范文范本可以幫助我們更好地理解和掌握寫作技巧,提升我們的寫作水平。以下是小編為大家精心挑選的范文范本,希望能給大家?guī)硪恍﹩l(fā)和幫助。
數(shù)學(xué)解題的秘訣(實(shí)用13篇)篇一
故對(duì)正確性的要求比解答題更高、更嚴(yán)格.
因此,我們?cè)趶?fù)習(xí)備考時(shí),要理解各個(gè)題型所包含的知識(shí)點(diǎn),只有把各個(gè)數(shù)學(xué)知識(shí)點(diǎn)掌握住以后才能熟悉做題技巧。要有合理的分析和判斷,要求推理、運(yùn)算的每一步少算多思將是快速、準(zhǔn)確地解答填空題的基本前提。
解答填空題的基本策略是準(zhǔn)確、快速、整潔。這跟做選擇題是差不多的,只不過選擇題中我們還有選項(xiàng)支可以做參考,填空題更要求我們對(duì)知識(shí)的靈活運(yùn)用!因此,研究填空題的解題技巧非常有必要。
整潔是保住得分的充分條件,只有把正確的答案整潔的書寫在答題紙上才能保證閱卷教師正確的批改,在網(wǎng)上閱卷時(shí)整潔顯得尤為重要。
高考數(shù)學(xué)填空題一般是基礎(chǔ)題或中檔題,且絕大多數(shù)是計(jì)算型(尤其是推理計(jì)算型)和概念(性質(zhì))判斷型的試題,應(yīng)答時(shí)必須按規(guī)則進(jìn)行切實(shí)的計(jì)算或者合乎邏輯的推演和判斷。
直接法。
跟選擇題一樣,填空題有些題目也是可以通過套用公式定理性質(zhì)直接求解的,拿到題目后,直接根據(jù)題干提供的信息通過變形、推理、運(yùn)算等過程,直接得到結(jié)果。它是解填空題的最基本、最常用的方法。使用直接法解填空題,要善于通過現(xiàn)象看本質(zhì),熟練應(yīng)用解方程和解不等式的方法,自覺地、有意識(shí)地采取靈活、簡(jiǎn)捷的解法。
特殊化法。
當(dāng)填空題的結(jié)論或題設(shè)條件中提供的信息暗示答案是一個(gè)定值時(shí),而已知條件中含有某些不確定的量,可以將題中變化的不定量選取一些符合條件的恰當(dāng)特殊值(或特殊函數(shù),或特殊角,圖形特殊位置,特殊點(diǎn),特殊方程,特殊模型等)進(jìn)行處理,從而得出探求的結(jié)論。這樣可大大地簡(jiǎn)化推理、論證的過程。
等價(jià)轉(zhuǎn)化法。
通過"化復(fù)雜為簡(jiǎn)單、化陌生為熟悉",將問題等價(jià)地轉(zhuǎn)化成便于解決的問題,從而得出正確的結(jié)果。
數(shù)學(xué)解題的秘訣(實(shí)用13篇)篇二
很多同學(xué)都認(rèn)為考研數(shù)學(xué)的綜合題比較難,有的同學(xué)甚至在卷面上只字未寫,采取完全放棄的態(tài)度。實(shí)際上這種題目得分并沒有大家想象的那么困難。對(duì)于那些具有很強(qiáng)的典型性、靈活性、啟發(fā)性和綜合性的題,要特別注重解題思路和技巧的培養(yǎng)。
盡管試題千變?nèi)f化,但其知識(shí)結(jié)構(gòu)基本相同,題型相對(duì)固定,這就需要考生在研究真題和做模擬題時(shí)提煉題型。提練題型的目的,是為了提高解題的針對(duì)性,形成思維定勢(shì),進(jìn)而提高考生解題的速度和準(zhǔn)確性。近幾年試卷中常見的綜合題有:級(jí)數(shù)與積分的綜合題;微積分與微分方程的綜合題;求極限的綜合題;空間解析幾何與多元函數(shù)微分的綜合題;線性代數(shù)與空間解析幾何的綜合題;以及微積分與微分方程在幾何上、物理上、經(jīng)濟(jì)上的應(yīng)用題等等。
同學(xué)們?cè)诮饪佳袛?shù)學(xué)綜合題時(shí),最關(guān)鍵的.一步是找到解題的切入點(diǎn)。所以大家需要對(duì)解題思路很熟悉,能夠看出題目與復(fù)習(xí)過的知識(shí)點(diǎn)、題型之間存在的聯(lián)系。在復(fù)習(xí)備考時(shí)要對(duì)所學(xué)知識(shí)進(jìn)行重組,理清知識(shí)脈絡(luò),應(yīng)用起來更加得心應(yīng)手。解應(yīng)用題的一般步驟都是認(rèn)真理解題意,建立相關(guān)的數(shù)學(xué)模型,將其化為某數(shù)學(xué)問題求解。建立數(shù)學(xué)模型時(shí),一般要用到幾何知識(shí)、物理力學(xué)知識(shí)和經(jīng)濟(jì)學(xué)術(shù)語等。
另外,提醒同學(xué)們不要做比較偏門和奇怪的試題。研究生考試是很嚴(yán)肅的考試,不是數(shù)學(xué)競(jìng)賽,不會(huì)出現(xiàn)這類題目,因此完全沒必要浪費(fèi)時(shí)間。復(fù)習(xí)中,遇到比較難的題目,自己獨(dú)立解決確實(shí)能顯著提高能力。但復(fù)習(xí)時(shí)間畢竟有限,在確定思考不出結(jié)果時(shí),要及時(shí)尋求幫助。一定要避免一時(shí)性起,盯住一個(gè)題目做一個(gè)晚上的沖動(dòng)。同學(xué)們可以充分借助老師、同學(xué)和互聯(lián)網(wǎng)的幫助,將題目弄明白,不要耽誤太多無謂的時(shí)間。
