教學工作計劃需要包含教學目標、重點內(nèi)容、教學方法、評價方式等方面的內(nèi)容。看看這些教學工作計劃案例,你可以發(fā)現(xiàn)其中的教學思路和教學方法。
有理數(shù)的加法數(shù)學七年級教案(實用21篇)篇一
1.1正數(shù)和負數(shù)(2)。
教學目標:
教學重點:
深化對正負數(shù)概念的理解。
教學難點:
正確理解和表示向指定方向變化的量。
教學準備:彩色粉筆。
教學過程:
一、復習引入:
學生思考并討論.
(數(shù)0既不是正數(shù)又不是負數(shù),是正數(shù)和負數(shù)的分界,是基準.
二、講解新課。
度,用負數(shù)表示低于海平面的某地的海拔高度。例如,珠穆朗瑪峰的海拔高度為8848.43米,吐魯番盆地的海拔高度為—155米。記賬時,通常用正數(shù)表示收入款額,用負數(shù)表示支出款額。
思考:教科書第4頁(學生先思考,教師再講解)。
三、課堂練習課本p4練習1,2,3,4。
四、課時小結(jié)。
引入負數(shù)可以簡明的表示相反意義的量,對于相反意義的量,如果其中一種量用正數(shù)表示,那么另一種量可以用負數(shù)表示.在表示具有相反意義的量時,把哪一種意義的量規(guī)定為正,可根據(jù)實際情況決定.要特別注意零既不是正數(shù)也不是負數(shù),建立正負數(shù)概念后,當考慮一個數(shù)時,一定要考慮它的符號,這與以前學過的數(shù)有很大的區(qū)別.
五、課外作業(yè)教科書p5:2、4。
板書設計:
有理數(shù)的加法數(shù)學七年級教案(實用21篇)篇二
2.培養(yǎng)學生觀察、分析、歸納及運算能力。
三、教學重點。
四、教學難點。
五、教學用具。
三角尺、小黑板、小卡片。
六、課時安排。
1課時。
七、教學過程。
(一)、從學生原有認知結(jié)構(gòu)提出問題。
1.計算:
(1)(-2.6)+(-3.1);(2)(-2)+3;(3)8+(-3);(4)(-6.9)+0.
2.化簡下列各式符號:
(1)-(-6);(2)-(+8);(3)+(-7);。
(4)+(+4);(5)-(-9);(6)-(+3).
3.填空:
(1)______+6=20;(2)20+______=17;。
(3)______+(-2)=-20;(4)(-20)+______=-6.
在第3題中,已知一個加數(shù)與和,求另一個加數(shù),在小學里就是減法運算。如______+6=20,就是求20-6=14,所以14+6=20.那么(2),(3),(4)是怎樣算出來的?這就是有理數(shù)的減法,減法是加法的逆運算。
(二)、師生共同研究有理數(shù)減法法則。
問題1(1)(+10)-(+3)=______;。
(2)(+10)+(-3)=______.
教師引導學生發(fā)現(xiàn):兩式的結(jié)果相同,(更多內(nèi)容請訪問首頁:)即(+10)-(+3)=(+10)+(-3).
(2)(+10)+(+3)=______.
(2)的結(jié)果是多少?
于是,(+10)-(-3)=(+10)+(+3).
至此,教師引導學生歸納出有理數(shù)減法法則:
減去一個數(shù),等于加上這個數(shù)的。相反數(shù)。
教師強調(diào)運用此法則時注意“兩變”:一是減法變?yōu)榧臃ǎ欢菧p數(shù)變?yōu)槠湎喾磾?shù)。減數(shù)變號(減法============加法)。
(三)、運用舉例變式練習。
例1計算:
(1)(-3)-(-5);(2)0-7.
例2計算:
(1)18-(-3);(2)(-3)-18;(3)(-18)-(-3);(4)(-3)-(-18).
通過計算上面一組有理數(shù)減法算式,引導學生發(fā)現(xiàn):
在小學里學習的減法,差總是小于被減數(shù),在有理數(shù)減法中,差不一定小于被減數(shù)了,只要減去一個負數(shù),其差就大于被減數(shù)。
閱讀課本63頁例3。
(四)、小結(jié)。
1.教師指導學生閱讀教材后強調(diào)指出:
由于把減數(shù)變?yōu)樗南喾磾?shù),從而減法轉(zhuǎn)化為加法。有理數(shù)的加法和減法,當引進負數(shù)后就可以統(tǒng)一用加法來解決。
2.不論減數(shù)是正數(shù)、負數(shù)或是零,都符合有理數(shù)減法法則。在使用法則時,注意被減數(shù)是永不變的。
(五)、課堂練習。
1.計算:
(1)-8-8;(2)(-8)-(-8);(3)8-(-8);(4)8-8;。
2.計算:
3.計算:
(1)1.6-(-2.5);(2)0.4-1;(3)(-3.8)-7;。
(4)(-5.9)-(-6.1);。
(5)(-2.3)-3.6;(6)4.2-5.7;(7)(-3.71)-(-1.45);(8)6.18-(-2.93).
利用有理數(shù)減法解下列問題。
八、布置課后作業(yè):
課本習題2.6知識技能的2、3、4和問題解決1。
九、板書設計。
2.5有理數(shù)的減法。
(一)知識回顧(三)例題解析(五)課堂小結(jié)。
例1、例2、例3。
(二)觀察發(fā)現(xiàn)(四)課堂練習練習設計。
十、課后反思。
有理數(shù)的加法數(shù)學七年級教案(實用21篇)篇三
1.1正數(shù)和負數(shù)(2)。
教學目標:
教學重點:
深化對正負數(shù)概念的理解。
教學難點:
正確理解和表示向指定方向變化的量。
教學準備:彩色粉筆。
教學過程:
一、復習引入:
學生思考并討論.
(數(shù)0既不是正數(shù)又不是負數(shù),是正數(shù)和負數(shù)的分界,是基準.
二、講解新課。
度,用負數(shù)表示低于海平面的某地的海拔高度。例如,珠穆朗瑪峰的海拔高度為8848.43米,吐魯番盆地的海拔高度為—155米。記賬時,通常用正數(shù)表示收入款額,用負數(shù)表示支出款額。
思考:教科書第4頁(學生先思考,教師再講解)。
三、課堂練習課本p4練習1,2,3,4。
四、課時小結(jié)。
引入負數(shù)可以簡明的表示相反意義的量,對于相反意義的量,如果其中一種量用正數(shù)表示,那么另一種量可以用負數(shù)表示.在表示具有相反意義的量時,把哪一種意義的量規(guī)定為正,可根據(jù)實際情況決定.要特別注意零既不是正數(shù)也不是負數(shù),建立正負數(shù)概念后,當考慮一個數(shù)時,一定要考慮它的符號,這與以前學過的數(shù)有很大的區(qū)別.
五、課外作業(yè)教科書p5:2、4。
板書設計:
文檔為doc格式。
有理數(shù)的加法數(shù)學七年級教案(實用21篇)篇四
學習目標:。
1、理解加減法統(tǒng)一成加法運算的意義.
2、會將有理數(shù)的加減混合運算轉(zhuǎn)化為有理數(shù)的加法運算.
3、培養(yǎng)學習數(shù)學的興趣,增強學習數(shù)學的信心.
教學方法:講練相結(jié)合。
教學過程。
1、一架飛機作特技表演,起飛后的高度變化如下表:
高度的變化上升4.5千米下降3.2千米上升1.1千米下降1.4千米。
記作+4.5千米—3.2千米+1.1千米—1.4千米。
請你們想一想,并和同伴一起交流,算算此時飛機比起飛點高了千米.
2、你是怎么算出來的,方法是。
1、現(xiàn)在我們來研究(—20)+(+3)—(—5)—(+7),該怎么計算呢?還是先自己獨立動動手吧!
2、怎么樣,計算出來了嗎,是怎樣計算的,與同伴交流交流,師巡視指導.
如:(-20)+(+3)-(-5)-(+7)有加法也有減法。
=(-20)+(+3)+(+5)+(-7)先把減法轉(zhuǎn)化為加法。
=-20+3+5-7再把加號記在腦子里,省略不寫。
可以讀作:“負20、正3、正5、負7的”或者“負20加3加5減7”.
