總結(jié)是指對(duì)某一階段的工作、學(xué)習(xí)或思想中的經(jīng)驗(yàn)或情況加以總結(jié)和概括的書(shū)面材料,它可以明確下一步的工作方向,少走彎路,少犯錯(cuò)誤,提高工作效益,因此,讓我們寫(xiě)一份總結(jié)吧。什么樣的總結(jié)才是有效的呢?這里給大家分享一些最新的總結(jié)書(shū)范文,方便大家學(xué)習(xí)。
推薦數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)(推薦)一
1.1.1
算法的概念
1、算法概念:
在數(shù)學(xué)上,現(xiàn)代意義上的“算法”通常是指可以用計(jì)算機(jī)來(lái)解決的某一類(lèi)問(wèn)題是程序或步驟,這些程序或步驟必須是明確和有效的,而且能夠在有限步之內(nèi)完成.2.算法的特點(diǎn):
(1)有限性:一個(gè)算法的步驟序列是有限的,必須在有限操作之后停止,不能是無(wú)限的(2)確定性:算法中的每一步應(yīng)該是確定的并且能有效地執(zhí)行且得到確定的結(jié)果,而不應(yīng)當(dāng)是模棱兩可.
(3)順序性與正確性:算法從初始步驟開(kāi)始,分為若干明確的步驟,每一個(gè)步驟只能有一個(gè)確定的后繼步驟,前一步是后一步的前提,只有執(zhí)行完前一步才能進(jìn)行下一步,并且每一步都準(zhǔn)確無(wú)誤,才能完成問(wèn)題.
(4)不唯一性:求解某一個(gè)問(wèn)題的解法不一定是唯一的,對(duì)于一個(gè)問(wèn)題可以有不同的算法.(5)普遍性:很多具體的問(wèn)題,都可以設(shè)計(jì)合理的算法去解決,如心算、計(jì)算器計(jì)算都要經(jīng)過(guò)有限、事先設(shè)計(jì)好的步驟加以解決.1.1.2
程序框圖
1、程序框圖基本概念:
(一)程序構(gòu)圖的概念:程序框圖又稱(chēng)流程圖,是一種用規(guī)定的圖形、指向線(xiàn)及文字說(shuō)明來(lái)準(zhǔn)確、直觀(guān)地表示算法的圖形。
一個(gè)程序框圖包括以下幾部分:表示相應(yīng)操作的程序框;帶箭頭的流程線(xiàn);程序框外必要文字說(shuō)明。
(二)構(gòu)成程序框的圖形符號(hào)及其作用
程序框起止框輸入、輸出框處理框法中任何需要輸入、輸出的位置。賦值、計(jì)算,算法中處理數(shù)據(jù)需要的算式、公式等分別寫(xiě)在不同的用以處理數(shù)據(jù)的處理框內(nèi)。判斷某一條件是否成立,成立時(shí)在出口處標(biāo)判斷框明“是”或“y”;不成立時(shí)標(biāo)明“否”或“n”。不可少的。表示一個(gè)算法輸入和輸出的信息,可用在算名稱(chēng)功能表示一個(gè)算法的起始和結(jié)束,是任何流程圖學(xué)習(xí)這部分知識(shí)的時(shí)候,要掌握各個(gè)圖形的形狀、作用及使用規(guī)則,畫(huà)程序框圖的規(guī)則如下:1、使用標(biāo)準(zhǔn)的圖形符號(hào)。2、框圖一般按從上到下、從左到右的方向畫(huà)。3、除判斷框外,大多數(shù)流程圖符號(hào)只有一個(gè)進(jìn)入點(diǎn)和一個(gè)退出點(diǎn)。判斷框具有超過(guò)一個(gè)退出點(diǎn)的唯一符號(hào)。4、判斷框分兩大類(lèi),一類(lèi)判斷框“是”與“否”兩分支的判斷,而且有且僅有兩個(gè)結(jié)果;另一類(lèi)是多分支判斷,有幾種不同的結(jié)果。5、在圖形符號(hào)內(nèi)描述的語(yǔ)言要非常簡(jiǎn)練清楚。(三)、算法的三種基本邏輯結(jié)構(gòu):順序結(jié)構(gòu)、條件結(jié)構(gòu)、循環(huán)結(jié)構(gòu)。
1、順序結(jié)構(gòu):順序結(jié)構(gòu)是最簡(jiǎn)單的算法結(jié)構(gòu),語(yǔ)句與語(yǔ)句之間,框與框之間是按從上到下的順序進(jìn)行的,它是由若干個(gè)依次執(zhí)行的處理步驟組成的,它是任何一個(gè)算法都離不開(kāi)的一種基本算法結(jié)構(gòu)。
順序結(jié)構(gòu)在程序框圖中的體現(xiàn)就是用流程線(xiàn)將程序框自上而下地連接起來(lái),按順序執(zhí)行算法步驟。如在示意圖中,a框和b框是依次執(zhí)行的,只有在執(zhí)行完a框指定的操作后,才能接著執(zhí)行b框所指定的操作。2、條件結(jié)構(gòu):
ab條件結(jié)構(gòu)是指在算法中通過(guò)對(duì)條件的判斷根據(jù)條件是否成立而選擇不同流向的算法結(jié)構(gòu)。
條件p是否成立而選擇執(zhí)行a框或b框。無(wú)論p條件是否成立,只能執(zhí)行a框或b框之一,不可能同時(shí)執(zhí)行a框和b框,也不可能a框、b框都不執(zhí)行。一個(gè)判斷結(jié)構(gòu)可以有多個(gè)判斷框。
3、循環(huán)結(jié)構(gòu):在一些算法中,經(jīng)常會(huì)出現(xiàn)從某處開(kāi)始,按照一定條件,反復(fù)執(zhí)行某一處理步驟的情況,這就是循環(huán)結(jié)構(gòu),反復(fù)執(zhí)行的處理步驟為循環(huán)體,顯然,循環(huán)結(jié)構(gòu)中一定包含條件結(jié)構(gòu)。循環(huán)結(jié)構(gòu)又稱(chēng)重復(fù)結(jié)構(gòu),循環(huán)結(jié)構(gòu)可細(xì)分為兩類(lèi):
(1)、一類(lèi)是當(dāng)型循環(huán)結(jié)構(gòu),如下左圖所示,它的功能是當(dāng)給定的條件p成立時(shí),執(zhí)行a框,a框執(zhí)行完畢后,再判斷條件p是否成立,如果仍然成立,再執(zhí)行a框,如此反復(fù)執(zhí)行a框,直到某一次條件p不成立為止,此時(shí)不再執(zhí)行a框,離開(kāi)循環(huán)結(jié)構(gòu)。
(2)、另一類(lèi)是直到型循環(huán)結(jié)構(gòu),如下右圖所示,它的功能是先執(zhí)行,然后判斷給定的條件p是否成立,如果p仍然不成立,則繼續(xù)執(zhí)行a框,直到某一次給定的條件p成立為止,此時(shí)不再執(zhí)行a框,離開(kāi)循環(huán)結(jié)構(gòu)。
aapp成立成立不成立不成立p
當(dāng)型循環(huán)結(jié)構(gòu)直到型循環(huán)結(jié)構(gòu)
注意:1循環(huán)結(jié)構(gòu)要在某個(gè)條件下終止循環(huán),這就需要條件結(jié)構(gòu)來(lái)判斷。因此,循環(huán)結(jié)構(gòu)中一定包含條件結(jié)構(gòu),但不允許“死循環(huán)”。2在循環(huán)結(jié)構(gòu)中都有一個(gè)計(jì)數(shù)變量和累加變量。計(jì)數(shù)變量用于記錄循環(huán)次數(shù),累加變量用于輸出結(jié)果。計(jì)數(shù)變量和累加變量一般是同步......執(zhí)行的,累加一次,計(jì)數(shù)一次。1.2.1
輸入、輸出語(yǔ)句和賦值語(yǔ)句1、輸入語(yǔ)句
(1)輸入語(yǔ)句的一般格式
圖形計(jì)算器格式input“提示內(nèi)容”;變量input“提示內(nèi)容”,變量(2)輸入語(yǔ)句的作用是實(shí)現(xiàn)算法的輸入信息功能;(3)“提示內(nèi)容”提示用戶(hù)輸入什么樣的信息,變量是指程序在運(yùn)行時(shí)其值是可以變化的量;(4)輸入語(yǔ)句要求輸入的值只能是具體的常數(shù),不能是函數(shù)、變量或表達(dá)式;(5)提示內(nèi)容與變量之間用分號(hào)“;”隔開(kāi),若輸入多個(gè)變量,變量與變量之間用逗號(hào)“,”隔開(kāi)。2、輸出語(yǔ)句
(1)輸出語(yǔ)句的一般格式
圖形計(jì)算器格式print“提示內(nèi)容”;表達(dá)式disp“提示內(nèi)容”,變量(2)輸出語(yǔ)句的作用是實(shí)現(xiàn)算法的輸出結(jié)果功能;(3)“提示內(nèi)容”提示用戶(hù)輸入什么樣的信息,表達(dá)式是指程序要輸出的數(shù)據(jù);(4)輸出語(yǔ)句可以輸出常量、變量或表達(dá)式的值以及字符。3、賦值語(yǔ)句
(1)賦值語(yǔ)句的一般格式
(2)賦值語(yǔ)句的作用是將表達(dá)式所代表的值賦給變量;(3)賦值語(yǔ)句中的“=”稱(chēng)作賦值號(hào),與數(shù)學(xué)中的等號(hào)的意義是不同的。賦值號(hào)的左右兩邊不能對(duì)換,它將賦值號(hào)右邊的表達(dá)式的值賦給賦值號(hào)左邊的變量;(4)賦值語(yǔ)句左邊只能是變量名字,而不是表達(dá)式,右邊表達(dá)式可以是一個(gè)數(shù)據(jù)、常量或算式;(5)對(duì)于一個(gè)變量可以多次賦值。
注意:①賦值號(hào)左邊只能是變量名字,而不能是表達(dá)式。如:2=x是錯(cuò)誤的。②賦值號(hào)左
