總結(jié)是把一定階段內(nèi)的有關(guān)情況分析研究,做出有指導性的經(jīng)驗方法以及結(jié)論的書面材料,它可以使我們更有效率,不妨坐下來好好寫寫總結(jié)吧。總結(jié)書寫有哪些要求呢?我們怎樣才能寫好一篇總結(jié)呢?下面是小編整理的個人今后的總結(jié)范文,歡迎閱讀分享,希望對大家有所幫助。
2023年二次根式知識點總結(jié)(推薦)一
高估學生對學過知識的掌握,認為平方根這一章的知識掌握不錯,所以在二次根式結(jié)果是非負數(shù)以及二次根式的被開方數(shù)也是非負數(shù)。我把這兩個結(jié)論草草給出,這樣導致基礎(chǔ)差的學生根本不知道這兩個結(jié)論的來源。
預習時間不充分,大部分學生是回顧了本章的知識點,但還沒來得及思考,易錯點沒有來得及整理展示討論,老師就開始講課,總怕展示時間過多以至于本節(jié)任務(wù)完不成。課堂活動時間也不充分,并且學生在思考問題時給予提示過多,以至于學生順著老師的思路走,沒有了自己的思考體系。因為時間不足,所以老師只好代替學生走了一下過場,訂正答案,還有一部分學生還沒有做完。這樣就不能真正檢驗學生掌握情況,不能及時反饋,及時采取措施進行補救。
學生不能很熟練地化簡二次根式,以致于二次根式的加減乘除不能順利進行。例如不會熟練化成最簡二次根式,導致學生對二次根式的加減感到很困難。在這里,應要求學生對100以內(nèi)的二次根式化簡熟練掌握,為二次根式的加減打下扎實的基礎(chǔ)。對二次根式的加減,大部分學生理解同類二次根式,并能夠合并同類二次根式,出現(xiàn)的問題在于二次根式的化簡,學困生在于整式的加減,整式的乘除,分式的加減和乘除的運算的公式和運算法則不清,即使把本節(jié)知識聽懂了,由于過去的知識不牢固,造成運算結(jié)果不正確。把過去學過的知識復習,使學生能夠獨立完成二次根式的運算。
2023年二次根式知識點總結(jié)(推薦)二
一、教學目標:
(一)知識與技能:
1.了解二次根式的概念,會確定二次根式成立的條件。
2.會用二次根式性質(zhì)進行有關(guān)計算。
3.了解逆用公式在實數(shù)范圍內(nèi)因式分解。
(二)過程與方法:體驗性質(zhì)的推導過程,感受由特殊到一般的方法。
(三)情感態(tài)度:激發(fā)對數(shù)學的興趣。
二、教學重點:
二次根式成立的條件,雙重非負性;
用性質(zhì)進行計算。
三、教學難點
性質(zhì)的逆用。
四、教學準備:課件
五、教學過程
(一)復習提問
1.什么叫二次根式?
2.下列各式是二次根式,求式子中的字母所滿足的條件:
(3)∵x取任何值都有2x2≥0,所以2x2+1>0,故x的取值為任意實數(shù).
(二)二次根式的簡單性質(zhì)
上節(jié)課我們已經(jīng)學習了二次根式的定義,并了解了第一個簡單性質(zhì)
我們知道,正數(shù)a有兩個平方根,分別記作零的平方根是零。引導學生總結(jié)出,其中,就是一個非負數(shù)a的算術(shù)平方根。將符號“”看作開平方求算術(shù)平方根的運算,看作將一個數(shù)進行平方的運算,而開平方運算和平方運算是互為逆運算,因而有:
這里需要注意的是公式成立的條件是a≥0,提問學生,a可以代表一個代數(shù)式嗎?
請分析:引導學生答如時才成立。時才成立,即a取任意實數(shù)時都成立。我們知道如果我們把,同學們想一想是否就可以把任何一個非負數(shù)寫成一個數(shù)的平方形式了.