4、師生完整寫出解題過程。
1、解決引例中的問題,再比較前面的方法,你的感覺是。
2、例題:計算-4.4-(-4)-(+2)+(-2)+12.4。
3、練習:計算1)(—7)—(+5)+(—4)—(—10)。
1、小結(jié):說說這節(jié)課的收獲。
2、p241、2。
3、計算。
1)27—18+(—7)—322)。
五、作業(yè)。
1、p2552、p26第8題、14題。
有理數(shù)的加法數(shù)學七年級教案(實用21篇)篇五
分析本節(jié)課在教材中的地位和作用,以及在分析數(shù)學大綱的基礎(chǔ)上確定本節(jié)課的教學目標、重點和難點。首先來看一下本節(jié)課在教材中的地位和作用。
1、有理數(shù)的加法在整個知識系統(tǒng)中的地位和作用是很重要的。初中階段要培養(yǎng)學生的運算能力、邏輯思維能力和空間想象能力以及讓學生根據(jù)一些現(xiàn)實模型,把它轉(zhuǎn)化成數(shù)學問題,從而培養(yǎng)學生的數(shù)學意識,增強學生對數(shù)學的理解和解決實際問題的能力。運算能力的培養(yǎng)主要是在初一階段完成。有理數(shù)的加法作為有理數(shù)的運算的一種,它是有理數(shù)運算的重要基礎(chǔ)之一,它是整個初中代數(shù)的一個基礎(chǔ),它直接關(guān)系到有理數(shù)運算、實數(shù)運算、代數(shù)式運算、解方程、研究函數(shù)等內(nèi)容的學習。
2、就第二章而言,有理數(shù)的加法是本章的一個重點。有理數(shù)這一章分為兩大部分----有理數(shù)的意義和有理數(shù)的運算,有理數(shù)的意義是有理數(shù)運算的基礎(chǔ),有理數(shù)的混合運算是這一章的難點,但混合運算是以各種基本運算為基礎(chǔ)的。在有理數(shù)范圍內(nèi)進行的各種運算:加、減法可以統(tǒng)一成為加法,乘法、除法和乘方可以統(tǒng)一成乘法,因此加法和乘法的運算是本章的關(guān)鍵,而加法又是學生接觸的第一種有理數(shù)運算,學生能否接受和形成在有理數(shù)范圍內(nèi)進行的各種運算的思考方式(確定結(jié)果的符合和絕對值),關(guān)鍵是這一節(jié)的學習。
從以上兩點不難看出它的地位和作用都是很重要的。
接下來,介紹本節(jié)課的教學目標、重點和難點。(結(jié)合微機顯示)。
教學大綱是我們確定教學目標,重點和難點的依據(jù)。教學大鋼規(guī)定,在有理數(shù)的加法的第一節(jié)要使學生理解有理數(shù)加法的意義,理解有理數(shù)的加法法則,并運用法則進行準確運算。因此根據(jù)教學大綱的要求,確定了本節(jié)課的教學目標。1、知識目標是:“(1)理解有理數(shù)加法的意義;(2)理解并掌握有理數(shù)加法的法則;(3)應用有理數(shù)加法法則進行準確運算;(4)滲透數(shù)形結(jié)合的思想。2、能力目標是:(1)培養(yǎng)學生準確運算的能力;(2)培養(yǎng)學生歸納總結(jié)知識的能力;3、德育目標是:(1)滲透由特殊到一般的辯證唯物主義思想;(2)培養(yǎng)學生嚴謹?shù)乃季S品質(zhì)。有理數(shù)加法的意義與小學學習的在正有理數(shù)和零的范圍內(nèi)進行的加法運算的意義相同,讓學生理解即可,有理數(shù)的加法法則的理解與運用是本節(jié)的重點內(nèi)容。因此本節(jié)課的重點是:有理數(shù)加法法則的理解與運用。由于本階段的學生很難把握住事物主要特征:如異號兩數(shù)、絕對值不相等的異號兩數(shù)和互為相反數(shù)之間的關(guān)系,這就對法則的理解造成困難。因此我確定本節(jié)課的難,是是;有理數(shù)加法法則的理解。
本節(jié)課是在前面學習了有理數(shù)的意義的基礎(chǔ)上進行的,學生已經(jīng)很牢固地掌握了正數(shù)、負數(shù)、數(shù)軸、相反數(shù)、絕對值等概念,因此我沒有把時間過多地放在復習這些舊知識上,而是利用學生的好奇心,采用生動形象的事例,讓學生充當指揮官的角色,親身參加探索發(fā)現(xiàn),從而獲取知識。在法則的得出過程中,我引進了現(xiàn)代化的教學工具微機,讓學生在微機演示的一種動態(tài)變化中自己發(fā)現(xiàn)規(guī)律歸納總結(jié),這不但增加了課堂的趣味性提高了學生的能力。而且直接地向?qū)W生滲透了數(shù)形結(jié)合的思想。在法則的應用這一環(huán)節(jié)我又選配了一些變式練習,通過書上的基本練習達到訓練雙基的目的,通過變式練習達到發(fā)展智力、提高能力的目的。這些我將在教學過程的設計中具體體現(xiàn)。而且在做練習的過程中讓學生互相提問,使課堂在學生的參與下積極有序的進行。
在教學過程中,我注重體現(xiàn)教師的導向作用和學生的主體地位,。本節(jié)是新課內(nèi)容的學習,教學過程中盡力引導學生成為知識的發(fā)現(xiàn)者,把教師的點撥和學生解決問題結(jié)合起來,為學生創(chuàng)設情境,從而不斷激發(fā)學生的求知欲望和學習興趣,使學生輕松愉快地學習不斷克服學生學習中的被動情況,使其在教學過程中在掌握知識同時、發(fā)展智力、受到教育。
1、引入:再課堂的引入上,開始我本打算選擇教材上的例子,但是它過于簡單。并且不宜于引起學生的注意,所以我選擇了學生們感興趣的軍事問題,讓學生在充當指揮官的同時,有一種解決問題的成就感,從而使學生積極主動的學習,并且營造了良好的學習氛圍。
2、探索規(guī)律:法則的得出重要體現(xiàn)知識的發(fā)生,發(fā)展,形成過程。我通過了一個小人在坐標軸上來回的移動,使學生在小人的移動過程中體會兩個數(shù)相加的變化規(guī)律。由于采用了形式活潑的教學手段,學生能夠全副身心的投入到思考問題中去,讓學生親身參加了探索發(fā)現(xiàn),獲取知識和技能的全過程。最后由學生對規(guī)律進行歸納總結(jié)補充,從而得出有理數(shù)的加法法則。
3、鞏固練習:再習題的配備上,我注意了學生的思維是一個循序漸進的.過程,所以習題的配備由難而易,使學生在練習的過程中能夠逐步的提高能力,得到發(fā)展。并且采用男生出題,女生回答;女生出題,男生回答,活躍課堂氣氛,充分調(diào)動學生的積極性。使學生在一種比較活躍的氛圍中,解決各種問題。
4、歸納總結(jié):歸納總結(jié)由學生完成,并且做適當?shù)难a充。最后教師對本節(jié)的課進行說明。
文檔為doc格式。
有理數(shù)的加法數(shù)學七年級教案(實用21篇)篇六
理解有理數(shù)的概念,懂得有理數(shù)的兩種分類方法:會判別一個有理數(shù)是整數(shù)還是分數(shù),是正數(shù)、負數(shù)還是零。
二、過程與方法。
經(jīng)歷對有理數(shù)進行分類的探索過程,初步感受分類討論的思想。
三、情感態(tài)度與價值觀。
通過對有理數(shù)的學習,體會到數(shù)學與現(xiàn)實世界的緊密聯(lián)系。
教學重難點及突破。
在引入了負數(shù)后,本課對所學過的數(shù)按照一定的標準進行分類,提出了有理數(shù)的概念。分類是數(shù)學中解決問題的常用手段,通過本節(jié)課的學習,使學生了解分類的思想并進行簡單的分類是數(shù)學能力的體現(xiàn),教師在教學中應引起足夠的重視。關(guān)于分類標準與分類結(jié)果的關(guān)系,分類標準的確定可向?qū)W生作適當?shù)臐B透,集合的概念比較抽象,學生真正接受需要很長的過程,本課不宜過多展開。
教學準備。
用電腦制作動畫體現(xiàn)有理數(shù)的分類過程。
教學過程。
四、課堂引入。
2.舉例說明現(xiàn)實中具有相反意義的量。
3.如果由a地向南走3千米用3千米表示,那么-5千米表示什么意義?