右不能對(duì)換。如“a=b”“b=a”的含義運(yùn)行結(jié)果是不同的。③不能利用賦值語(yǔ)句進(jìn)行代數(shù)式的演算。(如化簡(jiǎn)、因式分解、解方程等)④賦值號(hào)“=”與數(shù)學(xué)中的等號(hào)意義不同。
1.2.2條件語(yǔ)句
1、條件語(yǔ)句的一般格式有兩種:(1)ifthenelse語(yǔ)句;(2)ifthen語(yǔ)句。2、ifthenelse語(yǔ)句
ifthenelse語(yǔ)句的一般格式為圖1,對(duì)應(yīng)的程序框圖為圖2。
圖形計(jì)算器變量=表達(dá)式格式表達(dá)式變量if條件then語(yǔ)句1else語(yǔ)句2endif滿(mǎn)足條件?是語(yǔ)句1否語(yǔ)句
圖1圖2
分析:在ifthenelse語(yǔ)句中,“條件”表示判斷的條件,“語(yǔ)句1”表示滿(mǎn)足條件時(shí)執(zhí)行的操作內(nèi)容;“語(yǔ)句2”表示不滿(mǎn)足條件時(shí)執(zhí)行的操作內(nèi)容;endif表示條件語(yǔ)句的結(jié)束。計(jì)算機(jī)在執(zhí)行時(shí),首先對(duì)if后的條件進(jìn)行判斷,如果條件符合,則執(zhí)行then后面的語(yǔ)句1;若條件不符合,則執(zhí)行else后面的語(yǔ)句2。3、ifthen語(yǔ)句
ifthen語(yǔ)句的一般格式為圖3,對(duì)應(yīng)的程序框圖為圖4。if條件then語(yǔ)句endif(圖3)
是滿(mǎn)足條件?否(圖4)執(zhí)行的操語(yǔ)句注意:“條件”表示判斷的條件;“語(yǔ)句”表示滿(mǎn)足條件時(shí)
作內(nèi)容,條件不滿(mǎn)足時(shí),結(jié)束程序;endif表示條件語(yǔ)句的結(jié)束。計(jì)算機(jī)在執(zhí)行時(shí)首先對(duì)if后的條件進(jìn)行判斷,如果條件符合就執(zhí)行then后邊的語(yǔ)句,若條件不符合則直接結(jié)束該條件語(yǔ)句,轉(zhuǎn)而執(zhí)行其它語(yǔ)句。
1.2.3循環(huán)語(yǔ)句
循環(huán)結(jié)構(gòu)是由循環(huán)語(yǔ)句來(lái)實(shí)現(xiàn)的。對(duì)應(yīng)于程序框圖中的兩種循環(huán)結(jié)構(gòu),一般程序設(shè)計(jì)語(yǔ)言中也有當(dāng)型(while型)和直到型(until型)兩種語(yǔ)句結(jié)構(gòu)。即while語(yǔ)句和until語(yǔ)句。
1、while語(yǔ)句
(1)while語(yǔ)句的一般格式是對(duì)應(yīng)的程序框圖是
循環(huán)體while條件循環(huán)體wend滿(mǎn)足條件?否是(2)當(dāng)計(jì)算機(jī)遇到while語(yǔ)句時(shí),先判斷條件的真假,如果條件符合,就執(zhí)行while與wend之間的循環(huán)體;然后再檢查上述條件,如果條件仍符合,再次執(zhí)行循環(huán)體,這個(gè)過(guò)程反復(fù)進(jìn)行,直到某一次條件不符合為止。這時(shí),計(jì)算機(jī)將不執(zhí)行循環(huán)體,直接跳到wend語(yǔ)句后,接著執(zhí)行wend之后的語(yǔ)句。因此,當(dāng)型循環(huán)有時(shí)也稱(chēng)為“前測(cè)試型”循環(huán)。2、until語(yǔ)句
(1)until語(yǔ)句的一般格式是對(duì)應(yīng)的程序框圖是
do循環(huán)體loopuntil條件循環(huán)體滿(mǎn)足條件?是否(2)直到型循環(huán)又稱(chēng)為“后測(cè)試型”循環(huán),從until型循環(huán)結(jié)構(gòu)分析,計(jì)算機(jī)執(zhí)行該語(yǔ)句時(shí),先執(zhí)行一次循環(huán)體,然后進(jìn)行條件的判斷,如果條件不滿(mǎn)足,繼續(xù)返回執(zhí)行循環(huán)體,然后再進(jìn)行條件的判斷,這個(gè)過(guò)程反復(fù)進(jìn)行,直到某一次條件滿(mǎn)足時(shí),不再執(zhí)行循環(huán)體,跳到loopuntil語(yǔ)句后執(zhí)行其他語(yǔ)句,是先執(zhí)行循環(huán)體后進(jìn)行條件判斷的循環(huán)語(yǔ)句。分析:當(dāng)型循環(huán)與直到型循環(huán)的區(qū)別:(先由學(xué)生討論再歸納)(1)當(dāng)型循環(huán)先判斷后執(zhí)行,直到型循環(huán)先執(zhí)行后判斷;
在while語(yǔ)句中,是當(dāng)條件滿(mǎn)足時(shí)執(zhí)行循環(huán)體,在until語(yǔ)句中,是當(dāng)條件不滿(mǎn)足時(shí)執(zhí)行循環(huán)
1.3.1輾轉(zhuǎn)相除法與更相減損術(shù)
1、輾轉(zhuǎn)相除法。也叫歐幾里德算法,用輾轉(zhuǎn)相除法求最大公約數(shù)的步驟如下:(1):用較大的數(shù)m除以較小的數(shù)n得到一個(gè)商為m,n的最大公約數(shù);若(3):若商
s2r1r0s0和一個(gè)余數(shù)
r0r0;(2):若
s1r0=0,則n
r1≠0,則用除數(shù)n除以余數(shù)
r1得到一個(gè)商
r0和一個(gè)余數(shù)
r1;
=0,則
r2r1為m,n的`最大公約數(shù);若≠0,則用除數(shù)除以余數(shù)
rn1得到一個(gè)
和一個(gè)余數(shù);依次計(jì)算直至
rn=0,此時(shí)所得到的即為所求的最
大公約數(shù)。2、更相減損術(shù)
我國(guó)早期也有求最大公約數(shù)問(wèn)題的算法,就是更相減損術(shù)。在《九章算術(shù)》中有更相減損術(shù)求最大公約數(shù)的步驟:可半者半之,不可半者,副置分母子之?dāng)?shù),以少減多,更相減損,求其等也,以等數(shù)約之。
翻譯為:(1):任意給出兩個(gè)正數(shù);判斷它們是否都是偶數(shù)。若是,用2約簡(jiǎn);若不是,執(zhí)行第二步。(2):以較大的數(shù)減去較小的數(shù),接著把較小的數(shù)與所得的差比較,并以大數(shù)減小數(shù)。繼續(xù)這個(gè)操作,直到所得的數(shù)相等為止,則這個(gè)數(shù)(等數(shù))就是所求的最大公約數(shù)。例2用更相減損術(shù)求98與63的最大公約數(shù).分析:(略)
3、輾轉(zhuǎn)相除法與更相減損術(shù)的區(qū)別:
(1)都是求最大公約數(shù)的方法,計(jì)算上輾轉(zhuǎn)相除法以除法為主,更相減損術(shù)以減法為主,計(jì)算次數(shù)上輾轉(zhuǎn)相除法計(jì)算次數(shù)相對(duì)較少,特別當(dāng)兩個(gè)數(shù)字大小區(qū)別較大時(shí)計(jì)算次數(shù)的區(qū)別較明顯。
(2)從結(jié)果體現(xiàn)形式來(lái)看,輾轉(zhuǎn)相除法體現(xiàn)結(jié)果是以相除余數(shù)為0則得到,而更相減損術(shù)
則以減數(shù)與差相等而得到
1.3.2秦九韶算法與排序1、秦九韶算法概念:
f(x)=anxn+an-1xn-1+….+a1x+a0求值問(wèn)題
f(x)=anxn+an-1xn-1+….+a1x+a0=(anxn-1+an-1xn-2+….+a1)x+a0=((anxn-2+an-1xn-3+….+a2)x+a1)x+a0
=......=(...(anx+an-1)x+an-2)x+...+a1)x+a0
求多項(xiàng)式的值時(shí),首先計(jì)算最內(nèi)層括號(hào)內(nèi)依次多項(xiàng)式的值,即v1=anx+an-1然后由內(nèi)向外逐層計(jì)算一次多項(xiàng)式的值,即
v2=v1x+an-2v3=v2x+an-3......vn=vn-1x+a0、
這樣,把n次多項(xiàng)式的求值問(wèn)題轉(zhuǎn)化成求n個(gè)一次多項(xiàng)式的值的問(wèn)題。2、兩種排序方法:直接插入排序和冒泡排序1、直接插入排序
基本思想:插入排序的思想就是讀一個(gè),排一個(gè)。將第1個(gè)數(shù)放入數(shù)組的第1個(gè)元素中,以后讀入的數(shù)與已存入數(shù)組的數(shù)進(jìn)行比較,確定它在從大到小的排列中應(yīng)處的位置.將該位置以及以后的元素向后推移一個(gè)位置,將讀入的新數(shù)填入空出的位置中.(由于算法簡(jiǎn)單,可以舉例說(shuō)明)2、冒泡排序
基本思想:依次比較相鄰的兩個(gè)數(shù),把大的放前面,小的放后面.即首先比較第1個(gè)數(shù)和第2個(gè)數(shù),大數(shù)放前,小數(shù)放后.然后比較第2個(gè)數(shù)和第3個(gè)數(shù)......直到比較最后兩個(gè)數(shù).第一趟結(jié)束,最小的一定沉到最后.重復(fù)上過(guò)程,仍從第1個(gè)數(shù)開(kāi)始,到最后第2個(gè)數(shù)......由于在排序過(guò)程中總是大數(shù)往前,小數(shù)往后,相當(dāng)氣泡上升,所以叫冒泡排序.