例1
計算:
分析:這個例題中的四個小題,主要是運用公式。其中(2)、(3)、(4)題又運用了整式乘除中學習的積的冪的運算性質(zhì).結(jié)合第(2)小題中的,說明,這與帶分數(shù)。因此,以后遇到,應寫成,而不宜寫成。
例2
把下列非負數(shù)寫成一個數(shù)的平方的形式:
(1)5;
(2)11;
(3)1.6;
(4)0.35.
例3
把下列各式寫成平方差的形式,再分解因式:
(1)4x2-1;(2)a4-9;
(3)3a2-10;(4)a4-6a2+9.
解:(1)4x2-1
=(2x)2-12
=(2x+1)(2x-1).
(2)a4-9
=(a2)2-32
=(a2+3)(a2-3)
(3)3a2-10
(4)a4-6a2+32
=(a2)2-6a2+32
=(a2-3)2
(三)小結(jié)
1.繼續(xù)鞏固二次根式的定義,及二次根式中被開方數(shù)的取值范圍問題.
2.關(guān)于公式的應用。
(1)經(jīng)常用于乘法的運算中.
(2)可以把任何一個非負數(shù)寫成一個數(shù)的平方的形式,解決在實數(shù)范圍內(nèi)因式分解等方面的問題.
(四)練習和作業(yè)
練習:
1.填空
注意第(4)題需有2m≥0,m≥0,又需有-3m≥0,即m≤0,故m=0.
2.實數(shù)a、b在數(shù)軸上對應點的位置如下圖所示:
分析:通過本題滲透數(shù)形結(jié)合的思想,進一步鞏固二次根式的定義、性質(zhì),引導學生分析:由于a<0,b>0,且|a|>|b|.
3.計算
二、作業(yè)
教材p.172習題11.1;a組2、3;b組2.
補充作業(yè):
下列各式中的字母滿足什么條件時,才能使該式成為二次根式?
分析:要使這些式成為二次根式,只要被開方式是非負數(shù)即可,啟發(fā)學生分析如下:
(1)由-|a-2b|≥0,得a-2b≤0,但根據(jù)絕對值的性質(zhì),有|a-2b|≥0,∴
|a-2b|=0,即a-2b=0,得a=2b.
(2)由(-m2-1)(m-n)≥0,-(m2+1)(m-n)≥0
∴
(m2+1)(m-n)≤0,又m2+1>0,∴
m-n≤0,即m≤n.
2023年二次根式知識點總結(jié)(推薦)三
學生活動:請同學們完成下列各題:
1.計算
(1)(2x+y)·zx(2)(2x2y+3xy2)÷xy
如果把上面的x、y、z改寫成二次根式呢?以上的運算規(guī)律是否仍成立呢?仍成立.
整式運算中的x、y、z是一種字母,它的意義十分廣泛,可以代表所有一切,當然也可以代表二次根式,所以,整式中的運算規(guī)律也適用于二次根式.
例1.計算:
(1)(+)×(2)(4-3)÷2分析:剛才已經(jīng)分析,二次根式仍然滿足整式的運算規(guī)律,所以直接可用整式的運算規(guī)律.
解:(1)(+)×=×+×=+=3+2解:(4-3)÷2=4÷2-3÷2=2-例2.計算
(1)(+6)(3-)(2)(+)(-)
分析:剛才已經(jīng)分析,二次根式的多項式乘以多項式運算在乘法公式運算中仍然成立.
解:(1)(+6)(3-)
=3-()2+18-6=13-3(2)(+)(-)=()2-()2
=10-7=3
課本p20練習1、2.
例3.已知=2-,其中a、b是實數(shù),且a+b≠0,
化簡+,并求值.
分析:由于(+)(-)=1,因此對代數(shù)式的化簡,可先將分母有理化,再通過解含有字母系數(shù)的一元一次方程得到x的值,代入化簡得結(jié)果即可?