4.舉兩個例子說明+5與-5的區(qū)別。
有理數(shù)的加法數(shù)學七年級教案(實用21篇)篇七
1、知識目標:了解有理數(shù)乘法法則的合理性,掌握有理數(shù)的乘法法則,熟練運用有理數(shù)的法則進行準確運算。
2、能力目標:通過對問題的變式探索,培養(yǎng)自己觀察、分析、抽象、概括的能力。
3、情感目標:培養(yǎng)積極思考和勇于探索的精神,形成良好的學習習慣。
重點:有理數(shù)乘法運算法則的推導及熟練運用。
難點:有理數(shù)乘法運算中積的符號的確定。
1、在小學我們已經(jīng)接觸了乘法,那什么叫乘法呢?
求幾個的運算,叫乘法。
一個數(shù)同0相乘,得0。
2、請你列舉幾道小學學過的乘法算式。
規(guī)定:向右為正,現(xiàn)在之后為正。
3分鐘后蝸牛應在o點的()邊()cm處。
可以列式為:(+2)(+3)=。
問題2:如果蝸牛一直以每分鐘2cm的速度向左爬行,那么3分鐘后蝸牛在什么位置?
規(guī)定:向右為正,現(xiàn)在之后為正。
3分鐘后蝸牛應在o點的()邊()cm處。
可以列式為:
問題3:如果蝸牛一直以每分鐘2cm的速度向右爬行,那么3分鐘前蝸牛在什么位置?
規(guī)定:向右為正,現(xiàn)在之后為正。
3分鐘前蝸牛應在o點的()邊()cm處。
可以表示為:
問題4:如果蝸牛一直以每分鐘2cm的速度向左爬行,那么3分鐘前蝸牛在什么位置?
規(guī)定:向右為正,現(xiàn)在之后為正。
3分鐘前蝸牛應在o點的()邊()cm處。
可以表示為:
2、觀察這四個式子:
(+2)(+3)=+6(—2)(—3)=+6。
(—2)(+3)=—6(+2)(—3)=—6。
正數(shù)乘正數(shù)積為__數(shù):負數(shù)乘負數(shù)積為__數(shù):
負數(shù)乘正數(shù)積為__數(shù):正數(shù)乘負數(shù)積為__數(shù):
乘積的絕對值等于各乘數(shù)絕對值的_____。
思考:當一個因數(shù)為0時,積是多少?
兩數(shù)相乘,同號得,異號得,并把絕對值。
任何數(shù)同0相乘,都得。
1、你能確定下列乘積的符號嗎?
37積的符號為;(—3)7積的符號為;
3(—7)積的`符號為;(—3)(—7)積的符號為。
2先閱讀,再填空:
(—5)x(—3)。同號兩數(shù)相乘。
(—5)x(—3)=+()得正。
5x3=15把絕對值相乘。
所以(—5)x(—3)=15。
填空:(—7)x4____________________。
(—7)x4=—()___________。
7x4=28_____________。
所以(—7)x4=____________。
[例1]計算:
(1)(—5)(2)(—5)。
(3)(—6)(—0.45)(4)(—7)0=。
解:(1)(—5)(—6)=+(56)=+30=30。
請同學們仿照上述步驟計算(2)(3)(4)。
(2)(—5)6==。
(3)(—6)(—0.45)==。
(4)(—7)0=。
讓我們來總結(jié)求解步驟:
兩個數(shù)相乘,應先確定積的,再確定積的。
1、小組口算比賽,看誰更棒。
(1)3(—4)(2)2(—6)(3)(—6)2。
(4)6(—2)(5)(—6)0(6)0(—6)。
2、仔細計算。,注意積的符號和絕對值。
(1)(—4)0.25(2)(—0.5)(—2)(3)(—)。
(4)(—2)(—)(5)(—)(—)(6)(—)5。
1、下列說法錯誤的是()。
a、一個數(shù)同0相乘,仍得0。
b、一個數(shù)同1相乘,仍得原數(shù)。
c、如果兩個數(shù)的乘積等于1,那么這兩個數(shù)互為相反數(shù)。
d、一個數(shù)同—1相乘,得原數(shù)的相反數(shù)。
2、在—2,3,4,—5這四個數(shù)中,任意兩個數(shù)相乘,所得的積最大的是()。
a、10b、12c、—20d、不是以上的答案。
3、計算下列各題:
(5)(—6)(—5)=;(6)(—5)(—6)=。
有理數(shù)的加法數(shù)學七年級教案(實用21篇)篇八
教材分析:
在教材分析中我將談一下幾點:
(一)、教材的地位與作用:
【有理數(shù)的加法法則】是初中華師版七年級上冊第二章第六節(jié)的內(nèi)容,在這之前,學生已經(jīng)在小學掌握了算術(shù)運算,而前邊的學習又初步掌握了有理數(shù)的基本概念,有理數(shù)的加法運算是建立在小學運算的基礎(chǔ)之上的,又與小學加法運算有很大的區(qū)別,如小學的加法運算不需要確定符號運算單一,而有理數(shù)的加法不但要計算絕對值的大小而且還要確定結(jié)果的符號,由算術(shù)到代數(shù)式學生從小學到初中的一個新的轉(zhuǎn)折點。而有理數(shù)的加法又是有理數(shù)運算的主要內(nèi)容是初等數(shù)學運算的基礎(chǔ),同時又是學習物理、化學等相關(guān)學科的基礎(chǔ)。因此,這部分內(nèi)容在學習數(shù)學及其他方面占有相當重要的地位及作用。
(二)、教學內(nèi)容:
有理數(shù)的加法的教學共分2課時,這是有理數(shù)的加法第一課時。本節(jié)課主要講授有理數(shù)加法的意義,歸納有理數(shù)加法的法則,能區(qū)別有理數(shù)的和與小學運算的和的不同,并要求學生在掌握法則的基礎(chǔ)上熟練地進行有理數(shù)的加法運算。
(三)、教學目標:
倡導有理數(shù)的加法要以學生為主,讓學生參與”觀察、猜想、驗證、歸納、運用“的全過程。以培養(yǎng)創(chuàng)新意識與培養(yǎng)能力為宗旨。從教材的特點和初一學生的認知水平,以教學思維為出發(fā)點。我設計如下的教學目標:
1、知識目標:使學生有理數(shù)加法的意義,掌握有理數(shù)加法的法則,并要求學生在掌握法則的基礎(chǔ)上熟練地進行有理數(shù)的加法運算。
2、能力目標:在本節(jié)課的教學中,借助數(shù)軸向?qū)W生滲透數(shù)形結(jié)合的思想,利用絕對值把有理數(shù)的加法運算化歸為小學算術(shù)的加減運算,體現(xiàn)化歸的思想,以及適度加強法則的形成過程,著重培養(yǎng)學生”觀察、猜想、驗證、歸納、運用“等綜合能力。
3、情感目標:遵循學生學習的認知規(guī)律和初一學生的身心特點,按照啟發(fā)式教學原則用發(fā)現(xiàn)法和直觀教學法激發(fā)學生探究教學的興趣,培養(yǎng)學生敢于探索、樂于創(chuàng)新的精神。
4、教學重點、難點和教學關(guān)鍵:
解決問題的關(guān)鍵是有理數(shù)加法中結(jié)果符號的確定。
二、教法分析:
為了充分調(diào)動學生的積極性,變被動學習為主動學習使教學生動、有趣、高效,我采用啟發(fā)式教學,發(fā)現(xiàn)法教學形成性學習和多媒體教學手段共用,考慮到學生目前仍以直觀思維為主,在教學中,我采用針對性較強的相應措施。首先,我創(chuàng)設具體的問題情景運用多媒體手段進行必要的動態(tài)演示,讓學生看的清楚,聽的明白逐步從圖形的直觀向深化過渡,最后向抽象思維過渡,引導學生觀察與思考,以增強教學的直觀性、有效性;其次,引導學生從特殊到一般的探究,師生共同歸納出有理數(shù)的加法法則,以以增強教學的直觀性、有效性、深刻性這既是形象思維轉(zhuǎn)化為抽象思維的過程,也是對學生觀察、歸納思維能力的過程,再讓學生參與知識的形成過程,促進認知結(jié)構(gòu)的建構(gòu),培養(yǎng)學生活動知識的能力,從而使學生在學習知識的過程中,獲得成功的體驗。