1.3.3進(jìn)位制1、概念:進(jìn)位制是一種記數(shù)方式,用有限的數(shù)字在不同的位置表示不同的數(shù)值。可使用數(shù)字符號(hào)的個(gè)數(shù)稱(chēng)為基數(shù),基數(shù)為n,即可稱(chēng)n進(jìn)位制,簡(jiǎn)稱(chēng)n進(jìn)制?,F(xiàn)在最常用的是十進(jìn)制,通常使用10個(gè)阿拉伯?dāng)?shù)字0-9進(jìn)行記數(shù)。對(duì)于任何一個(gè)數(shù),我們可以用不同的進(jìn)位制來(lái)表示。比如:十進(jìn)數(shù)57,可以用二進(jìn)制表示為111001,也可以用八進(jìn)制表示為71、用十六進(jìn)制表示為39,它們所代表的數(shù)值都是一樣的。
一般地,若k是一個(gè)大于一的整數(shù),那么以k為基數(shù)的k進(jìn)制可以表示為:
anan1...a1a0(k)(0ank,0an1,...,a1,a0k),
而表示各種進(jìn)位制數(shù)一般在數(shù)字右下腳加注來(lái)表示,如111001(2)表示二進(jìn)制數(shù),34(5)表示5進(jìn)制數(shù)
第二章統(tǒng)計(jì)
2.1.1簡(jiǎn)單隨機(jī)抽樣
1.總體和樣本
總體:在統(tǒng)計(jì)學(xué)中,把研究對(duì)象的全體叫做總體.個(gè)體:把每個(gè)研究對(duì)象叫做個(gè)體.
總體容量:把總體中個(gè)體的總數(shù)叫做總體容量.
為了研究總體的有關(guān)性質(zhì),一般從總體中隨機(jī)抽取一部分:研究,我們稱(chēng)它為樣本.其中個(gè)體的個(gè)數(shù)稱(chēng)為樣本容量。......
2.簡(jiǎn)單隨機(jī)抽樣,也叫純隨機(jī)抽樣。就是從總體中不加任何分組、劃類(lèi)、排隊(duì)等,完全隨機(jī)地抽取調(diào)查單位。特點(diǎn)是:每個(gè)樣本單位被抽中的可能性相同(概率相等),樣本的每個(gè)單位完全獨(dú)立,彼此間無(wú)一定的關(guān)聯(lián)性和排斥性。簡(jiǎn)單隨機(jī)抽樣是其它各種抽樣形式的基礎(chǔ)。通常只是在總體單位之間差異程度較小和數(shù)目較少時(shí),才采用這種方法。3.簡(jiǎn)單隨機(jī)抽樣常用的方法:
(1)抽簽法;⑵隨機(jī)數(shù)表法;⑶計(jì)算機(jī)模擬法;⑷使用統(tǒng)計(jì)軟件直接抽取。
在簡(jiǎn)單隨機(jī)抽樣的樣本容量設(shè)計(jì)中,主要考慮:①總體變異情況;②允許誤差范圍;③概率保證程度。
4.抽簽法:
(1)給調(diào)查對(duì)象群體中的每一個(gè)對(duì)象編號(hào);(2)準(zhǔn)備抽簽的工具,實(shí)施抽簽
,,,
(3)對(duì)樣本中的每一個(gè)個(gè)體進(jìn)行測(cè)量或調(diào)查
例:請(qǐng)調(diào)查你所在的學(xué)校的學(xué)生做喜歡的體育活動(dòng)情況。5.隨機(jī)數(shù)表法:
例:利用隨機(jī)數(shù)表在所在的班級(jí)中抽取10位同學(xué)參加某項(xiàng)活動(dòng)。
2.1.2系統(tǒng)抽樣
1.系統(tǒng)抽樣(等距抽樣或機(jī)械抽樣):
把總體的單位進(jìn)行排序,再計(jì)算出抽樣距離,然后按照這一固定的抽樣距離抽取樣本。第一個(gè)樣本采用簡(jiǎn)單隨機(jī)抽樣的辦法抽取。
k(抽樣距離)=n(總體規(guī)模)/n(樣本規(guī)模)
前提條件:總體中個(gè)體的排列對(duì)于研究的變量來(lái)說(shuō),應(yīng)是隨機(jī)的,即不存在某種與研究變量相關(guān)的規(guī)則分布??梢栽谡{(diào)查允許的條件下,從不同的樣本開(kāi)始抽樣,對(duì)比幾次樣本的特點(diǎn)。如果有明顯差別,說(shuō)明樣本在總體中的分布承某種循環(huán)性規(guī)律,且這種循環(huán)和抽樣距離重合。
2.系統(tǒng)抽樣,即等距抽樣是實(shí)際中最為常用的抽樣方法之一。因?yàn)樗鼘?duì)抽樣框的要求較低,實(shí)施也比較簡(jiǎn)單。更為重要的是,如果有某種與調(diào)查指標(biāo)相關(guān)的輔助變量可供使用,總體單元按輔助變量的大小順序排隊(duì)的話(huà),使用系統(tǒng)抽樣可以大大提高估計(jì)精度。
2.1.3分層抽樣
1.分層抽樣(類(lèi)型抽樣):
先將總體中的所有單位按照某種特征或標(biāo)志(性別、年齡等)劃分成若干類(lèi)型或?qū)哟危缓笤僭诟鱾€(gè)類(lèi)型或?qū)哟沃胁捎煤?jiǎn)單隨機(jī)抽樣或系用抽樣的辦法抽取一個(gè)子樣本,最后,將這些子樣本合起來(lái)構(gòu)成總體的樣本。
兩種方法:
1.先以分層變量將總體劃分為若干層,再按照各層在總體中的比例從各層中抽取。2.先以分層變量將總體劃分為若干層,再將各層中的元素按分層的順序整齊排列,最后用系統(tǒng)抽樣的方法抽取樣本。
2.分層抽樣是把異質(zhì)性較強(qiáng)的總體分成一個(gè)個(gè)同質(zhì)性較強(qiáng)的子總體,再抽取不同的子總體中的樣本分別代表該子總體,所有的樣本進(jìn)而代表總體。
分層標(biāo)準(zhǔn):
(1)以調(diào)查所要分析和研究的主要變量或相關(guān)的變量作為分層的標(biāo)準(zhǔn)。
(2)以保證各層內(nèi)部同質(zhì)性強(qiáng)、各層之間異質(zhì)性強(qiáng)、突出總體內(nèi)在結(jié)構(gòu)的變量作為分層變量。
(3)以那些有明顯分層區(qū)分的變量作為分層變量。3.分層的比例問(wèn)題:
(1)按比例分層抽樣:根據(jù)各種類(lèi)型或?qū)哟沃械膯挝粩?shù)目占總體單位數(shù)目的比重來(lái)抽取子樣本的方法。
(2)不按比例分層抽樣:有的層次在總體中的比重太小,其樣本量就會(huì)非常少,此時(shí)采用該方法,主要是便于對(duì)不同層次的子總體進(jìn)行專(zhuān)門(mén)研究或進(jìn)行相互比較。如果要用樣本資料推斷總體時(shí),則需要先對(duì)各層的數(shù)據(jù)資料進(jìn)行加權(quán)處理,調(diào)整樣本中各層的比例,使數(shù)據(jù)恢復(fù)到總體中各層實(shí)際的比例結(jié)構(gòu)。
2.2.2用樣本的數(shù)字特征估計(jì)總體的數(shù)字特征
1、本均值:xx1x2xnn
2、.樣本標(biāo)準(zhǔn)差:ss2(x1x)(x2x)(xnx)n222
