人的記憶力會隨著歲月的流逝而衰退,寫作可以彌補記憶的不足,將曾經的人生經歷和感悟記錄下來,也便于保存一份美好的回憶。大家想知道怎么樣才能寫一篇比較優質的范文嗎?以下是我為大家搜集的優質范文,僅供參考,一起來看看吧
人教版圓錐的體積教學設計圓錐的體積教學設計及反思篇一
(1)掌握錐體的等積定值,錐體的體積公式。
(2) 理解"割補法"求體積的思想,培養學生發現問題,解決問題的能力。
公式的推導過程,即"割補法"求體積。
三棱柱模型、多媒體
1、復習祖暅 原理及柱體的體積公式。
2、等底面積等高的任意兩個錐體的體積。
(類比于柱體體積公式的得出)。首先研究等底面積等高的任意兩個錐體體積之間的關系。
取任意兩個錐體,設它們的底面積都是s,高都是h。
∵s1/s=h12/,
∴s1/s=s2/s,s1=s2。
根據祖日恒 原理,這兩個錐體的體積相等,由此得到下面的定理:
定理,等底面積等高的兩個錐體的體積相等。
3、三棱錐的體積公式
為研究三棱錐的體積,可類比于初中三角形面積的求法。
在初中,學習三角形的面積公式之前,已知有平行四邊形的面積公式,為此,將δabc"補"成和它同底等高的平行四邊形abdc,然后沿其對角線bc,將平行四邊形"分"成兩個三角形,由對稱性,得到的δabc的面積為平行四邊形面積的一半,即為:sδabc=1/2ah,(a其底邊長,h為高)
能否將三棱錐"補"成一個底面積為s,高為h的三棱柱呢?
[可以]以aa'為側棱,以δabc為底面補成一個三棱柱。
也采用"分"的方法,這個三棱柱可分成怎樣的三棱錐呢?
(圖形沒有打印)
[引導學生觀察分析]將三棱柱分割成三個三棱錐,如圖就是三棱錐1,和另兩個三棱錐2、3。
三棱錐1、2的底δaba'、δb'a'b的面積相等,高也相等(頂點都是c)。三棱錐2、3的底δb'cb'、δc'b'c的面積相等,高也相等。(頂點都是a')。
最后,因為和一個三棱錐等底面積等高的任何錐體都和這個三棱錐的體積相等,所以得到下面的定理。
定理:如果一個錐體(棱錐、圓錐)的底面積是s,高是h,那么它的體積是:v錐體=1/3sh。
4、錐體體積公式的應用。
練習1:正四棱錐底面積是s,側面積為q,則其體積為: 。
練習2:圓錐的全面積為14πcm2,側面展開圖的中心角為60°,則其體積為 。
練習3:邊長為a的正方形,以它的一個頂點為圓心,邊長為半徑畫弧,沿弧剪下一個扇形,用這個扇形圍成一個圓錐筒,求它的體積。
5、課堂小結:1°割補法求三棱錐的思想。
2°錐體的體積公式。
人教版圓錐的體積教學設計圓錐的體積教學設計及反思篇二
1、知識技能目標:
2、思維能力目標:
◆提高學生實踐操作、觀察比較、抽象概括及邏輯推斷的能力,發展空間觀念。
3、情感態度目標:
◆培養學生的合作意識和探究意識;
◆使學生獲得成功的體驗,體驗數學與生活的聯系。
難點:探索圓錐體積方法和推導過程。
教學過程:
1 圓錐有什么特征?指名學生回答。
2 說一說圓柱體積的計算公式。
(1)已知 s、h 求 v
(2)已知 r、h 求 v
(3)已知 d、h 求 v
3 我們已經認識了圓錐又學過圓柱體積的計算公式,那么圓錐的體積又該如何計算呢?今天我們就來學習圓錐體積的計算。
板書課題:圓錐的體積
1、師:請大家回憶一下,我們是怎樣得到圓柱體積的計算公式的?
指名學生敘述圓柱體積的計算公式的推導過程:(學生:圓柱---轉化長方體- 長方體的體積公式----推導圓柱體公式)
〈1〉學生獨立操作
〈2〉教師教具演示鞏固學生的操作效果,cai課件演示
a 屏幕上出示等底、等高
b 等底、不等高
c 等高、不等底
實驗報告單
實驗器材
實驗結果
等底不等高的圓錐、圓柱
等高不等底的圓錐、圓柱
等底等高的圓錐、圓柱
〈3〉引導學生發現:
圓柱體的體積等于和它等底等高的圓錐體體積的3倍或圓錐的體積等于和它等底等高圓柱體積的 1/3 (板書 )
用字母表示圓錐的體積公式.v錐=1/3sh
做一做:
填空:
等底等高的圓錐和圓柱,圓柱的體積是圓錐的體積的( ),圓錐的體積是圓柱的體積的( )已知圓錐的體積是9立方分米,圓柱的體積是( );如果圓柱的體積是12立方分米,那么圓錐的體積是( )。
(二)運用公式,嘗試練習
1、要求圓錐的體積,必須知道哪兩個條件?為什么要乘 1/3 ?