數(shù)學(xué)解題的秘訣(實(shí)用13篇)篇三
集合表示、單調(diào)區(qū)間誤寫成不等式或把兩個(gè)單調(diào)區(qū)間取了并集等等。
(2)一般第4個(gè)填空題可能題意或題型較新,因而難度較大,可以酌情往后放。
數(shù)學(xué)常用思維。
第一:高中數(shù)學(xué)答題方法函數(shù)與方程思想。
(2)方程思想是解決各類計(jì)算問題的基本思想,是運(yùn)算能力的基礎(chǔ)。
高考把函數(shù)與方程思想作為七種重要思想方法重點(diǎn)來考查。
第二:高中數(shù)學(xué)答題方法數(shù)形結(jié)合思想:
(1)數(shù)學(xué)研究的對(duì)象是數(shù)量關(guān)系和空間形式,即數(shù)與形兩個(gè)方面。
(2)在一維空間,實(shí)數(shù)與數(shù)軸上的點(diǎn)建立一一對(duì)應(yīng)關(guān)系。
在二維空間,實(shí)數(shù)對(duì)與坐標(biāo)平面上的點(diǎn)建立一一對(duì)應(yīng)關(guān)系。
1.養(yǎng)成良好的考試習(xí)慣。
拿到試卷,首先填寫好姓名和考號(hào),快速瀏覽試卷,把握全卷的難易,高中英語,把容易的題的題號(hào)寫在草稿紙的最頂端,再做題,遇到卡殼,馬上跳過去做容易的題。這樣保證最大限度發(fā)揮你的實(shí)力,也解決了由于過度緊張導(dǎo)致的暫時(shí)遺忘影響考試發(fā)揮的問題。注意機(jī)讀卡的填涂問題,做完一道大題就填一部分,把第一卷做完后及時(shí)填涂,以避免全部做完再填時(shí)沒時(shí)間。
2.把握好審題關(guān)。
很多學(xué)生練習(xí)了很多題,題與題之間有些相似,但又有區(qū)別,做題一不小心就會(huì)習(xí)慣性主觀附加已知條件,導(dǎo)致最終出錯(cuò)。要求“字字看清,句句讀懂,理解題意”,審兩遍題,明確已知條件和隱含的已知條件。
3.深刻理解“長(zhǎng)題不難,難題不后”。
一般高考試卷中總會(huì)出現(xiàn)題干很長(zhǎng),語句環(huán)繞的試題。乍一看很難理解,摸不清意圖。但往往多讀幾遍,把其中關(guān)系弄清,做起來就比較簡(jiǎn)單。這種題主要是考你的審題能力與心理素質(zhì)。做長(zhǎng)題的關(guān)鍵是審題。“難題不后”,主要是說最后一題一般不是最難的,所以要學(xué)會(huì)總體把握全卷,先做簡(jiǎn)單的后做難的。
數(shù)學(xué)解題的秘訣(實(shí)用13篇)篇四
選擇題。
有些單項(xiàng)選擇題概念性非常強(qiáng),計(jì)算技巧也比較高,求解單項(xiàng)選擇題一般有以下幾種方法:
推演法:它適用于題干中給出的條件是解析式子。
圖示法:它適用于題干中給出的函數(shù)具有某種特性,,例如奇偶性、周期性或者給出的事件是兩個(gè)事件的情形,用圖示法做就顯得格外簡(jiǎn)單。
舉反例排除法:排除了三個(gè),第四個(gè)就是正確的答案,這種方法適用于題干中給出的函數(shù)是抽象函數(shù)的情況。
逆推法:所謂逆推法就是假定被選的四個(gè)答案中某一個(gè)正確,然后做逆推,如果得到的結(jié)果與題設(shè)條件或盡人皆知的正確結(jié)果矛盾,則否定這個(gè)備選答案。
賦值法:也就是說將備選的一個(gè)答案用具體的數(shù)字代入,如果與假設(shè)條件或眾所周知的事實(shí)發(fā)生矛盾則予以否定。
證明題:
第一,對(duì)題目所給條件敏感。在熟悉基本定理、公式和結(jié)論的基礎(chǔ)上,從題目條件出發(fā)初步確定證明的出發(fā)點(diǎn)和思路;第二,善于發(fā)掘結(jié)論與題目條件之間的關(guān)系。例如利用微分中值定理證明等式或不等式,從結(jié)論式出發(fā)即可確定構(gòu)造的輔助函數(shù),從而解決證明的關(guān)鍵問題。
計(jì)算題:
近年計(jì)算題考查重點(diǎn)不在于計(jì)算量和運(yùn)算復(fù)雜度,而側(cè)重于思路和方法,例如重積分、曲線曲面積分的計(jì)算、求級(jí)數(shù)的和函數(shù)等,除了保證運(yùn)算的準(zhǔn)確率,更重要的就是系統(tǒng)總結(jié)各類計(jì)算題的解題思路和技巧,以求遇到題目能選擇最簡(jiǎn)便有效的解題思路,快速得出正確結(jié)果。現(xiàn)在距離考試還有一個(gè)多月,考前沖刺做題貴在“精”,選擇命題合乎大綱要求、難度適宜的模擬題進(jìn)行練習(xí)是效果最為立竿見影的。
應(yīng)用題:
重點(diǎn)考查分析、解決問題的能力。首先,從題目條件出發(fā),明確題目要解決的目標(biāo);第二,確立題目所給條件與需要解決的目標(biāo)之間的關(guān)系,將這種關(guān)系整合到數(shù)學(xué)模型中(對(duì)于圖形問題要特別注意原點(diǎn)及坐標(biāo)系的選取),這也是解題最為重要的環(huán)節(jié);第三,根據(jù)第二步建立的數(shù)學(xué)模型的類別,尋找相應(yīng)的解題方法,則問題可迎刃而解。
將本文的word文檔下載到電腦,方便收藏和打印。
數(shù)學(xué)解題的秘訣(實(shí)用13篇)篇五
對(duì)于考研數(shù)學(xué)來說,最后的綜合題可能對(duì)大家來說是重要的一部分,首先是分值的誘惑,其次這部分的試題在考研數(shù)學(xué)中也占據(jù)著重要的比例。(ps:看完有收獲喲,wordzhongcao音頻)但對(duì)大多數(shù)學(xué)生來說,考研數(shù)學(xué)綜合題比較難,有的同學(xué)就選擇放棄了,也有一部分同學(xué),在這一部分的復(fù)習(xí)中盯著一個(gè)題接很久的時(shí)間,甚至一天,其實(shí)這樣都是不科學(xué)的。
也有一部分同學(xué)在卷面上只字未寫,采取完全放棄的態(tài)度。實(shí)際上這種題目得分并沒有大家想象的那么困難。對(duì)于那些具有很強(qiáng)的典型性、靈活性、啟發(fā)性和綜合性的`題,要特別注重解題思路和技巧的培養(yǎng)。盡管試題千變?nèi)f化,但其知識(shí)結(jié)構(gòu)基本相同,題型相對(duì)固定,這就需要考生在研究真題和做模擬題時(shí)提煉題型。提練題型的目的,是為了提高解題的針對(duì)性,形成思維定勢(shì),進(jìn)而提高考生解題的速度和準(zhǔn)確性。近幾年試卷中常見的綜合題有:級(jí)數(shù)與積分的綜合題;微積分與微分方程的綜合題;求極限的綜合題;空間解析幾何與多元函數(shù)微分的綜合題;線性代數(shù)與空間解析幾何的綜合題;以及微積分與微分方程在幾何上、物理上、經(jīng)濟(jì)上的應(yīng)用題等等。
同學(xué)們?cè)诮饩C合題時(shí),最關(guān)鍵的一步是找到解題的切入點(diǎn)。所以大家需要對(duì)解題思路很熟悉,能夠看出題目與復(fù)習(xí)過的知識(shí)點(diǎn)、題型之間存在的聯(lián)系。在復(fù)習(xí)備考時(shí)要對(duì)所學(xué)知識(shí)進(jìn)行重組,理清知識(shí)脈絡(luò),應(yīng)用起來更加得心應(yīng)手。解應(yīng)用題的一般步驟都是認(rèn)真理解題意,建立相關(guān)的數(shù)學(xué)模型,將其化為某數(shù)學(xué)問題求解。建立數(shù)學(xué)模型時(shí),一般要用到幾何知識(shí)、物理力學(xué)知識(shí)和經(jīng)濟(jì)學(xué)術(shù)語等。
對(duì)于比較偏門和奇怪的試題,建議大家不要花太多的時(shí)間。研究生考試是很嚴(yán)肅的考試,不是數(shù)學(xué)競(jìng)賽,不會(huì)出現(xiàn)這類題目,因此完全沒必要浪費(fèi)時(shí)間。復(fù)習(xí)中,遇到比較難的題目,自己獨(dú)立解決確實(shí)能顯著提高能力。但復(fù)習(xí)時(shí)間畢竟有限,在確定思考不出結(jié)果時(shí),要及時(shí)尋求幫助。一定要避免一時(shí)性起,盯住一個(gè)題目做一個(gè)晚上的沖動(dòng)。同學(xué)們可以尋求其他人的幫助,比如說老師同學(xué)等,也可以在網(wǎng)上尋求幫助,將題目弄明白,不要耽誤太多無謂的時(shí)間。
總之考研數(shù)學(xué)的復(fù)習(xí)說簡(jiǎn)單也簡(jiǎn)單,說難也難。我們對(duì)于考研數(shù)學(xué)的復(fù)習(xí)要把握其考察的角度,在平時(shí)的復(fù)習(xí)中注意積累一些界問題方法和技巧。比較考研數(shù)學(xué)綜合題考察還是建立在基礎(chǔ)之上,我們要善于抓住和找到一類題型的答題關(guān)鍵點(diǎn)和一些固定的解題技巧,其實(shí)這些都是有章可循的。最后祝大家考研復(fù)習(xí)取得理想的效果。
數(shù)學(xué)解題的秘訣(實(shí)用13篇)篇六
填空題跟選擇題有許多的共同點(diǎn):小巧靈活,結(jié)構(gòu)簡(jiǎn)單運(yùn)算量不大等特點(diǎn),考察的知識(shí)點(diǎn)范圍比較廣,根據(jù)填空時(shí)所填寫的內(nèi)容形式,可以將填空題分成以下幾種類型:
(1)定量型:
要求考生填寫數(shù)值、數(shù)集或數(shù)量關(guān)系,
如方程的解、不等式的解集、
函數(shù)的定義域、值域、值或最小值、
線段長(zhǎng)度、角度大小等;。
(2)定性型:
要求填寫的是具有某種性質(zhì)的對(duì)象。
或者填寫給定數(shù)學(xué)對(duì)象的某種性質(zhì),
如填寫給定二次曲線的焦點(diǎn)坐標(biāo),離心率等.
