得到,間的函數關系式,可以先一年一年的增長變化,找出規律,再寫出,間的函數關系式.
解:根據題意,經過一年,森林面積為1000(1+5%);經過兩年,森林面積為1000(1+5%)2;經過三年,森林面積為1000(1+5%)3;所以與之間的函數關系式為,經過5年,森林的面積為1000(1+5%)5=1276.28(hm2).
練習:課本練習1,2。
解:一個月后他應取回的錢數為y=2000(1+2.38%),二個月后他應取回的錢數為y=2000(1+2.38%)2;,三個月后他應取回的錢數為y=2000(1+2.38%)3,,n個月后他應取回的錢數為y=2000(1+2.38%)n;所以n與y之間的關系為y=2000(1+2.38%)n(nn+),一年后他全部取回,他能取回的錢數為y=2000(1+2.38%)12.
(三)、小結:1.正整數指數函數的圖像是一些孤立的點,這是因為函數的定義域是正整數集.2.在研究增長問題、復利問題、質量濃度問題中常見這類函數。