三、學法指導:
課堂教學要體現(xiàn)以學生的發(fā)展為本,為充分體現(xiàn)教師為主導、學生為主體的教學原則,我采用啟發(fā)式教學原則,通過提出問題,多媒體的直觀演示和學生一起分析,歸納出法則。始終讓學生參與整個問題的全過程,在整個教學過程的設計中力求發(fā)揮學生的主體意識,盡情創(chuàng)造性的學習,無論在法則的形成,還是法則的運用數(shù)學思想方法的滲透,都避免教師的灌輸方法,有意識的讓學生主動觀察、比較、分類、歸納積極思考,教師在教學中加以引導、及時點撥,激發(fā)學生的探索精神和求知欲望,培養(yǎng)學生的學習數(shù)學的主動性,讓學生在愉悅的氣氛中感受到數(shù)學學習的無限樂趣。
四、說教學過程:
2、然后設置這樣一個問題情景,利用動態(tài)演示帶領(lǐng)學生進行新課探索,首先我提出問題”兩次一共向東走了多少米?“用什么方法呢?接著我提醒學生注意審題,暗示學生題中沒有明確小明朝那個方向走,通過暗示,引導學生思考。
3、接著我又提出問題2”在東西走向的馬路上小明從o點出發(fā),向東走了20米,又向西走了-20米,那么兩次一共走了多少米?“利用動態(tài)演示,學生很容易得出”互為相反數(shù)的兩數(shù)相加得0“之后我又提出問題3”在東西走向的馬路上小明從o點出發(fā),向東走了20米,又向西走了0米,那么兩次一共走了多少米?“學生很容易得出”一個數(shù)與0相加,仍得0“從而利用上面的演示過程,歸納出有一個加數(shù)為0的法則。
4、至此,通過師生多種情形的歸納,一起歸納出有理數(shù)的加法法則。
1、同號兩數(shù)相加,取相同的符號,并把絕對值相加;
3、互為相反數(shù)的兩數(shù)相加得0。
4、一個數(shù)與0相加,仍得0】意義上教學過程通過多媒體演示,把數(shù)、式、形的靜變?yōu)閯樱栽鰪姺▌t的直觀性,加深法則的理解,突出本節(jié)課的重點、突破難點,同時也增強了數(shù)形結(jié)合的思想運用,在歸納出法則后,我有進一步啟發(fā)引導學生分析法則的'特點,并總結(jié)規(guī)律”兩有理數(shù)相加,所得的和為符號和和兩部分組成,加法運算的關(guān)鍵是福海的確定,符號運算一旦解決,余下的就是小學算術(shù)的加減問題了“在這里,我給出兩個具體的實例通過對他們的分析得出:
(-4)+(-8)=-(4+8)=-12。
同號兩數(shù)相加取相同的符號通過絕對值化歸為算術(shù)數(shù)和的過程。
(-9)+(+2)=-(9-2)=-7。
異號兩數(shù)相加取絕對值較大符號通過絕對值化歸為算術(shù)數(shù)減的過程。
總結(jié):同號兩數(shù)之和——名副其實的和——做加法。
異號兩數(shù)之和——表面是”和“實際上是做減法。
運算步驟:1、先判斷類型:同號還是異號;2、確定和的符號;
3、后進行絕對值的加減運算。
簡單歸為:8字訣——符號法則+算式加減。
通過以上的設計,進一步加深了對法則中難點問題的理解之后教師引導學生歸納出運算步驟,然后又教師歸納出加法法則。
6、接下來我又設置了一道改錯題:
設置問題,強化關(guān)鍵判斷正誤,并改錯。
1、兩個負數(shù)相加,絕對值相加;
2、正數(shù)加負數(shù),何謂負數(shù);
3、負數(shù)加正數(shù),和為正數(shù);
4、兩個有理數(shù)和為負數(shù)時,著兩個有理數(shù)都是負數(shù)它是專為學生在運用法則時易出錯的問題而設計的為促使學生在引用時仔細審題,通過分析辯誤,抓住關(guān)鍵。
7、為了完成從掌握知識到引用知識的轉(zhuǎn)化,使知識教學與智能訓練相結(jié)合,我設置了以下例、習題易培養(yǎng)他們的邏輯思維和嚴密的計算能力,下面的這組練習由淺入深、循序漸進的原則,其目的在于鞏固法則,加深對法則的理解和記憶,練習2通過強化與訓練,使學生熟中生巧、將知識轉(zhuǎn)化為技能,也為以后的學習奠定基礎(chǔ)。
計算下列各題:
例題1、(-6)+(-8)2、5.2+(-4.5)。
練習:1、計算下列各題:并說明理由(1)、(-4)+(-7)。
(2)、(-4)+(+7)(3)、(+4)+(+7)。
(4)、(-4)+(+4)(5)、(-9)+0。
練習:2、計算下列各題:
(1)、15+(-22)(2)、(+0.9)+1.5(3)、(+2.7)+(-3.5)。
8、到這時,整個教學過程也接近尾聲了,為了是學生對所學知識有一個完整的框架,利于學生對知識的理解和記憶,師生共同合作,從以下三方面進行小結(jié):
1、本節(jié)課學習的主要內(nèi)容;
2、運用有理數(shù)加法法則的關(guān)鍵問題;
9作業(yè)布置:(必做)練習2、3、4、(選作)習題1、
10、最后是我的板書設計:
法則小結(jié)。
步驟與口訣布置作業(yè)。
結(jié)論。
以上是我從四個方面闡述了本節(jié)課”教什么,怎么教,有理數(shù)的加法為什么這樣教"希望各位專家、老師對本節(jié)課提出寶貴意見,再次謝謝各位評委老師。
有理數(shù)的加法數(shù)學七年級教案(實用21篇)篇九
1.使學生理解有理數(shù)加法的意義,初步掌握有理數(shù)加法法則,并能準確地進行有理數(shù)的加法運算.
2.通過有理數(shù)的加法運算,培養(yǎng)學生的運算能力.
教學重點與難點。
重點:熟練應用有理數(shù)的加法法則進行加法運算.
教學過程。
(一)復習提問。
1.有理數(shù)是怎么分類的?
2.有理數(shù)的絕對值是怎么定義的?一個有理數(shù)的絕對值的幾何意義是什么?
3.有理數(shù)大小比較是怎么規(guī)定的?下列各組數(shù)中,哪一個較大?利用數(shù)軸說明?
-3與-2;3與-3;-3與0;。
-2與+1;-+4與-3.
(二)引入新課。
在小學算術(shù)中學過了加、減、乘、除四則運算,這些運算是在正有理數(shù)和零的范圍內(nèi)的運算.引入負數(shù)之后,這些運算法則將是怎樣的呢?我們先來學有理數(shù)的加法運算.
兩次行走后距原點0為8米,應該用加法.
為區(qū)別向東還是向西走,這里規(guī)定向東走為正,向西走為負.這兩數(shù)相加有以下三種情況:
1.同號兩數(shù)相加。
(1)某人向東走5米,再向東走3米,兩次一共走了多少米?
這是求兩次行走的路程的和.
5+3=8。
用數(shù)軸表示如圖:略。
從數(shù)軸上表明,兩次行走后在原點0的東邊.離開原點的距離是8米.因此兩次一共向東走了8米.
可見,正數(shù)加正數(shù),其和仍是正數(shù),和的絕對值等于這兩個加數(shù)的絕對值的和.
(2)某人向西走5米,再向西走3米,兩次一共向東走了多少米?
顯然,兩次一共向西走了8米。
(-5)+(-3)=-8。
用數(shù)軸表示如圖:略。
從數(shù)軸上表明,兩次行走后在原點0的西邊,離開原點的距離是8米.因此兩次一共向東走了-8米.
可見,負數(shù)加負數(shù),其和仍是負數(shù),和的絕對值也是等于兩個加數(shù)的絕對值的和.