數(shù)學(xué)解題的秘訣(實(shí)用13篇)篇七
數(shù)學(xué)解題的思維過程 數(shù)學(xué)解題的思維過程是指從理解問題開始,經(jīng)過探索思路,轉(zhuǎn)換問題直至解決問題,進(jìn)行回顧的全過程的思維活動(dòng)。 對(duì)于數(shù)學(xué)解題思維過程,g . 波利亞提出了四個(gè)階段*(見附錄),即弄清問題、擬定計(jì)劃、實(shí)現(xiàn)計(jì)劃和回顧。這四個(gè)階段思維過程的實(shí)質(zhì),可以用下列八個(gè)字加以概括:理解、轉(zhuǎn)換、實(shí)施、反思。 第一階段:理解問題是解題思維活動(dòng)的開始。 第二階段:轉(zhuǎn)換問題是解題思維活動(dòng)的核心,是探索解題方向和途徑的積極的嘗試發(fā)現(xiàn)過程,是思維策略的選擇和調(diào)整過程。 第三階段:計(jì)劃實(shí)施是解決問題過程的實(shí)現(xiàn),它包含著一系列基礎(chǔ)知識(shí)和基本技能的靈活運(yùn)用和思維過程的具體表達(dá),是解題思維活動(dòng)的重要組成部分。 第四階段:反思問題往往容易為人們所忽視,它是發(fā)展數(shù)學(xué)思維的一個(gè)重要方面,是一個(gè)思維活動(dòng)過程的結(jié)束包含另一個(gè)新的思維活動(dòng)過程的開始。
數(shù)學(xué)解題的技巧 為了使回想、聯(lián)想、猜想的方向更明確,思路更加活潑,進(jìn)一步提高探索的成效,我們必須掌握一些解題的策略。 一切解題的策略的基本出發(fā)點(diǎn)在于變換,即把面臨的問題轉(zhuǎn)化為一道或幾道易于解答的新題,以通過對(duì)新題的考察,發(fā)現(xiàn)原題的解題思路,最終達(dá)到解決原題的目的。 基于這樣的認(rèn)識(shí),常用的解題策略有:熟悉化、簡(jiǎn)單化、直觀化、特殊化、一般化、整體化、間接化等。
一、 熟悉化策略所謂熟悉化策略,就是當(dāng)我們面臨的是一道以前沒有接觸過的陌生題目時(shí),要設(shè)法把它化為曾經(jīng)解過的或比較熟悉的題目,以便充分利用已有的知識(shí)、經(jīng)驗(yàn)或解題模式,順利地解出原題。 一般說來,對(duì)于題目的熟悉程度,取決于對(duì)題目自身結(jié)構(gòu)的認(rèn)識(shí)和理解。從結(jié)構(gòu)上來分析,任何一道解答題,都包含條件和結(jié)論(或問題)兩個(gè)方面。因此,要把陌生題轉(zhuǎn)化為熟悉題,可以在變換題目的條件、結(jié)論(或問題)以及它們的聯(lián)系方式上多下功夫。 常用的途徑有:
(一)、充分聯(lián)想回憶基本知識(shí)和題型: 按照波利亞的觀點(diǎn),在解決問題之前,我們應(yīng)充分聯(lián)想和回憶與原有問題相同或相似的知識(shí)點(diǎn)和題型,充分利用相似問題中的方式、方法和結(jié)論,從而解決現(xiàn)有的問題。
(二)、全方位、多角度分析題意: 對(duì)于同一道數(shù)學(xué)題,常常可以不同的側(cè)面、不同的角度去認(rèn)識(shí)。因此,根據(jù)自己的知識(shí)和經(jīng)驗(yàn),適時(shí)調(diào)整分析問題的視角,有助于更好地把握題意,找到自己熟悉的解題方向。
(三)恰當(dāng)構(gòu)造輔助元素: 數(shù)學(xué)中,同一素材的題目,常常可以有不同的表現(xiàn)形式;條件與結(jié)論(或問題)之間,也存在著多種聯(lián)系方式。因此,恰當(dāng)構(gòu)造輔助元素,有助于改變題目的形式,溝通條件與結(jié)論(或條件與問題)的內(nèi)在聯(lián)系,把陌生題轉(zhuǎn)化為熟悉題。 數(shù)學(xué)解題中,構(gòu)造的輔助元素是多種多樣的,常見的有構(gòu)造圖形(點(diǎn)、線、面、體),構(gòu)造算法,構(gòu)造多項(xiàng)式,構(gòu)造方程(組),構(gòu)造坐標(biāo)系,構(gòu)造數(shù)列,構(gòu)造行列式,構(gòu)造等價(jià)性命題,構(gòu)造反例,構(gòu)造數(shù)學(xué)模型等等。
二、簡(jiǎn)單化策略 所謂簡(jiǎn)單化策略,就是當(dāng)我們面臨的是一道結(jié)構(gòu)復(fù)雜、難以入手的題目時(shí),要設(shè)法把轉(zhuǎn)化為一道或幾道比較簡(jiǎn)單、易于解答的新題,以便通過對(duì)新題的考察,啟迪解題思路,以簡(jiǎn)馭繁,解出原題。 簡(jiǎn)單化是熟悉化的補(bǔ)充和發(fā)揮。一般說來,我們對(duì)于簡(jiǎn)單問題往往比較熟悉或容易熟悉。 因此,在實(shí)際解題時(shí),這兩種策略常常是結(jié)合在一起進(jìn)行的,只是著眼點(diǎn)有所不同而已。 解題中,實(shí)施簡(jiǎn)單化策略的途徑是多方面的,常用的有: 尋求中間環(huán)節(jié),分類考察討論,簡(jiǎn)化已知條件,恰當(dāng)分解結(jié)論等。
1、尋求中間環(huán)節(jié),挖掘隱含條件: 在些結(jié)構(gòu)復(fù)雜的綜合題,就其生成背景而論,大多是由若干比較簡(jiǎn)單的基本題,經(jīng)過適當(dāng)組合抽去中間環(huán)節(jié)而構(gòu)成的。 因此,從題目的因果關(guān)系入手,尋求可能的中間環(huán)節(jié)和隱含條件,把原題分解成一組相互聯(lián)系的系列題,是實(shí)現(xiàn)復(fù)雜問題簡(jiǎn)單化的一條重要途徑。
2、分類考察討論: 在些數(shù)學(xué)題,解題的復(fù)雜性,主要在于它的條件、結(jié)論(或問題)包含多種不易識(shí)別的可能情形。對(duì)于這類問題,選擇恰當(dāng)?shù)姆诸悩?biāo)準(zhǔn),把原題分解成一組并列的簡(jiǎn)單題,有助于實(shí)現(xiàn)復(fù)雜問題簡(jiǎn)單化。