試一試:
2、思考:求圓錐的體積,還可能出現那些情況?
(如果已知圓錐的高和底面半徑如果已知圓錐的高和底面半徑(或直徑、周長),怎樣求圓錐的體積呢?)
練一練
3、求下面的體積。(只列式不計算)
(1)底面半徑是2 厘米,高3厘米。
3.14×22×3
(2)底面直徑是6分米,高6分米 。
3.14×(6 ÷2)2 ×6
(3)底面周長是12.56厘米,高是6厘米
3.14×(12.56 ÷6.28)2 ×6
2、求下面各圓錐的體積如圖(單位厘米)
(1)底面直徑是8分米,高9分米 (2)底面半徑3分米和高7分米
a、底面積和高
b、底面半徑和高
c、底面直徑和高
d、底面周長和高
1、判斷:
⑴、圓錐的體積等于圓住體積的1/3。( )
⑵把一個圓柱切成一個圓錐,這個圓錐的體積是圓柱體積的1/3 ( )
2、填空
⑴一個圓錐與一個圓柱等底等高,已知圓錐的體積是 18 立方米,圓柱的體積是( )。
⑵一個圓錐與一個圓柱等底等體積,已知圓柱的高是 12 厘米, 圓錐的高是( )。
⑶一個圓錐與一個圓柱等高等體積,已知圓柱的底面積是 314 平方米,圓錐的底面積是( )。
3、拓展練習
工地上有一些沙子,堆起來近似于一個圓錐,通過測量它的直徑是4厘米高是1.2厘米,這堆沙子大約多少立方米?(得數保留兩位小數)
(引導學生說出怎樣測量沙堆的底面的周長、直徑、和高。)
用兩根竹竿平行地放在沙堆兩側,測得兩根竹竿間的距離,就是直徑。將一根竹竿過沙堆的頂部水平位置,另一根竹竿豎直與水平竹竿成直角即可量得高。
人教版圓錐的體積教學設計圓錐的體積教學設計及反思篇三
一、復習導入。
1、怎樣計算圓柱的體積?(板書公式)
2、一個圓柱的底面積是60平方米,高15米,它的體積是多少立方米?
3、出示一個圓錐,請學生說說圓錐的特征。
4、導入:前面我們已經認識了圓錐,掌握了它的特征,那么圓錐的體積應怎樣計算呢?今天這節課我們就來研究這個問題。(板書課題)
二、動手測量,大膽猜想。
1、動手測量,找圓錐和圓柱的底和高的關系。
2、學生動手測量,教師巡視。給予指導。
3、交流得出結論:圓柱和圓錐等底等高。
4、猜想等底等高的圓柱和圓錐的體積之間有什么關系?
三、實驗操作,推導出圓錐體積計算公式。
1、實驗操作。
師:圓錐的體積到底與等底等高的圓柱的體積之間有什么關系呢?我們就用實驗來驗證我們的猜想。每個小組都準備了米或沙,打算怎么實驗,商量好辦法后再操作。
2、學生分組實驗,教師巡視。
3、匯報交流,你們組是怎么做實驗的?通過實驗你發現了什么?
4、強調等底等高。
5小結:不是任何一個圓錐的體積都是任何一個圓柱體積的1/3,必須有前提條件。(板書結論)
6、練習(出示)
(1)一個圓柱的體積是1.8立方分米,與它等底等高的圓錐的體積是()立方分米。
(2)一個圓錐的體積是1.8立方分米,與它等底等高的圓柱的體積是()立方分米。
7、得出圓錐的體積計算公式。
三、鞏固練習。
1、計算下面圓錐的體積。(只列式不計算)
底面積是6.28平方分米,高是9分米。
底面半徑是6厘米,高是4.5厘米。
底面直徑是4厘米,高是4.8厘米。
底面周長是12.56厘米,高是6厘米。
2、填空。
a圓錐的體積=(),用字母表示是()。
b圓柱體積的與和它()的圓錐的體積相等。
c一個圓柱和一個圓錐等底等高,圓柱的體積是3立方分米,圓錐的體積是()立方分米。
d一個圓錐的底面積是12平方厘米,高是6厘米,體積是()立方厘米。
3、判斷。(用手勢表示)
a圓柱體的體積一定比圓錐體的體積大()
c正方體、長方體、圓錐體的體積都等于底面積×高。()
d等底等高的圓柱和圓錐,如果圓柱體的體積是27立方米,那么圓錐的體積是9立方米。()
四、全課小結。
師:今天這結課學習了什么?通過今天的學習研究你有什么收獲?
