作為一位杰出的教職工,總歸要編寫教案,教案是教學活動的總的組織綱領和行動方案。教案書寫有哪些要求呢?我們怎樣才能寫好一篇教案呢?以下我給大家整理了一些優質的教案范文,希望對大家能夠有所幫助。
高一數學必修一教案反思篇一
3.通過參與編題解題,激發學生學習的愛好.
教學重點是通項公式的熟悉;教學難點是對公式的靈活運用.
實物投影儀,多媒體軟件,電腦.
研探式.
一.復習提問
二.主體設計
1.方程思想的運用
(1)已知等差數列中,首項,公差,則-397是該數列的第x項.
(2)已知等差數列中,首項,則公差
(3)已知等差數列中,公差,則首項
2.基本量方法的使用
(1)已知等差數列中,求的值.
(2)已知等差數列中,求.
如:已知等差數列中,…
類似的還有
(4)已知等差數列中,求的值.
以上屬于對數列的項進行定量的研究,有無定性的判定?引出
3.研究等差數列的單調性
4.研究項的符號
這是為研究等差數列前項和的最值所做的預備工作.可配備的題目如
(1)已知數列的通項公式為,問數列從第幾項開始小于0?
(2)等差數列從第x項起以后每項均為負數.
三.小結
1.用方程思想熟悉等差數列通項公式;
2.用函數思想解決等差數列問題.
四.板書設計
等差數列通項公式1.方程思想的運用
2.基本量方法的使用
3.研究等差數列的單調性
4.研究項的符號
高一數學必修一教案反思篇二
一、自主學習
1.閱讀課本練習止。
2.回答問題:
(1)課本內容分成幾個層次?每個層次的中心內容是什么?
(2)層次間的聯系是什么?
(3)對數函數的定義是什么?
(4)對數函數與指數函數有什么關系?
3.完成練習。
4.小結。
二、方法指導
1.在學習對數函數時,同學們應從熟悉的指數問題出發,通過對指數函數的認識逐步轉化為對對數函數的認識,而且畫對數函數圖象時,既要考慮到對底數的分類討論而且對每一類問題也可以多選幾個不同的底,畫在同一個坐標系內,便于觀察圖象的特征,找出共性,歸納性質。
2.本節課的主線是對數函數是指數函數的反函數,所有的問題都應圍繞著這條主線展開,同學們在學習時應該把兩個函數進行類比,通過互為反函數的兩個函數的關系由已知函數研究未知函數的性質。
一、提問題
1.對數函數的自變量和函數分別在指數函數中是什么?
2.兩個函數如果互為反函數,則他們的值域,定義域有什么關系?
3.是否所有的函數都有反函數?試舉例說明。
二、變題目
1.試求下列函數的反函數:
(1);(2);(3);(4)。
2.求下列函數的定義域:
(1);(2);(3)。
3.已知則=;的定義域為。
1.對數函數的有關概念。
(1)把函數叫做對數函數,叫做對數函數的底數。
(2)以10為底數的對數函數為常用對數函數。
(3)以無理數為底數的對數函數為自然對數函數。
2.反函數的概念。
在指數函數中,是自變量,是的函數,其定義域是,值域是;在對數函數中,是自變量,是的函數,其定義域是,值域是,像這樣的兩個函數叫做互為反函數。
3.與對數函數有關的定義域的求法:
4.舉例說明如何求反函數。
一、課外作業:習題3-5a組1,2,3,b組1,
二、課外思考:
1.求定義域:
2.求使函數的函數值恒為負值的的取值范圍。
高一數學必修一教案反思篇三
蘇教版九年級數學下冊第六章第一節的二次函數的概念及相關習題
1、教材的地位和作用
這節課是在學生已經學習了一次函數、正比例函數、反比例函數的基礎上,來學習二次函數的概念。二次函數是初中階段研究的最后一個具體的函數,也是最重要的,在歷年來的中考題中占有較大比例。同時,二次函數和以前學過的一元二次方程、一元二次不等式有著密切的聯系。進一步學習二次函數將為它們的解法提供新的方法和途徑,并使學生更為深刻的理解“數形結合”的重要思想。而本節課的二次函數的概念是學習二次函數的基礎,是為后來學習二次函數的圖象做鋪墊。所以這節課在整個教材中具有承上啟下的重要作用。
2、教學目標和要求:
(1)知識與技能:使學生理解二次函數的概念,掌握根據實際問題列出二次函數關系式的方法,并了解如何根據實際問題確定自變量的取值范圍。
3、教學重點:對二次函數概念的理解。
4、教學難點:由實際問題確定函數解析式和確定自變量的取值范圍。
1、從創設情境入手,通過知識再現,孕伏教學過程
2、從學生活動出發,通過以舊引新,順勢教學過程
3、利用探索、研究手段,通過思維深入,領悟教學過程
1.什么叫函數?我們之前學過了那些函數?