3、簡(jiǎn)單化已知條件: 有些數(shù)學(xué)題,條件比較抽象、復(fù)雜,不太容易入手。這時(shí),不妨簡(jiǎn)化題中某些已知條件,甚至?xí)簳r(shí)撇開不顧,先考慮一個(gè)簡(jiǎn)化問題。這樣簡(jiǎn)單化了的問題,對(duì)于解答原題,常常能起到穿針引線的作用。
4、恰當(dāng)分解結(jié)論: 有些問題,解題的主要困難,來自結(jié)論的抽象概括,難以直接和條件聯(lián)系起來,這時(shí),不妨猜想一下,能否把結(jié)論分解為幾個(gè)比較簡(jiǎn)單的部分,以便各個(gè)擊破,解出原題。
三、直觀化策略: 所謂直觀化策略,就是當(dāng)我們面臨的是一道內(nèi)容抽象,不易捉摸的題目時(shí),要設(shè)法把它轉(zhuǎn)化為形象鮮明、直觀具體的問題,以便憑借事物的形象把握題中所及的各對(duì)象之間的聯(lián)系,找到原題的解題思路。
(一)、圖表直觀: 有些數(shù)學(xué)題,內(nèi)容抽象,關(guān)系復(fù)雜,給理解題意增添了困難,常常會(huì)由于題目的抽象性和復(fù)雜性,使正常的思維難以以進(jìn)行到底。 對(duì)于這類題目,借助圖表直觀,利用示意圖或表格分析題意,有助于抽象內(nèi)容形象化,復(fù)雜關(guān)系條理化,使思維有相對(duì)具體的依托,便于深入思考,發(fā)現(xiàn)解題線索。
(二)、圖形直觀: 有些涉及數(shù)量關(guān)系的題目,用代數(shù)方法求解,道路崎嶇曲折,計(jì)算量偏大。這時(shí),不妨借助圖形直觀,給題中有關(guān)數(shù)量以恰當(dāng)?shù)膸缀畏治觯貙捊忸}思路,找出簡(jiǎn)捷、合理的解題途徑。
(三)、圖象直觀: 不少涉及數(shù)量關(guān)系的題目,與函數(shù)的圖象密切相關(guān),靈活運(yùn)用圖象的直觀性,常常能以簡(jiǎn)馭繁,獲取簡(jiǎn)便,巧妙的解法。
四、特殊化策略 所謂特殊化策略,就是當(dāng)我們面臨的是一道難以入手的一般性題目時(shí),要注意從一般退到特殊,先考察包含在一般情形里的某些比較簡(jiǎn)單的特殊問題,以便從特殊問題的研究中,拓寬解題思路,發(fā)現(xiàn)解答原題的方向或途徑。
五、一般化策略 所謂一般化策略,就是當(dāng)我們面臨的是一個(gè)計(jì)算比較復(fù)雜或內(nèi)在聯(lián)系不甚明顯的特殊問題時(shí),要設(shè)法把特殊問題一般化,找出一個(gè)能夠揭示事物本質(zhì)屬性的一般情形的方法、技巧或結(jié)果,順利解出原題。
六、整體化策略 所謂整體化策略,就是當(dāng)我們面臨的是一道按常規(guī)思路進(jìn)行局部處理難以奏效或計(jì)算冗繁的題目時(shí),要適時(shí)調(diào)整視角,把問題作為一個(gè)有機(jī)整體,從整體入手,對(duì)整體結(jié)構(gòu)進(jìn)行全面、深刻的分析和改造,以便從整體特性的研究中,找到解決問題的途徑和辦法。
七、間接化策略 所謂間接化策略,就是當(dāng)我們面臨的是一道從正面入手復(fù)雜繁難,或在特定場(chǎng)合甚至找不到解題依據(jù)的題目時(shí),要隨時(shí)改變思維方向,從結(jié)論(或問題)的反面進(jìn)行思考,以便化難為易解出原題。
數(shù)學(xué)解題的秘訣(實(shí)用13篇)篇八
2.利用這些特殊函數(shù)的有界性,結(jié)合不等式推導(dǎo)出函數(shù)的值域。
方法二分離常數(shù)法。
1.觀察函數(shù)類型,型如;。
2.對(duì)函數(shù)變形成形式;。
3.求出函數(shù)在定義域范圍內(nèi)的值域,進(jìn)而求函數(shù)的值域。
方法三配方法。
1.將二次函數(shù)配方成;。
2.根據(jù)二次函數(shù)的圖像和性質(zhì)即可求出函數(shù)的值域。
方法四反函數(shù)法。
1.求已知函數(shù)的反函數(shù);。
2.求反函數(shù)的定義域;。
3.利用反函數(shù)的定義域是原函數(shù)的值域的關(guān)系即可求出原函數(shù)的值域。
方法五換元法。
1.第一步觀察函數(shù)解析式的形式,函數(shù)變量較多且相互關(guān)聯(lián);。
2.另新元代換整體,得一新函數(shù),求出新函數(shù)的值域即為原函數(shù)的值域。
數(shù)學(xué)解題的秘訣(實(shí)用13篇)篇九
-->
題型:這種題型分為兩類:第一類就是證明題,也就是證明平行(線面平行、面面平行),第二類就是證明垂直(線線垂直、線面垂直、面面垂直);第二就是計(jì)算題,包括棱錐體的體積公式計(jì)算、點(diǎn)到面的距離、有關(guān)二面角的計(jì)算(理科生掌握)解題思路:
證線面平行如直線與面有兩種方法:一種方法是在面中找到一條線與平行即可(一般情況下沒有現(xiàn)成的線存在,這個(gè)時(shí)候需要我們?cè)诿孀鲆粭l輔助線去跟線平行,一般這條輔助線的作法就是找中點(diǎn));另一種方法就是過直線作一個(gè)平面與面平行即可,輔助面的作法也基本上是找中點(diǎn)。
證面面平行:這類題比較簡(jiǎn)單,即證明這兩個(gè)平面的兩條相交線對(duì)應(yīng)平行即可。
證線面垂直如直線與面:這類型的題主要是看有前提沒有,即如果直線所在的平面與面在題目中已經(jīng)告訴我們是垂直關(guān)系了,那么我們只需要證明直線垂直于面與面的交線即可;如果題目中沒有說直線所在的平面與面是垂直的關(guān)系,那么我們需要證明直線垂直面內(nèi)的兩條相交線即可。