總之,同號兩數(shù)相加,取相同的符號,并把絕對值相加.
例如,(-4)+(-5),同號兩數(shù)相加。
(-4)+(-5)=-(),取相同的符號。
4+5=9把絕對值相加。
(-4)+(-5)=-9.
口答練習:
(1)舉例說明算式7+9的實際意義?
(2)(-20)+(-13)=?
2.異號兩數(shù)相加。
(1)某人向東走5米,再向西走5米,兩次一共向東走了多少米?
由數(shù)軸上表明,兩次行走后,又回到了原點,兩次一共向東走了0米.
5+(-5)=0。
可知,互為相反數(shù)的兩個數(shù)相加,和為零.
(2)某人向東走5米,再向西走3米,兩次一共向東走了多少米?
由數(shù)軸上表明,兩次行走后在原點o的東邊,離開原點的距離是2米.因此,兩次一共向東走了2米.
就是5+(-3)=2.
(3)某人向東走3米,再向西走5米,兩次一共向東走了多少米?
由數(shù)軸上表明,兩次行走后在原點o的西邊,離開原點的距離是2米.因此,兩次一共向東走了-2米.
就是3+(-5)=-2.
最后歸納。
例如(-8)+5絕對值不相等的異號兩數(shù)相加。
85。
(-8)+5=-()取絕對值較大的加數(shù)符號。
8-5=3用較大的絕對值減去較小的絕對值。
(-8)+5=-3.
口答練習。
用算式表示:溫度由-4℃上升7℃,達到什么溫度.
(-4)+7=3(℃)。
3.一個數(shù)和零相加。
(1)某人向東走5米,再向東走0米,兩次一共向東走了多少米?
顯然,5+0=5.結(jié)果向東走了5米.
(2)某人向西走5米,再向東走0米,兩次一共向東走了多少米?
容易得出:(-5)+0=-5.結(jié)果向東走了-5米,即向西走了5米.
請同學們把(1)、(2)畫出圖來。
由(1),(2)得出:一個數(shù)同0相加,仍得這個數(shù).
總結(jié)有理數(shù)加法的三個法則.學生看書,引導他們看有理數(shù)加法運算的三種情況.
特例:兩個互為相反數(shù)相加;。
(3)一個數(shù)和零相加.
每種運算的法則強調(diào):(1)確定和的符號;(2)確定和的絕對值的方法.
(四)例題分析。
例1計算(-3)+(-9).
分析:這是兩個負數(shù)相加,屬于同號兩數(shù)相加,和的符號與加數(shù)相同(應為負),和的絕對值就是把絕對值相加(應為3+9=12)(強調(diào)相同、相加的特征).
解:(-3)+(-9)=-12.
例2。
分析:這是異號兩數(shù)相加,和的符號與絕對值較大的加數(shù)的符號相同(應為負),和的絕對值等于較大絕對值減去較小絕對值..(強調(diào)兩個較大一個較小)。
解:解題時,先確定和的符號,后計算和的絕對值.
(五)鞏固練習。
1.計算(口答)。
(1)4+9;(2)4+(-9);(3)-4+9;(4)(-4)+(-9);。
(5)4+(-4);(6)9+(-2);(7)(-9)+2;(8)-9+0;。
2.計算。
(1)5+(-22);(2)(-1.3)+(-8)。
(3)(-0.9)+1.5;(4)2.7+(-3.5)。
將本文的word文檔下載到電腦,方便收藏和打印。
有理數(shù)的加法數(shù)學七年級教案(實用21篇)篇十
三、情感態(tài)度與價值觀。
體會數(shù)學與現(xiàn)實生活的聯(lián)系,提高學生學習數(shù)學的興趣、
教學重點、難點與關(guān)鍵。
1、重點:有理數(shù)加減法統(tǒng)一為加法運算,掌握有理數(shù)加減混合運算、
2、難點:省略括號和加號的加法算式的運算方法、
投影儀、
四、教學過程。
一、復習提問,引入新課。
1、敘述有理數(shù)的加法、減法法則、
2、計算、
(1)(—8)+(—6);(2)(—8)—(—6);(3)8—(—6);。
(4)(—8)—6;(5)5—14、
五、新授。
我們已學習了有理數(shù)加、減法的運算,今天我們來研究怎樣進行有理數(shù)的加減混合運算、
六、鞏固練習。
1、課本第24頁練習、
(1)題是已寫成省略加號的代數(shù)和,可運用加法交換律、結(jié)合律、
原式=1+3—4—0。5=0—0。5=—0。5。
(2)題運用加減混合運算律,同號結(jié)合、
原式=—2。4—4。6+3。5+3。5=—7+7=0。
(3)題先把加減混合運算統(tǒng)一為加法運算、
原式=(—7)+(—5)+(—4)+(+10)。
=—7—5—4+10(省略括號和加號)。
=—16+10。
=—6。
七、課堂小結(jié)。
八、作業(yè)布置。
1、課本第25頁第26頁習題1、3第5、6、13題、
九、板書設計:
第四課時。
1、把有理數(shù)加減混合運算轉(zhuǎn)化為加法后,常用加法交換律和結(jié)合律使計算簡便、
歸納:加減混合運算可以統(tǒng)一為加法運算、
用式子表示為a+b—c=a+b+(—c)、
2、隨堂練習。
3、小結(jié)。
4、課后作業(yè)。
十、課后反思。
本課教學反思。
本節(jié)課主要采用過程教案法訓練學生的聽說讀寫。過程教案法的理論基礎(chǔ)是交際理論,認為寫作的過程實質(zhì)上是一種群體間的交際活動,而不是寫作者的個人行為。它包括寫前階段,寫作階段和寫后修改編輯階段。在此過程中,教師是教練,及時給予學生指導,更正其錯誤,幫助學生完成寫作各階段任務。課堂是寫作車間,學生與教師,學生與學生彼此交流,提出反饋或修改意見,學生不斷進行寫作,修改和再寫作。在應用過程教案法對學生進行寫作訓練時,學生從沒有想法到有想法,從不會構(gòu)思到會構(gòu)思,從不會修改到會修改,這一過程有利于培養(yǎng)學生的寫作能力和自主學習能力。學生由于能得到教師的及時幫助和指導,所以,即使是英語基礎(chǔ)薄弱的同學,也能在這樣的環(huán)境下,寫出較好的作文來,從而提高了學生寫作興趣,增強了寫作的自信心。
這個話題很容易引起學生的共鳴,比較貼近生活,能激發(fā)學生的興趣,在教授知識的同時,應注意將本單元情感目標融入其中,即保持樂觀積極的生活態(tài)度,同時要珍惜生活的點點滴滴。在教授語法時,應注重通過例句的講解讓語法概念深入人心,因直接引語和間接引語的概念相當于一個簡單的定語從句,一個清晰的脈絡能為后續(xù)學習打下基礎(chǔ)。此教案設計為一個課時,主要將安妮的處境以及她的精神做一個簡要概括,下一個課時則對語法知識進行講解。
在此教案過程中,應注重培養(yǎng)學生的自學能力,通過輔導學生掌握一套科學的學習方法,才能使學生的學習積極性進一步提高。再者,培養(yǎng)學生的學習興趣,增強教案效果,才能避免在以后的學習中產(chǎn)生兩極分化。
在教案中任然存在的問題是,學生在“說”英語這個環(huán)節(jié)還有待提高,大部分學生都不愿意開口朗讀課文,所以復述課文便尚有難度,對于這一部分學生的學習成績的提高還有待研究。
有理數(shù)的加法數(shù)學七年級教案(實用21篇)篇十一
從簡單的轉(zhuǎn)盤游戲開始,使學生在生活經(jīng)驗和試驗的基礎(chǔ)上,進一步體驗不確定事件的特點及事件發(fā)生的可能性大小。
能用實驗對數(shù)學猜想做出檢驗,從而增加猜想的可信度。 解決問題
在轉(zhuǎn)盤游戲過程中,經(jīng)歷猜測結(jié)果,實驗驗證,分析試驗結(jié)果等數(shù)學活動,增加數(shù)學活動經(jīng)驗。
情感態(tài)度與價值觀
在合作與交流過程中,體驗小組合作更有利于探究數(shù)學知識,敢于發(fā)表自己觀點,提高個人認識。
在實驗中,體會不確定事件的特點及事件發(fā)生可能性大小;使每個學生都能積極認真參與課堂設計中的實驗,真正在實驗中獲得知識上的認識。
創(chuàng)設情境,切入標題
請同學們猜測,當我自由轉(zhuǎn)動轉(zhuǎn)盤時,指針會落在什么顏域呢?