(一次函數,正比例函數,反比例函數)
2.它們的形式是怎樣的?
(y=kx+b,k≠0;y=kx ,k≠0;y= , k≠0)
函數是研究兩個變量在某變化過程中的相互關系,我們已學過正比例函數,反比例函數和一次函數。看下面三個例子中兩個變量之間存在怎樣的關系。(電腦演示)
解:s=πr(r0)
解: y=x(20/2-x)=x(10-x)=-x+10x (0
解: y=100(1+x)
=100(x+2x+1)
= 100x+200x+100(0
教師提問:以上三個例子所列出的函數與一次函數有何相同點與不同點?
【設計意圖】通過具體事例,讓學生列出關系式,啟發學生觀察,思考,歸納出二次函數與一次函數的聯系: (1)函數解析式均為整式(這表明這種函數與一次函數有共同的特征)。(2)自變量的最高次數是2(這與一次函數不同)。
以上函數不同于我們所學過的一次函數,正比例函數,反比例函數,我們就把這種函數稱為二次函數。
二次函數的定義:形如y=ax2+bx+c (a≠0,a, b, c為常數) 的函數叫做二次函數。
鞏固對二次函數概念的理解:
1、強調“形如”,即由形來定義函數名稱。二次函數即y 是關于x的二次多項式(關于的x代數式一定要是整式)。
2、在 y=ax2+bx+c 中自變量是x ,它的取值范圍是一切實數。但在實際問題中,自變量的取值范圍是使實際問題有意義的值。(如例1中要求r0)
3、為什么二次函數定義中要求a≠0 ?
(若a=0,ax2+bx+c就不是關于x的二次多項式了)
5、b和c是否可以為零?
由例1可知,b和c均可為零.
若b=0,則y=ax2+c;
若c=0,則y=ax2+bx;
若b=c=0,則y=ax2.
【設計意圖】這里強調對二次函數概念的理解,有助于學生更好地理解,掌握其特征,為接下來的判斷二次函數做好鋪墊。
(1)y=3(x-1)+1 (2)
(3)s=3-2t (4)y=(x+3)- x
(5) s=10πr (6) y=2+2x
(8)y=x4+2x2+1(可指出y是關于x2的二次函數)
【設計意圖】理論學習完二次函數的概念后,讓學生在實踐中感悟什么樣的函數是二次函數,將理論知識應用到實踐操作中。
1.已知一個直角三角形的兩條直角邊長的和是10cm。
(1)當它的一條直角邊的長為4.5cm時,求這個直角三角形的面積;
于x的函數關系式。
【設計意圖】此題由具體數據逐步過渡到用字母表示關系式,讓學生經歷由具體到抽象的過程,從而降低學生學習的難度。
2.已知正方體的棱長為xcm,它的`表面積為scm2,體積為vcm3。
(1)分別寫出s與x,v與x之間的函數關系式子;
(2)這兩個函數中,那個是x的二次函數?
【設計意圖】簡單的實際問題,學生會很容易列出函數關系式,也很容易分辨出哪個是二次函數。通過簡單題目的練習,讓學生體驗到成功的歡愉,激發他們學習數學的興趣,建立學好數學的信心。
(1)分別寫出c關于r;v關于r的函數關系式;
(2)兩個函數中,都是二次函數嗎?
【設計意圖】此題要求學生熟記圓柱體積和底面周長公式,在這兒相當于做了一次復習,并與今天所學知識聯系起來。
【設計意圖】此題較前面幾題稍微復雜些,旨在讓學生能夠開動腦筋,積極思考,讓學生能夠“跳一跳,夠得到”。
【設計意圖】在此稍微滲透簡單的用待定系數法求二次函數解析式的問題,為下節課的教學做個鋪墊。
2.確定下列函數中k的值
本節課你有哪些收獲?還有什么不清楚的地方?