其實(shí)說實(shí)話,證明垂直的問題都是很簡(jiǎn)單的,一般都有什么勾股定理呀,還有更多的是根據(jù)一個(gè)定理(一條直線垂直于一個(gè)面,那么這條直線就垂直這個(gè)面的任何一條線)來證明垂直。
證面面垂直與證面面垂直:這類問題也比較簡(jiǎn)單,就是需要轉(zhuǎn)化為證線面垂直即可。
體積和點(diǎn)到面的距離計(jì)算:如果是三棱錐的體積要注意等體積法公式的應(yīng)用,一般情況就是考這個(gè)東西,沒有什么難度的,關(guān)鍵是高的尋找,一定要注意,只要你找到了高你就勝利了。除了三棱錐以外的其他錐體不要用等體積法了哈,等體積法是三棱錐的專利。二面角的計(jì)算:這類型對(duì)理科生來說是一個(gè)噩夢(mèng),其難度有二,第一是首先你要找到二面角在什么地方,另一個(gè)難度就是你要知道這個(gè)二面角所在直角三角形的邊長(zhǎng)分別是多少。
二面角(面與面)的找法主要是遵循以下步驟:首先找到從一個(gè)面的頂點(diǎn)a出發(fā)引向另一個(gè)面的垂線,垂足為b,然后過垂足b向這兩個(gè)面的交線做垂線,垂足為c,最后將a點(diǎn)與c點(diǎn)連接起來,這樣即為二面角(說白了就是應(yīng)用三垂線定理來找)。
二面角所在直角三角形的邊長(zhǎng)求法:一般應(yīng)用勾股定理,相似三角形,等面積法,正余弦定理等。
這里我著重說一下就是在題目中可能會(huì)出現(xiàn)這樣的情況,就是兩個(gè)面的相交處是一個(gè)點(diǎn),這個(gè)時(shí)候需要我們過這個(gè)點(diǎn)補(bǔ)充完整兩個(gè)面的交線,不知道怎么補(bǔ)交線的跟我說一聲。
第一步:首先要記住零點(diǎn)存在定理,介值定理,中值定理、極限存在的兩個(gè)準(zhǔn)則等基本原理,包括條件及結(jié)論,中值定理最好能記住他們的推到過程,有時(shí)可以借助幾何意義去記憶。
因?yàn)橹阑驹硎亲C明的基礎(chǔ),知道的程度(即就是對(duì)定理理解的深入程度)不同會(huì)導(dǎo)致不同的推理能力。如數(shù)學(xué)一真題第16題(1)是證明極限的存在性并求極限。只要證明了極限存在,求值是很容易的,但是如果沒有證明第一步,即使求出了極限值也是不能得分的。
因?yàn)閿?shù)學(xué)推理是環(huán)環(huán)相扣的,如果第一步未得到結(jié)論,那么第二步就是空中樓閣。這個(gè)題目非常簡(jiǎn)單,只用了極限存在的兩個(gè)準(zhǔn)則之一:?jiǎn)握{(diào)有界數(shù)列必有極限。只要知道這個(gè)準(zhǔn)則,該問題就能輕松解決,因?yàn)閷?duì)于該題中的數(shù)列來說,"單調(diào)性"與"有界性"都是很好驗(yàn)證的。再比如直接讓考生證明拉格朗日中值定理;但是像這樣直接可以利用基本原理的證明題在考研真題中并不是很多見,更多的是要用到第二步。
第二步:可以試著借助幾何意義尋求證明思路,以構(gòu)造出所需要的輔助函數(shù)。
一個(gè)證明題,大多時(shí)候是能用其幾何意義來正確解釋的`,當(dāng)然最為基礎(chǔ)的是要正確理解題目文字的含義。如2007年數(shù)學(xué)一第19題是一個(gè)關(guān)于中值定理的證明題,可以在直角坐標(biāo)系中畫出滿足題設(shè)條件的函數(shù)草圖,再聯(lián)系結(jié)論能夠發(fā)現(xiàn):兩個(gè)函數(shù)除兩個(gè)端點(diǎn)外還有一個(gè)函數(shù)值相等的點(diǎn),那就是兩個(gè)函數(shù)分別取最大值的點(diǎn)(正確審題:兩個(gè)函數(shù)取得最大值的點(diǎn)不一定是同一個(gè)點(diǎn))之間的一個(gè)點(diǎn)。這樣很容易想到輔助函數(shù)f(x)=f(x)-g(x)有三個(gè)零點(diǎn),兩次應(yīng)用羅爾中值定理就能得到所證結(jié)論。
再如數(shù)學(xué)一第18題(1)是關(guān)于零點(diǎn)存在定理的證明題,只要在直角坐標(biāo)系中結(jié)合所給條件作出函數(shù)y=f(x)及y=1-x在[0,1]上的圖形就立刻能看到兩個(gè)函數(shù)圖形有交點(diǎn),這就是所證結(jié)論,重要的是寫出推理過程。從圖形也應(yīng)該看到兩函數(shù)在兩個(gè)端點(diǎn)處大小關(guān)系恰好相反,也就是差函數(shù)在兩個(gè)端點(diǎn)的值是異號(hào)的,零點(diǎn)存在定理保證了區(qū)間內(nèi)有零點(diǎn),這就證得所需結(jié)果。如果第二步實(shí)在無法完滿解決問題的話,轉(zhuǎn)第三步。
第三步:從要證的結(jié)論出發(fā),去尋求我們所需要的構(gòu)造輔助函數(shù),我們稱之為"逆推"。
如第15題是不等式證明題,該題只要應(yīng)用不等式證明的一般步驟就能解決問題:即從結(jié)論出發(fā)構(gòu)造函數(shù),利用函數(shù)的單調(diào)性推出結(jié)論。
在判定函數(shù)的單調(diào)性時(shí)需借助導(dǎo)數(shù)符號(hào)與單調(diào)性之間的關(guān)系,正常情況只需一階導(dǎo)的符號(hào)就可判斷函數(shù)的單調(diào)性,非正常情況卻出現(xiàn)的更多(這里所舉出的例子就屬非正常情況),這時(shí)需先用二階導(dǎo)數(shù)的符號(hào)判定一階導(dǎo)數(shù)的單調(diào)性,再用一階導(dǎo)的符號(hào)判定原來函數(shù)的單調(diào)性,從而得所要證的結(jié)果。
考研數(shù)學(xué)的考察范圍雖然比較固定,但是對(duì)于許多考研黨來說,復(fù)習(xí)起來并非很容易,但只要掌握好方法,小編相信大家一定可以戰(zhàn)勝考研數(shù)學(xué)!