3.用樣本估計(jì)總體時(shí),如果抽樣的方法比較合理,那么樣本可以反映總體的信息,但從樣本得到的信息會(huì)有偏差。在隨機(jī)抽樣中,這種偏差是不可避免的。
雖然我們用樣本數(shù)據(jù)得到的分布、均值和標(biāo)準(zhǔn)差并不是總體的真正的分布、
均值和標(biāo)準(zhǔn)差,而只是一個(gè)估計(jì),但這種估計(jì)是合理的,特別是當(dāng)樣本量很大時(shí),它們確實(shí)反映了總體的信息。
4.(1)如果把一組數(shù)據(jù)中的每一個(gè)數(shù)據(jù)都加上或減去同一個(gè)共同的常數(shù),標(biāo)準(zhǔn)差不變(2)如果把一組數(shù)據(jù)中的每一個(gè)數(shù)據(jù)乘以一個(gè)共同的常數(shù)k,標(biāo)準(zhǔn)差變?yōu)樵瓉?lái)的k倍(3)一組數(shù)據(jù)中的最大值和最小值對(duì)標(biāo)準(zhǔn)差的影響,區(qū)間(x3s,x3s)的應(yīng)用;“去掉一個(gè)最高分,去掉一個(gè)最低分”中的科學(xué)道理2.3.2兩個(gè)變量的線(xiàn)性相關(guān)1、概念:
(1)回歸直線(xiàn)方程(2)回歸系數(shù)2.最小二乘法
3.直線(xiàn)回歸方程的應(yīng)用
(1)描述兩變量之間的依存關(guān)系;利用直線(xiàn)回歸方程即可定量描述兩個(gè)變量間依存
的數(shù)量關(guān)系
(2)利用回歸方程進(jìn)行預(yù)測(cè);把預(yù)報(bào)因子(即自變量x)代入回歸方程對(duì)預(yù)報(bào)量(即
因變量y)進(jìn)行估計(jì),即可得到個(gè)體y值的容許區(qū)間。
(3)利用回歸方程進(jìn)行統(tǒng)計(jì)控制規(guī)定y值的變化,通過(guò)控制x的范圍來(lái)實(shí)現(xiàn)統(tǒng)計(jì)控
制的目標(biāo)。如已經(jīng)得到了空氣中no2的濃度和汽車(chē)流量間的回歸方程,即可通過(guò)控制汽車(chē)流量來(lái)控制空氣中no2的濃度。
4.應(yīng)用直線(xiàn)回歸的注意事項(xiàng)
(1)做回歸分析要有實(shí)際意義;(2)回歸分析前,最好先作出散點(diǎn)圖;(3)回歸直線(xiàn)不要外延。
第三章概率
3.1.13.1.2隨機(jī)事件的概率及概率的意義
1、基本概念:
(1)必然事件:在條件s下,一定會(huì)發(fā)生的事件,叫相對(duì)于條件s的必然事件;(2)不可能事件:在條件s下,一定不會(huì)發(fā)生的事件,叫相對(duì)于條件s的不可能事件;(3)確定事件:必然事件和不可能事件統(tǒng)稱(chēng)為相對(duì)于條件s的確定事件;
(4)隨機(jī)事件:在條件s下可能發(fā)生也可能不發(fā)生的事件,叫相對(duì)于條件s的隨機(jī)事件;(5)頻數(shù)與頻率:在相同的條件s下重復(fù)n次試驗(yàn),觀(guān)察某一事件a是否出現(xiàn),稱(chēng)n次試
驗(yàn)中事件a出現(xiàn)的次數(shù)na為事件a出現(xiàn)的頻數(shù);稱(chēng)事件a出現(xiàn)的比例nafn(a)=n為事件a出現(xiàn)的概率:對(duì)于給定的隨機(jī)事件a,如果隨著試驗(yàn)次數(shù)的增加,事件a發(fā)生的頻率fn(a)穩(wěn)定在某個(gè)常數(shù)上,把這個(gè)常數(shù)記作p(a),稱(chēng)為事件a的概率。
(6)頻率與概率的區(qū)別與聯(lián)系:隨機(jī)事件的頻率,指此事件發(fā)生的次數(shù)na與試驗(yàn)總次數(shù)n
na的比值n,它具有一定的穩(wěn)定性,總在某個(gè)常數(shù)附近擺動(dòng),且隨著試驗(yàn)次數(shù)的不斷增多,這種擺動(dòng)幅度越來(lái)越小。我們把這個(gè)常數(shù)叫做隨機(jī)事件的概率,概率從數(shù)量上反映了隨機(jī)事件發(fā)生的可能性的大小。頻率在大量重復(fù)試驗(yàn)的前提下可以近似地作為這個(gè)事件的概率
3.1.3概率的基本性質(zhì)
1、基本概念:
(1)事件的包含、并事件、交事件、相等事件
(2)若a∩b為不可能事件,即a∩b=ф,那么稱(chēng)事件a與事件b互斥;
(3)若a∩b為不可能事件,a∪b為必然事件,那么稱(chēng)事件a與事件b互為對(duì)立事件;(4)當(dāng)事件a與b互斥時(shí),滿(mǎn)足加法公式:p(a∪b)=p(a)+p(b);若事件a與b為對(duì)立
事件,則a∪b為必然事件,所以p(a∪b)=p(a)+p(b)=1,于是有p(a)=1p(b)
2、概率的基本性質(zhì):
1)必然事件概率為1,不可能事件概率為0,因此0≤p(a)≤1;2)當(dāng)事件a與b互斥時(shí),滿(mǎn)足加法公式:p(a∪b)=p(a)+p(b);
3)若事件a與b為對(duì)立事件,則a∪b為必然事件,所以p(a∪b)=p(a)+p(b)=1,于是有p(a)=1p(b);
4)互斥事件與對(duì)立事件的區(qū)別與聯(lián)系,互斥事件是指事件a與事件b在一次試驗(yàn)中不會(huì)同時(shí)發(fā)生,其具體包括三種不同的情形:(1)事件a發(fā)生且事件b不發(fā)生;(2)事件a不發(fā)生且事件b發(fā)生;(3)事件a與事件b同時(shí)不發(fā)生,而對(duì)立事件是指事件a與事件b有且僅有一個(gè)發(fā)生,其包括兩種情形;(1)事件a發(fā)生b不發(fā)生;(2)事件b發(fā)生事件a不發(fā)生,對(duì)立事件互斥事件的特殊情形。3.2.13.2.2古典概型及隨機(jī)數(shù)的產(chǎn)生
1、(1)古典概型的使用條件:試驗(yàn)結(jié)果的有限性和所有結(jié)果的等可能性。(2)古典概型的解題步驟;①求出總的基本事件數(shù);
a包含的基本事件數(shù)②求出事件a所包含的基本事件數(shù),然后利用公式p(a)=總的基本事件個(gè)數(shù)
3.3.13.3.2幾何概型及均勻隨機(jī)數(shù)的產(chǎn)生
1、基本概念:
(1)幾何概率模型:如果每個(gè)事件發(fā)生的概率只與構(gòu)成該事件區(qū)域的長(zhǎng)度(面積或體積)成比例,則稱(chēng)這樣的概率模型為幾何概率模型;(2)幾何概型的概率公式:
構(gòu)成事件a的區(qū)域長(zhǎng)度(面積或體積)積);
p(a)=試驗(yàn)的全部結(jié)果所構(gòu)成的區(qū)域長(zhǎng)度(面積或體(3)幾何概型的特點(diǎn):1)試驗(yàn)中所有可能出現(xiàn)的結(jié)果(基本事件)有無(wú)限多個(gè);2)每個(gè)基本事件出現(xiàn)的可能性相等.