請各小組分別派一名代表,看哪組能轉(zhuǎn)出紅色。
結(jié)果,8小組有6組轉(zhuǎn)出了紅色。
為什么會出現(xiàn)這樣的結(jié)果呢?
因為,在這個轉(zhuǎn)盤中,紅域的面積大,白域的面積小,因此,當轉(zhuǎn)盤停上轉(zhuǎn)動時,指針落到紅域的可能性大。
大家同意這種看法嗎?下面我們親自動手感受一下。
學生按照題目要求進行實驗。
請各組組長把你組的實驗數(shù)據(jù)匯報一下(教師把數(shù)據(jù)填寫在表格里) 實驗結(jié)果:六個小組每組實驗16次,全班共實驗96次,指針落在紅域的次數(shù)分別如下9,6,10,5,8,12。共計50次。
請同學們對我們的實驗結(jié)果進行分析交流,談談你在試驗中有哪些心得。
根據(jù)觀察,轉(zhuǎn)盤上紅域的面積為總面積的一半,指針落在紅域的可能性也應該是一半。通過對我們?nèi)嗟膶嶒灲Y(jié)果分析,指針落在紅域的比例是50∶96,結(jié)果接近百分之五十。
在小組內(nèi)實驗結(jié)果不明顯,實驗次數(shù)越多越能說明問題。
通過實驗,我們確定感受到,轉(zhuǎn)盤游戲中各區(qū)域的面積的可能性大小與指針落在什么區(qū)域的可能性大小有直接關(guān)系。以后在生活中再遇到轉(zhuǎn)盤游戲問題可要想想今天的實驗結(jié)論。
下面我們利用轉(zhuǎn)盤做一下數(shù)學游戲(出示幻燈片),學生按教學設計中要求進行游戲,教師巡回指導。
每組每人游戲一次,全班共游戲48次。其游戲結(jié)果是,平均數(shù)增大1的,共35次,平均數(shù)減小1的,共13次。
請同學們對下列問題進行交流(幻燈片出示教材206頁4個問題)。 這個轉(zhuǎn)盤轉(zhuǎn)到“平均數(shù)增大1”區(qū)域的可能性大,從面積大小就可以看出。
如果平均數(shù)增大1,我是在卡片上增加一個數(shù),這個數(shù)等于卡片上數(shù)字的個數(shù)加1,如果是平均數(shù)減小1,我就在每個數(shù)上都減去1。
同學們說出很多種方法,不一一列舉。
“平均數(shù)增大1”的次數(shù)占總次數(shù)的百分之七十三,“平均數(shù)減小1”占百分之二十七。
如果將這個實驗繼續(xù)做下去,卡片上所有數(shù)的平均數(shù)會增大。
同學們說的都很好,課后能不能自己也利用轉(zhuǎn)盤設計一個新的游戲,感興趣的同學可以在課下與我交流。
以下過程同教學設計,略去。
指導學生完成教材第206頁習題。
學生可從各個方面加以小結(jié)。 布置作業(yè)
仿照課堂游戲,自編一個新的游戲。 能否利用撲克牌設計本節(jié)轉(zhuǎn)盤游戲。
有理數(shù)的加法數(shù)學七年級教案(實用21篇)篇十二
根據(jù)定義,無限循環(huán)小數(shù)和有限小數(shù)(整數(shù)可認為是小數(shù)點后是0的小數(shù)),統(tǒng)稱為有理數(shù),無限不循環(huán)小數(shù)是無理數(shù)。
但人類不可能寫出一個位數(shù)最多的有理數(shù),對全地球人類,或比地球人更智慧的生物來說是有理數(shù)的數(shù),對每個地球人來說,可能是無法知道它是有理數(shù)還是無理數(shù)了。因此有理數(shù)和無理數(shù)的邊界,竟然緊靠無理數(shù),任何兩個十分接近的無理數(shù)中間,都可以加入無窮多的有理數(shù),反之也成立。
竟然沒有人知道有理數(shù)的邊界,或者說有理數(shù)的邊界是無限接近無理數(shù)的。
定理。
定理:位數(shù)最多的非無限循環(huán)有理數(shù)是不可能被寫出的,盡管它的定義是有有限位,但它是無限趨近于無理數(shù)的,以致于沒有手段進行判斷。
證明。
證明:假設位數(shù)最多的非無限循環(huán)有理數(shù)被寫出,我們在這個數(shù)的最后再加一位,這個數(shù)還是有限位有理數(shù),但位數(shù)比已寫出有理數(shù)多一位,證明原來寫出的不是位數(shù)最多的非無限循環(huán)有理數(shù)。所以位數(shù)最多的非無限循環(huán)有理數(shù)是不可能被寫出的。
有理數(shù)的加法數(shù)學七年級教案(實用21篇)篇十三
一、問題的引入:在問題的引入上。新課標規(guī)定應從實際情景入手,并且使學生能夠?qū)栴}產(chǎn)生強烈的求知欲。我采用了敵軍對我軍進行小規(guī)模軍事偵察的問題,使學生處在一個指揮官的角色。對問題提出解決的辦法,并且在對學生提出的各種情況,作出實際的操作,使學生明白數(shù)學在解決實際問題中的應用。我感覺在問題的引入上問題過于簡單,使學生思考的范圍過于局限。沒有出現(xiàn)比較熱烈的學習氣氛。所以問題的引入應加大深度,應具有一定的挑戰(zhàn)性。
二、問題的探索:在問題的探索上,我采用了一個小人在坐標軸上來回行走,產(chǎn)生一種動態(tài)效果,使學生在充滿好奇心的狀態(tài)下,在老師提供的情景下,在具有較多的時間和空間的條件下,親身參加探索發(fā)現(xiàn),主動的獲取知識和技能。但在整個的實施過程中出現(xiàn)了一些問題,比如:在法則的得出上學生的總結(jié)出現(xiàn)了一些問題,我再處理時由于怕時間不夠充裕所以學生出現(xiàn)的問題我給作出了解答,其實這里應由學生自己來解決,這樣對學生能力的提高非常有幫助。
三、習題的配備:整個習題的配備大致是按從易到難的順序排列的,面向全體學生,采用多種形式,使不同層次的學生都有所得,并且采用循序漸進的方法,使學生對加法法則的理解進一步的加強。在講解完例題后,讓學生互相提問,以促使學生積極踴躍的參與到教學活動中來,創(chuàng)造一種輕松的學習氛圍。在最后的習題配備上,讓學生對兩個加數(shù)及和之間的關(guān)系作出判斷,并且對各種情況作出討論,達到本節(jié)課的一個高潮。促使學生的思路得到進一步的加強。但我總體感覺習題的量不夠充足,學生的練習機會較少。
有理數(shù)的加法數(shù)學七年級教案(實用21篇)篇十四
數(shù)學學習過程應當是一個生動活潑的、主動的和富有個性的過程,而不能再是單一的、枯燥的,以被動聽講和練習為主的方式,它應該是一個充滿生命力的過程。本節(jié)課在教學中以故事引入,在學生已有的知識經(jīng)驗建構(gòu)新知主動探索有理數(shù)加法交換律和結(jié)合律,從而引起他們學習的興趣,把他們被動地接受學習變成一種主動探索獲取知識的過程。
數(shù)學與人和現(xiàn)實生活之間是有著緊密的聯(lián)系的,把貼近學生熟悉的,現(xiàn)實生活,引入教學,不斷溝通生活中的數(shù)學與教科書的聯(lián)系使生活和數(shù)學融為一體,是“新課標”所倡導的理念之一。本課教學時的最大特點是讓學生體會生活中的數(shù)學,有益于學生理解數(shù)學、熱愛數(shù)學,從而把數(shù)學當成自己發(fā)展的重要動力源泉。
本節(jié)課中如何更有效地調(diào)動“弱勢群體”的積極性,是我們進一步要探討的方向。
有理數(shù)的加法數(shù)學七年級教案(實用21篇)篇十五
學習目標:。
1、理解有理數(shù)的運算法則;能根據(jù)有理數(shù)乘法運算法則進行有理的簡單運算。
2、經(jīng)歷探索有理數(shù)乘法法則過程,發(fā)展觀察、歸納、猜想、驗證能力.