數(shù)學(xué)解題的秘訣(實(shí)用13篇)篇十
每年考研數(shù)學(xué)重要題目,本身作為微積分根本的概念,在整張?jiān)嚲淼姆萘肯嘈糯蠹叶加畜w會(huì),每年直接考查的就覆蓋選擇題、填空題和解答題三種題型。因此,不僅要掌握求極限的各類方法,而且快速準(zhǔn)確的寫出答案,會(huì)增加得分的機(jī)會(huì)。
2.一元函數(shù)微分學(xué)。
導(dǎo)數(shù)與微分的概念、運(yùn)算和應(yīng)用依然是考查重點(diǎn),如去年數(shù)學(xué)一的第1、16、18題,數(shù)學(xué)二的第3、9、10、20、21題,數(shù)學(xué)三的第17題,均是考查這部分內(nèi)容。導(dǎo)數(shù)應(yīng)用、三大中值定理是備考重點(diǎn)和難點(diǎn),考生須先掌握常見題型的解題思路,總結(jié)歸納每類題型的關(guān)鍵解題步驟。
同時(shí),對(duì)于數(shù)學(xué)三的考生來說,如果導(dǎo)數(shù)的經(jīng)濟(jì)應(yīng)用是前期的復(fù)習(xí)盲區(qū),近期須抓緊時(shí)間掌握相關(guān)內(nèi)容,因?yàn)橥怀隹疾閼?yīng)用能力是近年考研數(shù)學(xué)試題的明顯特點(diǎn),盡量不要在此失分。
3.一元函數(shù)積分學(xué)。
定積分的基本思想是元素法,因此作為定積分的應(yīng)用,要掌握元素法的基本思路。2015年考研數(shù)學(xué)一的第10題,數(shù)學(xué)二的第11題、第16題和第19題均是考查此部分內(nèi)容,考試類型為數(shù)學(xué)二的考生應(yīng)加強(qiáng)此部分備考。
4.多元函數(shù)微分學(xué)。
每年的考察形式為1-2個(gè)小題(選擇或者填空題),和一個(gè)大題(解答題),小題一般為多元函數(shù)偏導(dǎo)、全微分的計(jì)算,大題一般集中在多元函數(shù)極值方面。另外,多元函數(shù)求導(dǎo)和微分方程結(jié)合也是一種綜合題的表現(xiàn)形式。數(shù)學(xué)一的同學(xué)還要注意結(jié)合方向?qū)?shù)和多元微分的幾何應(yīng)用,綜合題可能會(huì)考察到相關(guān)內(nèi)容。
5.多元函數(shù)積分學(xué)。
備考這一部分重點(diǎn)掌握各類多元函數(shù)積分的計(jì)算。對(duì)于數(shù)學(xué)二、三的考生而言,每年的命題熱點(diǎn)在二重積分的計(jì)算。對(duì)于數(shù)學(xué)一的考生而言,除重積分(包括二重及三重積分)的計(jì)算外,還需注意曲線面積分的計(jì)算,三個(gè)公式:格林公式、高斯公式及斯托克斯公式的應(yīng)用。
6.級(jí)數(shù)。
無窮級(jí)數(shù),屬于數(shù)學(xué)一和數(shù)學(xué)三的備考范圍。主要考察點(diǎn)有兩個(gè),一是常數(shù)項(xiàng)級(jí)數(shù)的斂散性,二是冪級(jí)數(shù)的收斂域、求和及將函數(shù)展開為冪級(jí)數(shù)。考生要掌握其常數(shù)項(xiàng)級(jí)數(shù)斂散性判別的一般方法,對(duì)于正項(xiàng)級(jí)數(shù)的判斂方法比較多,一般類型的級(jí)數(shù)通過絕對(duì)收斂的性質(zhì)與正項(xiàng)級(jí)數(shù)相聯(lián)系,交錯(cuò)級(jí)數(shù)用萊布尼茨判別法。對(duì)于冪級(jí)數(shù),掌握求和的一般思路,同時(shí)注意注明和函數(shù)的收斂域,這是容易忽略的一點(diǎn)。
7.不等式的證明。
不等式的證明是思路較為靈活的一類題型,這也是一般考生認(rèn)為的比較難的考點(diǎn),建議考生掌握證明不等式的一般思路,如利用構(gòu)造輔助函數(shù),函數(shù)的單調(diào)性來構(gòu)筑從已知到結(jié)論的一個(gè)橋梁。另外,不等式證明是證明題的一類,證明題在解答題中一般多考察中值定理的應(yīng)用,數(shù)學(xué)中基本定理、典型定理的證明,考查考生的邏輯分析能力和分析問題、解決問題的能力。建議同學(xué)們?cè)趥淇紩r(shí)注意總結(jié)基本思路,切忌只做一些偏、難的題目。
這部分的出題點(diǎn)近幾年很穩(wěn)定,分別就客觀題和解答題進(jìn)行說明。客觀題一般考查行列式的性質(zhì)與計(jì)算、矩陣的性質(zhì)與運(yùn)算,解答題一般為求基礎(chǔ)解系,求非齊次線性方程組的通解,求特征值與特征向量(定義法,特征多項(xiàng)式基礎(chǔ)解系法),判斷與求相似對(duì)角矩陣,用正交變換化實(shí)對(duì)稱矩陣為對(duì)角矩陣(亦即用正交變換化二次型為標(biāo)準(zhǔn)形)。
此部分為數(shù)學(xué)一和數(shù)學(xué)三的考試范圍,概率論與數(shù)理統(tǒng)計(jì)可以說在三科中,對(duì)基本概念的深入理解所占的比例相對(duì)最大,而其中解題的方法并不多,涉及到的技巧是很少的(甚至可以說沒有技巧),因此,務(wù)必明確考察重點(diǎn),隨機(jī)事件概率的計(jì)算、隨機(jī)變量的數(shù)字特征、隨機(jī)變量的概率分布、矩估計(jì)與最大似然估計(jì)等同時(shí)掌握常見題型的解題思路和解題步驟。