【設計意圖】讓學生來談本節課的收獲,培養學生自我檢查、自我小結的良好習慣,將知識進行整理并系統化。而且由此可了解到學生還有哪些不清楚的地方,以便在今后的教學中補充。
必做題:
2. 在長20cm,寬15cm的矩形木板的四角上各鋸掉一個邊長為xcm的正方形,寫出余下木板的面積y(cm2)與正方形邊長x(cm)之間的函數關系,并注明自變量的取值范圍。
選做題:
1.已知函數 是二次函數,求m的值。
2.試在平面直角坐標系畫出二次函數y=x2和y=-x2圖象
【設計意圖】作業中分為必做題與選做題,實施分層教學,體現新課標人人學有價值的數學,不同的人得到不同的發展。另外補充第4題,旨在激發學生繼續學習二次函數圖象的興趣。
以現代教育理論為依據
以現代信息技術為手段
貫穿一個原則――以學生為主體的原則
突出一個特色――充分鼓勵表揚的特色
滲透一個意識――應用數學的意識
高一數學必修一教案反思篇四
在中國古代,數學叫作算術,又稱算學,最后才改為數學.中國古代的算術是六藝之一,下面是小編幫大家整理的高一必修四數學教案,希望大家喜歡。
使學生在九年義務教育數學課程的基礎上,進一步提高作為未來公民所必要的數學素養,以滿足個人發展與社會進步的需要。具體目標如下。
1.獲得必要的數學基礎知識和基本技能,理解基本的數學概念、數學結論的本質,了解概念、結論等產生的背景、應用,體會其中所蘊涵的數學思想和方法,以及它們在后續學習中的作用。通過不同形式的自主學習、探究活動,體驗數學發現和創造的歷程。
2.提高空間想像、抽象概括、推理論證、運算求解、數據處理等基本能力。
3.提高數學地提出、分析和解決問題(包括簡單的實際問題)的能力,數學表達和交流的能力,發展獨立獲取數學知識的能力。
4.發展數學應用意識和創新意識,力求對現實世界中蘊涵的一些數學模式進行思考和作出判斷。
5.提高學習數學的興趣,樹立學好數學的信心,形成鍥而不舍的鉆研精神和科學態度。
6.具有一定的數學視野,逐步認識數學的科學價值、應用價值和文化價值,形成批判性的思維習慣,崇尚數學的理性精神,體會數學的美學意義,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀。
1.“親和力”:以生動活潑的呈現方式,激發興趣和美感,引發學習激情。
2.“問題性”:以恰時恰點的問題引導數學活動,培養問題意識,孕育創新精神。
3.“科學性”與“思想性”:通過不同數學內容的聯系與啟發,強調類比,推廣,特殊化,化歸等思想方法的運用,學習數學地思考問題的方式,提高數學思維能力,培育理性精神。
4.“時代性”與“應用性”:以具有時代性和現實感的素材創設情境,加強數學活動,發展應用意識。
1. 選取與內容密切相關的,典型的,豐富的和學生熟悉的素材,用生動活潑的語言,創設能夠體現數學的概念和結論,數學的思想和方法,以及數學應用的學習情境,使學生產生對數學的親切感,引發學生“看個究竟”的沖動,以達到培養其興趣的目的。
2. 通過“觀察”,“思考”,“探究”等欄目,引發學生的思考和探索活動,切實改進學生的學習方式。
3. 在教學中強調類比,推廣,特殊化,化歸等數學思想方法,盡可能養成其邏輯思維的`習慣。
1、基本情況:28班共 1600 人,男生 850 人,女生750 人;相對而言,數學尖子約 60人,中上等生約 180 人,中等生約580 人,中下生約 400 人,后進生約380 人。
2、其中特尖班一個(理科),文科導讀班一個,理科導讀班6個,成績較好。文科普通班6個,理科普通班15個學習情況一般,而學生自覺性差,自我控制能力弱,因此在教學中需時時提醒學生,培養其自覺性。班級存在的最大問題是計算能力太差,學生不喜歡去算題,嫌麻煩,只注重思路,因此在以后的教學中,重點在于培養學生的計算能力,同時要進一步提高其思維能力。同時,由于初中課改的原因,高中教材與初中教材銜接力度不夠,需在新授時適機補充一些內容。因此時間上可能仍然吃緊。同時,其底子薄弱,因此在教學時只能注重基礎再基礎,爭取每一堂課落實一個知識點,掌握一個知識點。
1、激發學生的學習興趣。由數學活動、故事、吸引人的課、合理的要求、師生談話等途徑樹立學生的學習信心,提高學習興趣,在主觀作用下上升和進步。
2、注意從實例出發,從感性提高到理性;注意運用對比的方法,反復比較相近的概念;注意結合直觀圖形,說明抽象的知識;注意從已有的知識出發,啟發學生思考。
3、加強培養學生的邏輯思維能力就解決實際問題的能力,以及培養提高學生的自學能力,養成善于分析問題的習慣,進行辨證唯物主義教育。
4、抓住公式的推導和內在聯系;加強復習檢查工作;抓住典型例題的分析,講清解題的關鍵和基本方法,注重提高學生分析問題的能力。
5、自始至終貫徹教學四環節,針對不同的教材內容選擇不同教法。
6、重視數學應用意識及應用能力的培養。