3、培養(yǎng)語言表達能力.調(diào)動學習積極性,培養(yǎng)學習數(shù)學的興趣.
學習重點:有理數(shù)乘法。
學習難點:法則推導。
教學方法:引導、探究、歸納與練習相結(jié)合。
教學過程。
一、學前準備。
計算:
(1)(一2)十(一2)。
(2)(一2)十(一2)十(一2)。
(3)(一2)十(一2)十(一2)十(一2)。
(4)(一2)十(一2)十(一2)十(一2)十(一2)。
猜想下列各式的值:
(一2)×2(一2)×3。
(一2)×4(一2)×5。
二、探究新知。
1、自學有理數(shù)乘法中不同的形式,完成教科書中29~30頁的填空.
2、觀察以上各式,結(jié)合對問題的研究,請同學們回答:
(3)負數(shù)乘以正數(shù)積為__________數(shù),(4)負數(shù)乘以負數(shù)積為__________數(shù)。
提出問題:一個數(shù)和零相乘如何解釋呢?
有理數(shù)的加法數(shù)學七年級教案(實用21篇)篇十六
因為時間關(guān)系,本課的隨堂練習沒有時間完成,只剛把異號兩數(shù)相加的法則歸納出來就下課了,遠沒有完成計劃中的任務。
自以為應該是很成功的一節(jié)課卻感到寸步難行。回顧本節(jié)課,問題究竟出在哪里呢?通過仔細思考,我認為存在的有以下幾方面的問題。
1、有正確的把握好教材,是片斷1失誤的主要原因。
如情境的引入要恰當。如本節(jié)中“凈勝球”學生就不懂,如無事先進行補充說明,學生就不懂,導致一節(jié)課的進度一拖再拖。必須讓學生所接觸的例子和我們的生活密切相關(guān),這樣才能更易為學生所接受。回顧這一整節(jié)課,其實還有很多可以對教材進行發(fā)掘的地方,如在數(shù)軸上的運動問題,也可以是讓學生在一條直路上運動,這樣可能讓學生更有興趣,再用數(shù)軸進行抽象,可能效果會更好。
《平行》這一節(jié)中所提到的滑雪運動最關(guān)鍵的是要保持兩只雪撬的平行,這一知識點對于我們這里的孩子是非常陌生的,我們都沒見過雪撬,更談不上其技巧了。
用過新教材的同行們都說,一節(jié)課完后不知這節(jié)課都在干什么!我也常有這種想法,教材是專家們研究實驗過的,專家是干啥的?現(xiàn)在痛定思痛,實際上是我們對新教材把握不夠,沒有搞清其重難點,沒有把握教材的真正要求。雖然我們天天在談、天天在寫“目標”“重點”“難點”,但實際上僅僅是在寫而已。實際情形往往是這樣:由于我們教學多年,大都只憑我們以往的經(jīng)驗來“把握”教材,憑我們過去所了解的重難點、教學方法、教學模式來引導我們、來確定組織教學,實質(zhì)是用老教法來教新教材。所以一節(jié)課下來我們自己都不知干了些什么!實際上只要我們真正掌握了其教學要求,把握了新教材的內(nèi)涵、我們的思路清醒,方向明確,就知道自己應該怎樣做。
2、備課粗枝大葉,造成一些不應有的失誤。
如在片斷2中,由在數(shù)軸上先后兩次不同方向的運動,得到兩個算式:
3+(-2)=1(-3)+(+2)=-1。
教師:這兩個算式結(jié)果的'符號有何特點?
生答:兩個結(jié)果的符號都與第一個加數(shù)的符號相同。
學生的回答非常正確,而且是經(jīng)過仔細觀察后回答的,但我的本意是要把絕對值較大的數(shù)放在不同的位置讓學生來觀察、歸納的。這實際上是備課工作中的馬虎大意引起的,備課缺乏深度。備課以及課堂中要盡量避免人為地給學生帶來的錯誤導向。
3、教學語言單調(diào)、生硬缺乏啟發(fā)性、激勵性。
課堂上,我十分吝嗇“請”“請坐”及一些稱頌學生的語言,認為自己天天在說沒有必要,在一定程度上就變相抑制了學生的積極性,尤其是對差生而言,他們是進行課堂學習的“學困生”更需要我們的肯定和贊揚,每一次真心的贊揚可能都會給他們帶來一次新的進步。
教學語言是決定教學效果好壞的一個重要環(huán)節(jié)。教學語言活潑風趣、幽默可以活躍課堂氣氛,調(diào)動學生的學習熱情。常言道“親其師、信其道”,語言是讓學生對教師產(chǎn)生親切感的一個重要渠道。啟發(fā)性的語言能使學生順理成張的回答教師提出的問題,不需要繞太多的圈子,具有點石成金的功效。通俗易懂的語言可以讓學生學得輕松自然。激勵性的語言則幫助學生樹立學習信心、肯定了他們的學習成果,讓他們時時能找到自己的價值,尤其是對“學困生”更要讓他們找到自己身上的閃光點,提高他們的學習興趣,充分發(fā)揮語言評價的功效。
有理數(shù)的加法數(shù)學七年級教案(實用21篇)篇十七
有理數(shù)的加法與減法這節(jié)課,法則的生成很重要,所以在教學中我注重法則的生成過程,因為也剛剛寫了一篇博文就是注重數(shù)學知識的形成,對于法則,老師可以直接告訴答案,也可以和學生一起探討,研究得出法則,對于兩種教學方式,我采取更多的時間讓學生自己體會法則的生成,注重引導學生參與探索、歸納有理數(shù)加法法則的過程,主動獲取知識。
這樣,學生在這節(jié)課上不僅學懂了法則,而且能感知到研究數(shù)學問題的一些基本方法。我在講完法則的時候課程已經(jīng)進行了三十分鐘多一點,所以課上例題和練習才用了十分鐘,所以又用了習題課上了一節(jié),盡管上的比較慢,但是這種方案減少了應用法則進行計算的練習,所以學生掌握法則的熟練程度可能稍差,這是教學中應當注意的問題。但是,在后續(xù)的教學中學生將千萬次應用“有理數(shù)加法法則”進行計算,故這種缺陷是可以得到彌補的。如果直接告訴答案削弱了得出結(jié)論的“過程”,失去了培養(yǎng)學生觀察、比較、歸納能力的一次機會。
有理數(shù)的加法數(shù)學七年級教案(實用21篇)篇十八
本節(jié)教學的重點是掌握解一元一次不等式的步驟.難點是必須切實注意遇到要在不等式兩邊都乘以(或除以)同一負數(shù)時,必須改變不等號的方向.掌握一元一次不等式的解法是進一步學習一元一次方程組的解法以及一元二次不等式的解法的重要基礎(chǔ).
1、一元一次不等式和一元一次方程概念的異同點
相同點:二者都是只含有一個未知數(shù),未知數(shù)的次數(shù)都是1,左、右兩邊都是整式.
不同點:一元一次不等式表示不等關(guān)系,一元一次方程表示相等關(guān)系.
(3)同方程類似,我們把或叫做一元一次不等式的標準形式.
2、一元一次不等式和一元一次方程解法的異同點
相同點:步驟相同,二者都是經(jīng)過變形,把左邊變成,右邊變?yōu)橐粋€常數(shù).
注意:(1)解方程的移項法則對解不等式同樣適用.