推薦數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)(推薦)二
準(zhǔn)確把握《教學(xué)大綱》和《考試大綱》的各項(xiàng)基本要求,立足于基礎(chǔ)知識(shí)和基本技能的教學(xué),注重滲透數(shù)學(xué)思想和方法。針對(duì)學(xué)生實(shí)際,不斷研究數(shù)學(xué)教學(xué),改進(jìn)教法,指導(dǎo)學(xué)法,奠定立足社會(huì)所需要的必備的基礎(chǔ)知識(shí)、基本技能和基本能力,著力于培養(yǎng)學(xué)生的創(chuàng)新精神,運(yùn)用數(shù)學(xué)的意識(shí)和能力,奠定他們終身學(xué)習(xí)的基礎(chǔ)。
1、深入鉆研教材。以教材為核心,深入研究教材中章節(jié)知識(shí)的內(nèi)外結(jié)構(gòu),熟練把握知識(shí)的邏輯體系,細(xì)致領(lǐng)悟教材改革的精髓,逐步明確教材對(duì)教學(xué)形式、內(nèi)容和教學(xué)目標(biāo)的影響。
2、準(zhǔn)確把握新大綱。新大綱修改了部分內(nèi)容的教學(xué)要求層次,準(zhǔn)確把握新大綱對(duì)知識(shí)點(diǎn)的基本要求,防止自覺(jué)不自覺(jué)地對(duì)教材加深加寬。同時(shí),在整體上,要重視數(shù)學(xué)應(yīng)用;重視數(shù)學(xué)思想方法的滲透。如增加閱讀材料(開(kāi)闊學(xué)生的視野),以拓寬知識(shí)的廣度來(lái)求得知識(shí)的深度。
3、樹(shù)立以學(xué)生為主體的教育觀(guān)念。學(xué)生的發(fā)展是課程實(shí)施的出發(fā)點(diǎn)和歸宿,教師必須面向全體學(xué)生因材施教,以學(xué)生為主體,構(gòu)建新的認(rèn)識(shí)體系,營(yíng)造有利于學(xué)生學(xué)習(xí)的氛圍。
4、發(fā)揮教材的多種教學(xué)功能。用好章頭圖,激發(fā)學(xué)生的學(xué)習(xí)興趣;發(fā)揮閱讀材料的功能,培養(yǎng)學(xué)生用數(shù)學(xué)的意識(shí);組織好研究性課題的教學(xué),讓學(xué)生感受社會(huì)生活之所需;小結(jié)和復(fù)習(xí)是培養(yǎng)學(xué)生自學(xué)的好材料。
5、落實(shí)課外活動(dòng)的內(nèi)容。組織和加強(qiáng)數(shù)學(xué)興趣小組的活動(dòng)內(nèi)容。
1.通過(guò)實(shí)例,了解集合的含義,體會(huì)元素與集合的.屬于關(guān)系。
2.能選擇自然語(yǔ)言、圖形語(yǔ)言、集合語(yǔ)言(列舉法或描述法)描述不同的具體問(wèn)題,感受集合語(yǔ)言的意義和作用。
3.理解集合之間包含與相等的含義,能識(shí)別給定集合的子集。
4.在具體情境中,了解全集與空集的含義。
5.理解兩個(gè)集合的并集與交集的含義,會(huì)求兩個(gè)簡(jiǎn)單集合的并集與交集。
6.理解在給定集合中一個(gè)子集的補(bǔ)集的含義,會(huì)求給定子集的補(bǔ)集。
7.能使用venn圖表達(dá)集合的關(guān)系及運(yùn)算,體會(huì)直觀(guān)圖示對(duì)理解抽象概念的作用。
8.通過(guò)豐富實(shí)例,進(jìn)一步體會(huì)函數(shù)是描述變量之間的依賴(lài)關(guān)系的重要數(shù)學(xué)模型,在此基礎(chǔ)上學(xué)習(xí)用集合與對(duì)應(yīng)的語(yǔ)言來(lái)刻畫(huà)函數(shù),體會(huì)對(duì)應(yīng)關(guān)系在刻畫(huà)函數(shù)概念中的作用;了解構(gòu)成函數(shù)的要素,會(huì)求一些簡(jiǎn)單函數(shù)的定義域和值域;了解映射的概念。
9.在實(shí)際情境中,會(huì)根據(jù)不同的需要選擇恰當(dāng)?shù)姆椒ǎㄈ鐖D像法、列表法、解析法)表示函數(shù)。
10.通過(guò)具體實(shí)例,了解簡(jiǎn)單的分段函數(shù),并能簡(jiǎn)單應(yīng)用。
11.通過(guò)已學(xué)過(guò)的函數(shù)特別是二次函數(shù),理解函數(shù)的單調(diào)性、最大(小)值及其幾何意義;結(jié)合具體函數(shù),了解奇偶性的含義。
12.學(xué)會(huì)運(yùn)用函數(shù)圖象理解和研究函數(shù)的性質(zhì)。
課時(shí)分配(14課時(shí))
1.1.1 | 集合的含義與表示 | 約1課時(shí) | 9月1日 |
1.1.2 | 集合間的基本關(guān)系 | 約1課時(shí) | 9月4日 | | 9月12日 |
1.1.3 | 集合的基本運(yùn)算 | 約2課時(shí) | |
小結(jié)與復(fù)習(xí) | 約1課時(shí) | ||
1.2.1 | 函數(shù)的概念 | 約2課時(shí) | |
1.2.2 | 函數(shù)的表示法 | 約2課時(shí) | 9月13日 | | 9月25日 |
1.3.1 | 單調(diào)性與最大(?。┲?/td> | 約2課時(shí) | |
1.3.2 | 奇偶性 | 約1課時(shí) | |
小結(jié)與復(fù)習(xí) | 約2課時(shí) |
1.通過(guò)具體實(shí)例,了解指數(shù)函數(shù)模型的實(shí)際背景。
2.理解有理指數(shù)冪的含義,通過(guò)具體實(shí)例了解實(shí)數(shù)指數(shù)冪的意義,掌握冪的運(yùn)算。
3。理解指數(shù)函數(shù)的概念和意義,能借助計(jì)算器或計(jì)算機(jī)畫(huà)出具體指數(shù)函數(shù)的圖象,探索并理解指數(shù)函數(shù)的單調(diào)性與特殊點(diǎn)。
4.在解決簡(jiǎn)單實(shí)際問(wèn)題過(guò)程中,體會(huì)指數(shù)函數(shù)是一類(lèi)重要的函數(shù)模型。
5。理解對(duì)數(shù)的概念及其運(yùn)算性質(zhì),知道用換底公式能將一般對(duì)數(shù)轉(zhuǎn)化成自然對(duì)數(shù)或常用對(duì)數(shù);通過(guò)閱讀材料,了解對(duì)數(shù)的發(fā)現(xiàn)歷史以及其對(duì)簡(jiǎn)化運(yùn)算的作用。
6。通過(guò)具體實(shí)例,直觀(guān)了解對(duì)數(shù)函數(shù)模型所刻畫(huà)的數(shù)量關(guān)系,初步理解對(duì)數(shù)函數(shù)的概念,體會(huì)對(duì)數(shù)函數(shù)是一類(lèi)重要的函數(shù)模型;能借助計(jì)算器或計(jì)算機(jī)畫(huà)出具體對(duì)數(shù)函數(shù)的圖象,探索并了解對(duì)數(shù)函數(shù)的單調(diào)性和特殊點(diǎn)。
7.通過(guò)實(shí)例,了解冪函數(shù)的概念;結(jié)合函數(shù)的圖象,了解它們的變化情況。
課時(shí)分配(15課時(shí))
2.1.1 | 引言、指數(shù)與指數(shù)冪的運(yùn)算 | 約3課時(shí) | 9月27日30日 |
2.1.2 | 指數(shù)函數(shù)及其性質(zhì) | 約3課時(shí) | 10月8日10日 |
2.2.1 | 對(duì)數(shù)與對(duì)數(shù)運(yùn)算 | 約3課時(shí) | 10月11日14日 |
2.2.2 | 對(duì)數(shù)函數(shù)及其性質(zhì) | 約3課時(shí) | 10月15日18日 |
2.3 | 冪函數(shù) | 約1課時(shí) | 10月19日24日 |
小結(jié) | 約2課時(shí) |
1。結(jié)合二次函數(shù)的圖象,判斷一元二次方程根的存在性及根的個(gè)數(shù),從而了解函數(shù)的零點(diǎn)與方程根的聯(lián)系。
根據(jù)具體函數(shù)的圖象,能夠借助計(jì)算器用二分法求相應(yīng)方程的近似解,了解這種方法是求方程近似解的常用方法。
2。利用計(jì)算工具,比較指數(shù)函數(shù)、對(duì)數(shù)函數(shù)以及冪函數(shù)增長(zhǎng)差異;結(jié)合實(shí)例體會(huì)直線(xiàn)上升、指數(shù)爆炸、對(duì)數(shù)增長(zhǎng)等不同函數(shù)類(lèi)型增長(zhǎng)的含義。
3。收集一些社會(huì)生活中普遍使用的函數(shù)模型(指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、冪函數(shù)、分段函數(shù)等)的實(shí)例,了解函數(shù)模型的廣泛應(yīng)用。
4。根據(jù)某個(gè)主題,收集17世紀(jì)前后發(fā)生的一些對(duì)數(shù)學(xué)發(fā)展起重大作用的歷史事件和人物(開(kāi)普勒、伽利略、笛卡兒、牛頓、萊布尼茨、歐拉等)的有關(guān)資料或現(xiàn)實(shí)生活中的函數(shù)實(shí)例,采取小組合作的方式寫(xiě)一篇有關(guān)函數(shù)概念的形成、發(fā)展或應(yīng)用的文章,在班級(jí)中進(jìn)行交流。
課時(shí)分配(8課時(shí))
3.1.1 | 方程的根與函數(shù)的零點(diǎn) | 約1課時(shí) | 10月25日 |
3.1.2 | 用二分法求方程的近似解 | 約2課時(shí) | 10月26日27日 |
3.2.1 | 幾類(lèi)不同增長(zhǎng)的函數(shù)模型 | 約2課時(shí) | 10月30日 | 11月3日 |
3.2.2 | 函數(shù)模型的應(yīng)用實(shí)例 | 約2課時(shí) | |
小結(jié) | 約1課時(shí) |
考生只要在全面復(fù)習(xí)的基礎(chǔ)上,抓住重點(diǎn)、難點(diǎn)、易錯(cuò)點(diǎn),各個(gè)擊破,夯實(shí)基礎(chǔ),規(guī)范答題,一定會(huì)穩(wěn)中求進(jìn),取得優(yōu)異的成績(jī)。
推薦數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)(推薦)三
- 高中數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié) 推薦度:
- 高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 推薦度:
- 高二數(shù)學(xué)必修四《任意角和弧度制》教案 推薦度:
- 高一歷史必修一知識(shí)點(diǎn)總結(jié) 推薦度:
- 初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 推薦度:
- 相關(guān)推薦
高二數(shù)學(xué)必修2知識(shí)點(diǎn)總結(jié)
你可能體驗(yàn)過(guò)很多美妙的事情,比如撫慰心靈的樂(lè)曲,賞心悅目的畫(huà)作,動(dòng)人心弦的詩(shī)歌,不過(guò)有一樣?xùn)|西,能夠包含上面所有的內(nèi)容,那就是數(shù)學(xué)。下面是小編整理的高二數(shù)學(xué)必修2知識(shí)點(diǎn)總結(jié),歡迎來(lái)參考!