雖然概率論與數(shù)理統(tǒng)計(jì)部分薄弱在數(shù)學(xué)考試中占比少,但考生也不要忽略,既然簡(jiǎn)單,就要拿到全分。建議多練習(xí),務(wù)必達(dá)到熟練的狀態(tài)。
數(shù)學(xué)解題的秘訣(實(shí)用13篇)篇十一
-->
2.類比推理是由特殊到特殊的推理,是兩類類似的對(duì)象之間的推理,其中一個(gè)對(duì)象具有某個(gè)性質(zhì),則另一個(gè)對(duì)象也具有類似的性質(zhì)。在進(jìn)行類比時(shí),要充分考慮已知對(duì)象性質(zhì)的'推理過程,然后類比推導(dǎo)類比對(duì)象的性質(zhì)。
二、演繹推理。
演繹推理是由一般到特殊的推理,數(shù)學(xué)的證明過程主要是通過演繹推理進(jìn)行的,只要采用的演繹推理的大前提、小前提和推理形式是正確的,其結(jié)論一定是正確,一定要注意推理過程的正確性與完備性。
三、直接證明與間接證明。
直接證明是相對(duì)于間接證明說的,綜合法和分析法是兩種常見的直接證明。綜合法一般地,利用已知條件和某些數(shù)學(xué)定義、定理、公理等,經(jīng)過一系列的推理論證,最后推導(dǎo)出所要證明的結(jié)論成立,這種證明方法叫做綜合法(或順推證法、由因?qū)Ч?。分析法一般地,從要證明的結(jié)論出發(fā),逐步尋求使它成立的充分條件,直至最后,把要證明的結(jié)論歸結(jié)為判定一個(gè)明顯成立的條件(已知條件、定理、定義、公理等)為止,這種證明方法叫做分析法。
間接證明是相對(duì)于直接證明說的,反證法是間接證明常用的方法。假設(shè)原命題不成立,經(jīng)過正確的推理,最后得出矛盾,因此說明假設(shè)錯(cuò)誤,從而證明原命題成立,這種證明方法叫做反證法。
四、數(shù)學(xué)歸納法。
數(shù)學(xué)上證明與自然數(shù)n有關(guān)的命題的一種特殊方法,它主要用來研究與正整數(shù)有關(guān)的數(shù)學(xué)問題,在高中數(shù)學(xué)中常用來證明等式成立和數(shù)列通項(xiàng)公式成立。
數(shù)學(xué)解題的秘訣(實(shí)用13篇)篇十二
所謂配方,就是把一個(gè)解析式利用恒等變形的方法,把其中的某些項(xiàng)配成一個(gè)或幾個(gè)多項(xiàng)式正整數(shù)次冪的和形式。通過配方解決數(shù)學(xué)問題的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是數(shù)學(xué)中一種重要的恒等變形的方法,它的應(yīng)用十分非常廣泛,在因式分解、化簡(jiǎn)根式、解方程、證明等式和不等式、求函數(shù)的極值和解析式等方面都經(jīng)常用到它。
因式分解是恒等變形的基礎(chǔ),它作為數(shù)學(xué)的一個(gè)有力工具、一種數(shù)學(xué)方法在代數(shù)、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,除中學(xué)課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項(xiàng)添項(xiàng)、求根分解、換元、待定系數(shù)等等。
我們通常把未知數(shù)或變數(shù)稱為元,所謂換元法,就是在一個(gè)比較復(fù)雜的數(shù)學(xué)式子中,用新的變?cè)ゴ嬖降囊粋€(gè)部分或改造原來的式子,使它簡(jiǎn)化,使問題易于解決。
不僅用來判定根的性質(zhì),而且作為一種解題方法,在代數(shù)式變形,解方程(組),解不等式,研究函數(shù)乃至幾何、三角運(yùn)算中都有非常廣泛的應(yīng)用。韋達(dá)定理除了已知一元二次方程的一個(gè)根,求另一根;已知兩個(gè)數(shù)的和與積,求這兩個(gè)數(shù)等簡(jiǎn)單應(yīng)用外,還可以討論二次方程根的`符號(hào),解對(duì)稱方程組,都有非常廣泛的應(yīng)用。5、待定系數(shù)法在解數(shù)學(xué)問題時(shí),若先判斷所求的結(jié)果具有某種確定的形式,其中含有某些待定的系數(shù),而后根據(jù)題設(shè)條件列出關(guān)于待定系數(shù)的等式,最后解出這些待定系數(shù)的值或找到這些待定系數(shù)間的某種關(guān)系,從而解答數(shù)學(xué)問題,這種解題方法稱為待定系數(shù)法。它是中學(xué)數(shù)學(xué)中常用的方法之一。
數(shù)學(xué)解題的秘訣(實(shí)用13篇)篇十三
選擇題因其答案是四選一,必然只有一個(gè)正確答案,那么我們就可以采用排除法,從四個(gè)選項(xiàng)中排除掉易于判斷是錯(cuò)誤的答案,那么留下的一個(gè)自然就是正確的答案。
2、賦予特殊值法。
即根據(jù)題目中的條件,選取某個(gè)符合條件的特殊值或作出特殊圖形進(jìn)行計(jì)算、推理的方法。用特殊值法解題要注意所選取的值要符合條件,且易于計(jì)算。
3、通過猜想、測(cè)量的方法,直接觀察或得出結(jié)果。
這類方法在近年來的高考題中常被運(yùn)用于探索規(guī)律性的問題,此類題的主要解法是運(yùn)用不完全歸納法,通過試驗(yàn)、猜想、試誤驗(yàn)證、總結(jié)、歸納等過程使問題得解。