三、教法建議
有理數(shù)的加法數(shù)學七年級教案(實用21篇)篇十九
1.通過與溫度計的類比,了解數(shù)軸的概念,會畫數(shù)軸。
2.知道如何在數(shù)軸上表示有理數(shù),能說出數(shù)軸上表示有理數(shù)的點所表示的數(shù),知道任何一個有理數(shù)在數(shù)軸上都有唯一的點與之對應。
過程方法。
1.從直觀認識到理性認識,從而建立數(shù)軸概念。
2.通過數(shù)軸概念的學習,初步體會對應的思想、數(shù)形結(jié)合的思想方法。
3.會利用數(shù)軸解決有關(guān)問題。
情感態(tài)度。
通過對數(shù)軸的學習,體會到數(shù)形結(jié)合的思想方法,進而初步認識事物之間的聯(lián)系性。
【教學重點】。
1.數(shù)軸的概念。
2.能將已知數(shù)在數(shù)軸上表示出來,說出數(shù)軸上已知點所表示的數(shù)。
【教學難點】。
從直觀認識到理性認識,從而建立數(shù)軸的概念。
【情景引入】。
1.小明感冒了,醫(yī)生用體溫計測量了他的體溫,并說:“37.8度。”
提疑:醫(yī)生為什么通過體溫計就可以讀出任意一個人的體溫?
(體溫計上的刻度)。
2.我們再一起去看看12月時祖國各地的自然風光和溫度情況(電腦分別顯示黑龍江、焦作、海南三個城市美麗的自然風光,溫度分別為-10°c,0°c,20°c)。
提疑:那么要測量這種氣溫所需要的溫度計的刻度應該如何安排?需要用到哪些數(shù)?
(正數(shù)、零、負數(shù))。
3.請嘗試畫出你想像中的溫度計,并和其他同學交流,注意交流時要發(fā)表自己的見解。然后提問:請找出一支溫度計從外觀上具有哪些不可缺少的特征?(組織學生討論交流)學生可能會從不同的角度回答,教師給予必要的引導,總結(jié)出與數(shù)軸相對應的特點,如形狀是直的、0刻度、單位刻度。(電腦動態(tài)演示,將溫度計水平放置,抽象得出數(shù)軸圖形表示有理數(shù)-10,0,20的過程)從而引出課題------數(shù)軸。
有理數(shù)的加法數(shù)學七年級教案(實用21篇)篇二十
1、(6分)把下列各數(shù)填在相應的集合內(nèi):
-23,0.25,,-5.18,18,-38,10,+7,0,+12。
正數(shù)集合:{………}。
整數(shù)集合:{………}。
分數(shù)集合:{………}。
2、某校對七年級男生進行俯臥撐測試,以能做7個為標準,超過的次數(shù)用正數(shù)表示,不足的次數(shù)用負數(shù)表示,其中8名男生的成績?nèi)缦卤恚?/p>
2-103-2-310。
(1)這8名男生的達標率是百分之幾?
(2)這8名男生共做了多少個俯臥撐?
答案。
1、
正數(shù)集合:{0.25,18,10,+7,+12………}。
整數(shù)集合:{-23,18,-38,10,+7,0,+12………}。
分數(shù)集合:{0.25,,-5.18………}。
2、
(1)50%,(2)56個。
有理數(shù)的加法數(shù)學七年級教案(實用21篇)篇二十一
七年級數(shù)學的學習成效對整個初中階段數(shù)學學習有至關(guān)重要的作用。在某種意義上甚至可以說,七年級數(shù)學的好壞就決定了學生初中學習生活中數(shù)學的將來。扎實的基礎(chǔ)會讓學生在以后的學習中越來越有勁頭,從而能逐步進步,完成自己的學習任務。
七年級數(shù)學在學習了正數(shù)、負數(shù)、有理數(shù)的概念后,教材引人了有理數(shù)的加減法。第一課時我組織學生學習了有理數(shù)的加法法則,第二課時,就是提高學生計算能力的準確性,進一步熟練加法法則的使用方法。首先組織學生說出有理數(shù)的加法法則,然后展示設計好的幾組練習題讓學生練習、演板,練習題涉及到了多種情況,有整數(shù)、小數(shù)、分數(shù)的加法;正數(shù)大、負數(shù)小;正數(shù)小、負數(shù)大;有零參與的等類型。在講解時,讓學生說出自己的做題依據(jù),運用的哪條法則,再針對問題出錯較多的符號辨別不清問題,再出幾道題加強練習。
教學后,對學生的計算和數(shù)學的實際運用想了很多。學生升入初中后,都抱著努力學好的想法,學習勁頭都很足,可是,由于小學的基礎(chǔ)不同,在計算上,在理解上,在問題思考上確實存在著比較大的差異。邁入初一的第一步一定讓他們成功,給他們成功的感覺、信念,所以,教學進度要緩慢,要盡可能的保證大多數(shù)的學生都掌握學習的知識、技能為止,這里有個度的把握。一般來說開始接觸到新知,要求大部分、至少百分之八十的學生掌握,后面再通過其他的形式帶動更多的學生全部學會。學生對知識的掌握是特別容易遺忘的,不會一直學會,就再也不忘記了。你就是下大工夫把有理數(shù)的加法全部學會,還有有理數(shù)的乘除、混合運算等,依然是這部分學生的攔路虎。在學習了有理數(shù)的加法法則后,知道有哪些學生的哪一方面有問題,在以后的教學中,有的放矢,針對學生的問題進行練習,拉他們上來。教學是有序的,不能偏,不能就個別的學生的問題浪費大部分學生的時間;教學是流動的,在持續(xù)的教學中,不能丟掉一個學生;教學是有方的,你總能在教學中找到適合每一個學生的方法。
在《有理數(shù)加法》一節(jié)的教學中,感到學生對這個問題的理解還不夠深刻,主要對符號處理能力不夠強,計算能力差也是我所教學生的硬傷。反思我的`整節(jié)課,我覺得我還有很多地方做得不夠好的,比如,時間不夠用,我想可能是我的語言不夠精煉,重復的地方太多了,課前我還有檢查作業(yè)的習慣,浪費了不少時間,還有板書時,畫數(shù)軸和一些表格等,浪費了一些時間,時間緊的話,板書應該盡量簡約。我覺得我一節(jié)課下來,我講的太多了,結(jié)果就給學生練的內(nèi)容偏少了。我這節(jié)課我認為比較滿意的地方有,我及時對學生的進步進行表揚,善于捕捉學生的閃光點,讓他們感到自己有值得驕傲的地方,也讓他們能全身心地投入到學習中去。經(jīng)過這節(jié)課,我深深地體會到,這個看似簡單的問題,其實不見得簡單的,所以我在今后的教學中,我覺得應該從以下這些方面去加強教學。
(1)注意結(jié)合具體情境,體會有理數(shù)加法的意義,并設計不同的方法讓學生合作交流,從而歸納有理數(shù)加法法則。
(2)對有理數(shù)加法的教學。要嚴格要求學生遵循以下步驟:第一、先確定和的符號;第二、再求加數(shù)的絕對值;第三、分析確定有理數(shù)絕對值是相加還是相減。
(3)多讓學生板演,以及時糾正學生的錯誤,并加以強化。
(4)對于學困生要多鼓勵,并利用學習小組的優(yōu)勢,“以優(yōu)補劣”。
(5)由于學生年齡特點,易于遺忘,教師可以采取每隔一段時間就進行強化訓練,以增強學生的熟練程度。
學生對生活中數(shù)學興趣不大。平時,不容易發(fā)現(xiàn)數(shù)學,就是教學中缺失了給孩子一雙數(shù)學的眼睛。我們平時觀看的比賽,我們走路,用的時間等等每一件事都離不開數(shù)學,要鼓勵學生發(fā)現(xiàn)生活中的數(shù)學,發(fā)動他們說出自己的身邊的數(shù)學,對鍛煉他們的數(shù)學思想、提高他們學習數(shù)學的興趣有極大的作用。
通過本節(jié)課的教學,我感觸很深。初一的學生,剛從小學生變成一個中學生,對于知識的理解和接受大多還停留在小學生的水平上,他們善于思考,但是卻把握不好思考的方向,而我們年輕教師很容易犯的一個錯誤就是對于知識的深淺拿捏不好,一不小心就又把知識講深了。另外,我對新課程理念所提倡的以學生為主體,充分發(fā)揮學生的主動性這一點貫徹的有些不到位。一節(jié)課的時間,只有40分鐘,除去課前準備,上課的板演時間,上課的時候提問學生,提問成績好的學生,起不到什么作用。提問成績不好的學生,等半天還是回答不上來,有時等不及學生說出答案就自己把答案說出來了,有時一節(jié)課學生動手動口的機會真的不多。唉,我也不斷反思,想辦法,希望以后這樣的事件在我的課堂上能越來越少!