一般我們把不含任何元素的集合叫做空集。
(1)按元素屬性分類(lèi),如點(diǎn)集,數(shù)集。
(2)按元素的個(gè)數(shù)多少,分為有/無(wú)限集
關(guān)于集合的概念:
(1)確定性:作為一個(gè)集合的元素,必須是確定的,這就是說(shuō),不能確定的對(duì)象就不能構(gòu)成集合,也就是說(shuō),給定一個(gè)集合,任何一個(gè)對(duì)象是不是這個(gè)集合的元素也就確定了。
(2)互異性:對(duì)于一個(gè)給定的集合,集合中的元素一定是不同的(或說(shuō)是互異的),這就是說(shuō),集合中的任何兩個(gè)元素都是不同的對(duì)象,相同的對(duì)象歸入同一個(gè)集合時(shí)只能算作集合的一個(gè)元素。
(3)無(wú)序性:判斷一些對(duì)象時(shí)候構(gòu)成集合,關(guān)鍵在于看這些對(duì)象是否有明確的標(biāo)準(zhǔn)。
集合可以根據(jù)它含有的元素的個(gè)數(shù)分為兩類(lèi):
含有有限個(gè)元素的集合叫做有限集,含有無(wú)限個(gè)元素的集合叫做無(wú)限集。
非負(fù)整數(shù)全體構(gòu)成的集合,叫做自然數(shù)集,記作n;
在自然數(shù)集內(nèi)排除0的'集合叫做正整數(shù)集,記作n+或n*;
整數(shù)全體構(gòu)成的集合,叫做整數(shù)集,記作z;
有理數(shù)全體構(gòu)成的集合,叫做有理數(shù)集,記作q;(有理數(shù)是整數(shù)和分?jǐn)?shù)的統(tǒng)稱(chēng),一切有理數(shù)都可以化成分?jǐn)?shù)的形式。)
實(shí)數(shù)全體構(gòu)成的集合,叫做實(shí)數(shù)集,記作r。(包括有理數(shù)和無(wú)理數(shù)。其中無(wú)理數(shù)就是無(wú)限不循環(huán)小數(shù),有理數(shù)就包括整數(shù)和分?jǐn)?shù)。數(shù)學(xué)上,實(shí)數(shù)直觀(guān)地定義為和數(shù)軸上的點(diǎn)一一對(duì)應(yīng)的數(shù)。)
1.列舉法:如果一個(gè)集合是有限集,元素又不太多,常常把集合的所有元素都列舉出來(lái),寫(xiě)在花括號(hào)“{ }”內(nèi)表示這個(gè)集合,例如,由兩個(gè)元素0,1構(gòu)成的集合可表示為{0,1}.
有些集合的元素較多,元素的排列又呈現(xiàn)一定的規(guī)律,在不致于發(fā)生誤解的情況下,也可以列出幾個(gè)元素作為代表,其他元素用省略號(hào)表示。
例如:不大于100的自然數(shù)的全體構(gòu)成的集合,可表示為{0,1,2,3,…,100}.
無(wú)限集有時(shí)也用上述的列舉法表示,例如,自然數(shù)集n可表示為{1,2,3,…,n,…}.
2.描述法:一種更有效地描述集合的方法,是用集合中元素的特征性質(zhì)來(lái)描述。
例如:正偶數(shù)構(gòu)成的集合,它的每一個(gè)元素都具有性質(zhì):“能被2整除,且大于0”
而這個(gè)集合外的其他元素都不具有這種性質(zhì),因此,我們可以用上述性質(zhì)把正偶數(shù)集合表示為
{x∈r│x能被2整除,且大于0}或{x∈r│x=2n,n∈n+},
大括號(hào)內(nèi)豎線(xiàn)左邊的x表示這個(gè)集合的任意一個(gè)元素,元素x從實(shí)數(shù)集合中取值,在豎線(xiàn)右邊寫(xiě)出只有集合內(nèi)的元素x才具有的性質(zhì)。
一般地,如果在集合i中,屬于集合a的任意一個(gè)元素x都具有性質(zhì)p( x),而不屬于集合a的元素都不具有的性質(zhì)p(x),則性質(zhì)p(x)叫做集合a的一個(gè)特征性質(zhì)。于是,集合a可以用它的性質(zhì)p(x)描述為{x∈i│p(x)}
它表示集合a是由集合i中具有性質(zhì)p(x)的所有元素構(gòu)成的,這種表示集合的方法,叫做特征性質(zhì)描述法,簡(jiǎn)稱(chēng)描述法。
例如:集合a={x∈r│x2-1=0}的特征是x2 -1=0
s("content_relate");【高二數(shù)學(xué)必修2知識(shí)點(diǎn)總結(jié)】相關(guān)文章:
1.高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)
2.高中數(shù)學(xué)必修四知識(shí)點(diǎn)總結(jié)
3.高二語(yǔ)文必修3《蜀道難》知識(shí)點(diǎn)
4.高二語(yǔ)文必修5《滕王閣序》知識(shí)點(diǎn)整理
5.高二語(yǔ)文必修4柳永詞兩首知識(shí)點(diǎn)
6.高一政治必修一知識(shí)點(diǎn)總結(jié)
7.必修2《采薇》說(shuō)課稿
8.高二外研社必修五作文
9.高二語(yǔ)文必修三作文
推薦數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)(推薦)四
1、理解集合的概念和性質(zhì)。
2、了解元素與集合的表示方法。
3、熟記有關(guān)數(shù)集。
4、培養(yǎng)學(xué)生認(rèn)識(shí)事物的能力。
集合概念、性質(zhì)
集合概念的理解
1、定義:
集合:一般地,某些指定的對(duì)象集在一起就成為一個(gè)集合(集)。元素:集合中每個(gè)對(duì)象叫做這個(gè)集合的元素。
由此上述例中集合的元素是什么?
例(1)的元素為1、3、5、7,
例(2)的元素為到兩定點(diǎn)距離等于兩定點(diǎn)間距離的點(diǎn),
例(3)的元素為滿(mǎn)足不等式3x—2x+3的實(shí)數(shù)x,
例(4)的元素為所有直角三角形,
例(5)為高一·六班全體男同學(xué)。
一般用大括號(hào)表示集合,{?}如{我校的籃球隊(duì)員},{太平洋、大西洋、印度洋、北冰洋}。則上幾例可表示為??
為方便,常用大寫(xiě)的拉丁字母表示集合:a={我校的籃球隊(duì)員},b={1,2,3,4,5}
(1)確定性;(2)互異性;(3)無(wú)序性。
3、元素與集合的關(guān)系:隸屬關(guān)系
元素與集合的關(guān)系有“屬于∈”及“不屬于?(?也可表示為)兩種。如a={2,4,8,16},則4∈a,8∈a,32?a。
集合的元素通常用小寫(xiě)的拉丁字母表示,如:a是集合a的元素,就說(shuō)a屬于集a記作a?a,相反,a不屬于集a記作a?a(或)
注:1、集合通常用大寫(xiě)的拉丁字母表示,如a、b、c、p、q??
元素通常用小寫(xiě)的拉丁字母表示,如a、b、c、p、q??
2、“∈”的開(kāi)口方向,不能把a(bǔ)∈a顛倒過(guò)來(lái)寫(xiě)。
4
注:(1)自然數(shù)集與非負(fù)整數(shù)集是相同的,也就是說(shuō),自然數(shù)集包括數(shù)0。
(2)非負(fù)整數(shù)集內(nèi)排除0的集。記作n__或n+ 。q、z、r等其它數(shù)集內(nèi)排除0
的集,也是這樣表示,例如,整數(shù)集內(nèi)排除0的集,表示成z__
請(qǐng)回答:已知a+b+c=m,a={x|ax2+bx+c=m},判斷1與a的關(guān)系。
【一、及時(shí)回憶】
如果等到把課堂內(nèi)容遺忘得差不多時(shí)才復(fù)習(xí),就幾乎等于重新學(xué)習(xí),所以課堂學(xué)習(xí)的新知識(shí)必須及時(shí)復(fù)習(xí)。
可以一個(gè)人單獨(dú)回憶,也可以幾個(gè)人在一起互相啟發(fā),補(bǔ)充回憶。一般按照教師板書(shū)的提綱和要領(lǐng)進(jìn)行,也可以按教材綱目結(jié)構(gòu)進(jìn)行,從課題到重點(diǎn)內(nèi)容,再到例題的每部分的細(xì)節(jié),循序漸進(jìn)地進(jìn)行復(fù)習(xí)。在復(fù)習(xí)過(guò)程中要不失時(shí)機(jī)整理筆記,因?yàn)檎砉P記也是一種有效的復(fù)習(xí)方法。
【二、重復(fù)鞏固】
即使是復(fù)習(xí)過(guò)的內(nèi)容仍須定期鞏固,但是復(fù)習(xí)的次數(shù)應(yīng)隨時(shí)間的增長(zhǎng)而逐步減小,間隔也可以逐漸拉長(zhǎng)??梢援?dāng)天鞏固新知識(shí),每周進(jìn)行周小結(jié),每月進(jìn)行階段性總結(jié),期中、期末進(jìn)行全面系統(tǒng)的學(xué)期復(fù)習(xí)。從內(nèi)容上看,每課知識(shí)即時(shí)回顧,每單元進(jìn)行知識(shí)梳理,每章節(jié)進(jìn)行知識(shí)歸納總結(jié),必須把相關(guān)知識(shí)串聯(lián)在一起,形成知識(shí)網(wǎng) 絡(luò),達(dá)到對(duì)知識(shí)和方法的整體把握。
【三、合理安排】
復(fù)習(xí)一般可以分為集中復(fù)習(xí)和分散復(fù)習(xí)。實(shí)驗(yàn)證明,分散復(fù)習(xí)的效果優(yōu)于集中復(fù)習(xí),特殊情況除外。分散復(fù)習(xí),可以把需要識(shí)記的材料適當(dāng)分類(lèi),并且與其他的學(xué)習(xí)或娛樂(lè)或休息交替進(jìn)行,不至于單調(diào)使用某種思維方式,形成疲勞。分散復(fù)習(xí)也應(yīng)結(jié)合各自認(rèn)知水平,以及識(shí)記素材的特點(diǎn),把握重復(fù)次數(shù)與間隔時(shí)間,并非間隔時(shí)間越長(zhǎng)越好,而要適合自己的復(fù)習(xí)規(guī)律。
【四、突破重點(diǎn)難點(diǎn)】
對(duì)所學(xué)的素材要進(jìn)行分析、歸類(lèi),找出重、難點(diǎn),分清主次。在復(fù)習(xí)過(guò)程中,特別要關(guān)注難點(diǎn)及容易造成誤解的問(wèn)題,應(yīng)分析其關(guān)鍵點(diǎn)和易錯(cuò)點(diǎn),找出原因,必要時(shí)還可以把這類(lèi)問(wèn)題進(jìn)行梳理,記錄在一個(gè)專(zhuān)題本上,也可以在電腦上做一個(gè)重難點(diǎn)“超市”,可隨時(shí)點(diǎn)擊,進(jìn)行復(fù)習(xí)。
【五、效果檢測(cè)】
隨著時(shí)間的推移,復(fù)習(xí)的效果會(huì)產(chǎn)生變化,有的淡化、有的模糊、有的不準(zhǔn)確,到底各環(huán)節(jié)的內(nèi)容掌握得如何,需進(jìn)行效果檢測(cè),如:周周練、月月測(cè)、單元過(guò)關(guān)練習(xí)、期中考試、期末考試等,都是為了檢測(cè)學(xué)習(xí)效果。檢測(cè)時(shí)必須獨(dú)立,完成,保證檢測(cè)出的效果的真實(shí)性,如果存在問(wèn)題,應(yīng)該找到錯(cuò)誤的根源,并適時(shí)采取補(bǔ)救措施進(jìn)行校正。目前市場(chǎng)上練習(xí)冊(cè)多如牛毛,請(qǐng)?jiān)诶蠋煹闹笇?dǎo)下選用。
總體原則
1、先做簡(jiǎn)單題,后做難題。
2、遇到較難的大題,把所有跟該題有關(guān)的知識(shí)點(diǎn)都寫(xiě)出來(lái),要知道數(shù)學(xué)講究步驟分。
3、若是證明題,萬(wàn)一不會(huì),可以先寫(xiě)出已知條件,再寫(xiě)出要證明的最后一步,再一步一步往上推,中間步驟隨便寫(xiě)點(diǎn)。(使用于粗心的教師,但我們不提倡,重點(diǎn)是要平時(shí)學(xué)好)。
一、整體把握、抓大放小
拿到試卷后可以先快速瀏覽一下所有題目,根據(jù)積累的考試經(jīng)驗(yàn),大致估計(jì)一下每部分應(yīng)該分配的時(shí)間。對(duì)于能夠很快做出來(lái)的題目,一定要拿到應(yīng)得的分?jǐn)?shù)。
二、確定每部分的答題時(shí)間
1、考試時(shí)占用了很多時(shí)間卻一點(diǎn)也沒(méi)有做出來(lái)的題目。對(duì)于這類(lèi)題目,你以后考試時(shí)就應(yīng)該盡量減少時(shí)間,或者放棄,等以后學(xué)習(xí)進(jìn)階了再?lài)L試著做。
2、考試時(shí)花了過(guò)多的時(shí)間才做出來(lái)的題目。對(duì)于這類(lèi)題目,你以后平時(shí)做題時(shí)要盡量加快速度,或者通過(guò)“反復(fù)訓(xùn)練”等提高反應(yīng)速度,這樣,你下次考試時(shí)能用較少的時(shí)間做出來(lái)。
三、碰到難題時(shí)
1、你可以先用“直覺(jué)”最快的找到解題思路;
2、如果“直覺(jué)”不管用,你可以聯(lián)想以前做過(guò)的類(lèi)似的題目,從而找到解題思路;
3、如果這樣也不行,你可以猜測(cè)一下這道題目可能涉及到的知識(shí)點(diǎn)和解題技巧。
4、對(duì)于花了一定時(shí)間仍然不能做出來(lái)的題目,要勇于放棄。
四、卷面整潔、字跡清楚、注意小節(jié)
做到卷面整潔、字跡清楚,把標(biāo)點(diǎn)、符號(hào)、解題步驟等小的地方盡量做好,不要丟掉應(yīng)得的每一分。
推薦數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)(推薦)五
使學(xué)生學(xué)好從事社會(huì)主義現(xiàn)代化建設(shè)和進(jìn)一步學(xué)習(xí)現(xiàn)代科學(xué)技術(shù)所必需的數(shù)學(xué)基礎(chǔ)知識(shí)和基本技能,培養(yǎng)學(xué)生的運(yùn)算能力、邏輯思維能力和空間想象能力,以逐步形成運(yùn)用數(shù)學(xué)知識(shí)來(lái)分析和解決實(shí)際問(wèn)題的能力。要培養(yǎng)學(xué)生對(duì)數(shù)學(xué)的興趣,激勵(lì)學(xué)生為實(shí)現(xiàn)四個(gè)現(xiàn)代化學(xué)好數(shù)學(xué)的積極性,培養(yǎng)學(xué)生的科學(xué)態(tài)度和辨證唯物主義的觀(guān)點(diǎn)。
1、4班共人,男生xx人,女生xx人;本班相對(duì)而言,數(shù)學(xué)尖子約xx人,中上等生約xx人,中等生約xx人,中下生約xx人,差生約xx人。xx5班共xx人,男生xx人,女生xx人;本班相對(duì)而言,數(shù)學(xué)尖子約xx人,中上等生約人,中等生約xx人,中下生約xx人,差生約xx人。
2、4班在初中升入高中的升學(xué)考試中,數(shù)學(xué)成績(jī)?cè)?00’及以上的有xx人,80’—99’有xx人,60’—79’有xx人,40’—59’有xx人,40’以下有xx人,其中最高分為xx,最低分為xx。
5班在初中升入高中的升學(xué)考試中,數(shù)學(xué)成績(jī)?cè)?00’及以上的有xx人,80’—99’有xx人,60’—79’有xx人,40’—59’有xx人,40’以下有xx人,其中最高分為xx,最低分為xx。
3、4/5班分別為高一年級(jí)9個(gè)班中編排一個(gè)普高班和一個(gè)普高班之后的體育班,整體分析的結(jié)果是:
1、教材內(nèi)容:集合、一元二次不等式、簡(jiǎn)易邏輯、映射與函數(shù)、指數(shù)函數(shù)和對(duì)數(shù)函數(shù)、數(shù)列、等差數(shù)列、等比數(shù)列。
2、集合概念及其基本理論,是近代數(shù)學(xué)最基本的內(nèi)容之一;函數(shù)是中學(xué)數(shù)學(xué)中最重要的基本概念之一;數(shù)列有著廣泛的應(yīng)用,是進(jìn)一步學(xué)習(xí)高等數(shù)學(xué)的基礎(chǔ)。
3、教材重點(diǎn):幾種函數(shù)的圖像與性質(zhì)、不等式的解法、數(shù)列的概念、等差數(shù)列與等比數(shù)列的通項(xiàng)公式、前n項(xiàng)和的公式。
4、教材難點(diǎn):關(guān)于集合的各個(gè)基本概念的涵義及其相互之間的區(qū)別和聯(lián)系、映射的概念以及用映射來(lái)刻畫(huà)函數(shù)概念、反函數(shù)、一些代數(shù)命題的證明、
5、教材關(guān)鍵:理解概念,熟練、牢固掌握函數(shù)的圖像與性質(zhì)。
6、采用了由淺入深、減緩坡度、分散難點(diǎn),逐步展開(kāi)教材內(nèi)容的做法,符合從有限到無(wú)限的認(rèn)識(shí)規(guī)律,體現(xiàn)了從量變到質(zhì)變和對(duì)立統(tǒng)一的辯證規(guī)律。每階段的內(nèi)容相對(duì)獨(dú)立,方法比較單一,有助于掌握每一階段內(nèi)容。
7、各部分知識(shí)之間的聯(lián)系較強(qiáng),每一階段的知識(shí)都是以前一階段為基礎(chǔ),同時(shí)為下階段的學(xué)習(xí)作準(zhǔn)備。
8、全期教材重要的內(nèi)容是:集合運(yùn)算、不等式解法、函數(shù)的奇偶性與單調(diào)性、等差與等比數(shù)列的通項(xiàng)和前n項(xiàng)和。
1、理解集合、子集、交集、并集、補(bǔ)集的概念。了解空集和全集的意義,了解屬于、包含、相等關(guān)系的意義,能掌握有關(guān)的術(shù)語(yǔ)和符號(hào),能正確地表示一些簡(jiǎn)單的集合。
2、掌握一元二次不等式的解法和絕對(duì)值不等式的解法,并能熟練求解。
推薦數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)(推薦)六
1、認(rèn)真“聽(tīng)”的習(xí)慣。
為了教和學(xué)的同步,教師應(yīng)要求學(xué)生在課堂上集中思想,專(zhuān)心聽(tīng)老師講課,認(rèn)真聽(tīng)同學(xué)發(fā)言,抓住重點(diǎn)、難點(diǎn)、疑點(diǎn)聽(tīng),邊聽(tīng)邊思考,對(duì)中、高年級(jí)學(xué)生提倡邊聽(tīng)邊做聽(tīng)課筆記。
2、積極“想”的習(xí)慣。
積極思考老師和同學(xué)提出的問(wèn)題,使自己始終置身于教學(xué)活動(dòng)之中,這是提高學(xué)習(xí)質(zhì)量和效率的重要保證。學(xué)生思考、回答問(wèn)題一般要求達(dá)到:有根據(jù)、有條理、符合邏輯。隨著年齡的升高,思考問(wèn)題時(shí)應(yīng)逐步滲透聯(lián)想、假設(shè)、轉(zhuǎn)化等數(shù)學(xué)思想,不斷提高思考問(wèn)題的質(zhì)量和速度。
3、仔細(xì)“審”的習(xí)慣。
審題能力是學(xué)生多種能力的綜合表現(xiàn)。教師應(yīng)要求學(xué)生仔細(xì)閱讀教材內(nèi)容,學(xué)會(huì)抓住字眼,正確理解內(nèi)容,對(duì)提示語(yǔ)、旁注、公式、法則、定律、圖示等關(guān)鍵性?xún)?nèi)容更要認(rèn)真推敲、反復(fù)琢磨,準(zhǔn)確把握每個(gè)知識(shí)點(diǎn)的內(nèi)涵與外延。建議教師們經(jīng)常進(jìn)行“一字之差義差萬(wàn)”的專(zhuān)項(xiàng)訓(xùn)練,不斷增強(qiáng)學(xué)生思維的深刻性和批判性。
4、獨(dú)立“做”的習(xí)慣。
練習(xí)是教學(xué)活動(dòng)的重要組成部分和自然延續(xù),是學(xué)生最基本、最經(jīng)常的獨(dú)立學(xué)習(xí)實(shí)踐活動(dòng),還是反映學(xué)生學(xué)習(xí)情況的主要方式。教師應(yīng)教育學(xué)生對(duì)知識(shí)的理解不盲從優(yōu)生看法,不受他人影響輕易改變自己的見(jiàn)解;對(duì)知識(shí)的運(yùn)用不抄襲他人現(xiàn)成答案;課后作業(yè)要按質(zhì)、按量、按時(shí)、書(shū)寫(xiě)工整完成,并能作到方法最佳,有錯(cuò)就改。
5、善于“問(wèn)”的習(xí)慣。
俗話(huà)說(shuō):“好問(wèn)的孩子必成大器”。教師應(yīng)積極鼓勵(lì)學(xué)生質(zhì)疑問(wèn)難,帶著知識(shí)疑點(diǎn)問(wèn)老師、問(wèn)同學(xué)、問(wèn)家長(zhǎng),大力提倡學(xué)生自己設(shè)計(jì)數(shù)學(xué)問(wèn)題,大膽、主動(dòng)地與他人交流,這樣既能融洽師生關(guān)系,增進(jìn)同學(xué)友情,又可以使學(xué)生的交際、表達(dá)等方面的能力逐步提高。
6、勇于“辯”的習(xí)慣。
討論和爭(zhēng)辯是思維最好的媒介,它可以形成師生之間、同學(xué)之間多渠道、廣泛的信息交流。讓學(xué)生在爭(zhēng)辯中表現(xiàn)自我、互相啟迪、交流所得、增長(zhǎng)才干,最終統(tǒng)一對(duì)真知的認(rèn)同。
7、力求“斷”的習(xí)慣。
民族的創(chuàng)新能力是綜合國(guó)力的重要表現(xiàn),因此新大綱強(qiáng)調(diào)在數(shù)學(xué)教學(xué)中應(yīng)重視培養(yǎng)學(xué)生的創(chuàng)新意識(shí)。教師應(yīng)積極鼓勵(lì)學(xué)生思考問(wèn)題時(shí)不受常規(guī)思路局限,樂(lè)于和善于發(fā)現(xiàn)新問(wèn)題,能夠從不同角度詮釋數(shù)學(xué)命題,能用不同方法解答問(wèn)題,能創(chuàng)造性地操作或制作學(xué)具與模型。
8、提早“學(xué)”的習(xí)慣。
從小學(xué)生認(rèn)識(shí)規(guī)律看,要獲得良好的學(xué)習(xí)成績(jī),必須牢牢抓住預(yù)習(xí)、聽(tīng)課、作業(yè)、復(fù)習(xí)四個(gè)基本環(huán)節(jié)。其中,課前預(yù)習(xí)教材可以幫助學(xué)生了解新知識(shí)的要點(diǎn)、重點(diǎn)、發(fā)現(xiàn)疑難,從而可以在課堂內(nèi)重點(diǎn)解決,掌握聽(tīng)課的主動(dòng)權(quán),使聽(tīng)課具有針對(duì)性。隨著年級(jí)的升高、預(yù)習(xí)的重要性更加突出。
9、反復(fù)“查”的習(xí)慣。
培養(yǎng)學(xué)生檢查的能力和習(xí)慣,是提高數(shù)學(xué)學(xué)習(xí)質(zhì)量的重要措施,是培養(yǎng)學(xué)生自覺(jué)性和責(zé)任感的必要過(guò)程,這也是新大綱明確了的教學(xué)要求。練習(xí)后,學(xué)生一般應(yīng)從“是否符合題意,計(jì)算是否合理、靈活、正確,應(yīng)用題、幾何題的解答方法是否科學(xué)”等幾個(gè)方面反復(fù)檢查驗(yàn)算。
10、客觀(guān)“評(píng)”的習(xí)慣。
學(xué)生客觀(guān)地評(píng)價(jià)自己和他人在學(xué)習(xí)活動(dòng)中的表現(xiàn),本身就是一種高水平的學(xué)習(xí)。只有客觀(guān)地評(píng)價(jià)自己、評(píng)價(jià)他人,才能評(píng)出自信,評(píng)出不足,從而達(dá)到正視自我、不斷反思、追求進(jìn)步的目的,逐步形成辯證唯物主義認(rèn)識(shí)觀(guān)。
11、經(jīng)?!皠?dòng)”的習(xí)慣。
數(shù)學(xué)知識(shí)具有高度的抽象性,小學(xué)生的思維帶有明顯的具體性,所以新大綱強(qiáng)調(diào)應(yīng)重視從學(xué)生的生活經(jīng)驗(yàn)中學(xué)習(xí)理解數(shù)學(xué),加強(qiáng)實(shí)踐能力的培養(yǎng)。在教學(xué)中,教師應(yīng)強(qiáng)調(diào)學(xué)生手腦并用,以動(dòng)促思,對(duì)難以理解的概念通過(guò)舉實(shí)例加以解決,對(duì)較復(fù)雜的應(yīng)用題通過(guò)畫(huà)圖找到正確的解答方法,對(duì)模糊的幾何知識(shí)通過(guò)剪剪拼拼或?qū)嶒?yàn)達(dá)到投石問(wèn)路的目的。
12、有心“集”的習(xí)慣。
學(xué)生在學(xué)習(xí)活動(dòng)中犯錯(cuò)并不可怕,可怕的是同一問(wèn)題多次犯錯(cuò)。為避免同一錯(cuò)誤經(jīng)常犯,有責(zé)任民的教師在教室里布置了錯(cuò)會(huì)診專(zhuān)欄,有心計(jì)的學(xué)生建立錯(cuò)誤的知識(shí)檔案,將平時(shí)練習(xí)或考試中出現(xiàn)的錯(cuò)題收集在一起,反復(fù)警示自己,值得提倡。
13、靈活“用”的習(xí)慣。
學(xué)習(xí)的目的在于應(yīng)用,要求學(xué)生在課堂上學(xué)到的知識(shí)加以靈活運(yùn)用,既能起到鞏固和消化知識(shí)的作用,又有利于將知識(shí)轉(zhuǎn)化成能力,還能達(dá)到培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣的目的。