五、解決實際問題。
在建筑工地上,有一個近似圓錐形狀的沙堆,測得底面直徑是4米,高1.5米。每立方米沙大約重1.7噸,這堆沙約重多少噸?(得數保留整噸數)
人教版圓錐的體積教學設計圓錐的體積教學設計及反思篇四
1、圓柱的體積公式是什么?用字母怎樣表示?
2、求下列各圓柱的體積。(口答)
(1)底面積是5平方厘米,高是6厘米。
(2)底面半徑4分米,高是10分米。
(3)底面直徑2米,高是3米。
師:剛才我們復習了圓柱的體積公式并應用這個公式計算出了圓柱的體積,那么圓柱和圓錐有什么關系呢?這節課我們就來研究圓錐的體積。
師:圓錐的底面是什么形狀的?什么是圓錐的高?請拿出一個同學們自己做的圓錐講一講。
生:圓錐的底面是圓形的。
生:從圓錐的頂點到底面圓心的距離是圓錐的高。
師:你能上來指出這個圓錐的高嗎?
師:很好,因為圓錐的高我們一般無法到里面去測量,所以常常這樣量出它的高。
師:你們看到過哪些物體是圓錐形狀的?(略)
師:對。在生活中有很多圓錐形的物體。
師:剛才我們已經認識了圓錐。現在我們再來研究圓錐的體積。請同學們拿出一對等底等高圓錐和圓柱。想一想用什么辦法能研究出等地等高的圓錐和圓柱的體積之間存在什么關系,然后把你的想法放在小組中交流,再分工進行實驗。下面我們采用實驗的方法來推導圓錐體的體積公式(邊說邊演示),先在圓錐內裝滿水,然后把水倒入圓柱內,看看幾次可將圓柱倒滿。現在我們分小組做實驗,大家邊做邊討論實驗要求,如有困難可以看書第23頁。
出示小黑板:
2、圓錐的體積怎么算?體積公式是怎樣的?
學生分組做實驗,老師巡回指導。
生:圓錐的體積是同它等底等高的圓柱體權的1/3。
師:得出這個結論的同學請舉手。(略)你們是怎么得出這個結論的呢?
生:我們先在圓錐內裝滿沙,然后倒人圓柱內。這樣倒了三次,正好將圓柱裝滿。所以,圓錐的體積是同它等底等高的圓柱體積的1/3。
師:說得很好。那么圓錐的體積怎么算呢?
生:可以先算出與它等底等高的圓柱的體積,用底面積乘以高,再除以3,就是圓錐的體積。
師:誰能說說圓錐的體積公式。
生:圓錐的體積公式是v=1/3sh。
師:老師也做了一個同樣實驗請同學認真看一看。想一想有什么話對老師說嗎?請看電視。
師:請大家把書翻到第42頁,將你認為重要的字、詞、句圈圈劃劃,并說說理由。
生:我認為"圓錐的體積v等于和它等底等高的圓柱體積的三分之一。"這句話很重要。
生:我認為這句話中"等底等高"和"三分之一"這幾個字特別重要。
師:大家說得很對,那么為什么這幾個字特別重要?如果底和高不相等的圓錐和圓柱有沒有三分之一這個關系呢?我們也來做個實驗。大家還有兩個是等底不等高的圓錐和圓柱,請同學們用剛才做實驗的方法試試看。
師:等底不等高或者等高不等底的圓錐體積不是圓柱體積的1/3。師:可見圓錐的體積等于圓柱體積的.三分之一的關鍵條件是等地等高。
師:下面我們就根據"等底等高的圓錐體積是圓柱體積的1/3"這個關系來解決下列問題。
(兩名學生板演,老師巡視)
師:這位同學做的對不對?
生:對!
師:和他做的一-樣的同學請舉手。(絕大多數同學舉手)
師:那么這位同學做錯在哪里呢?(指那位做錯的同學做的)
生:他漏寫了1/3。用底面積乘以高算出來的是圓柱的體積,圓錐的體積還要再乘以1/3。
師:對了。剛才我們通過實驗知道了圓錐的體積等于同它等底等高的圓柱體積的三分之一,從而推導出圓錐的體積計算公式,即v=1/3sh。我們在用這個公式計算圓錐的體積時,要特別注意,1/3不能漏掉。
(1)、一個圓錐的底面積是25平方分米,高是9分米,它體積是多少?
(2)、求圓錐的體積(看圖)
(3)、一個圓錐的底面直徑是20厘米,高是8厘米,它體積是多少?(圖)師:三題都填對了。接下來我要考考你們,看是不是掌握了今天的知識。
2、填空。
(1) 一個圓錐的體積是8立方分米,底面積是2平方分米,高( )分米、。(2)圓錐形的容器高12厘米,容器中盛滿水,如將水全部倒入等底的圓柱形的器中,水面高是( )厘米。
3、選擇
(1) 兩個體積相等的等底的圓柱和圓錐,圓錐的高一定是圓柱高的( ) 。
(2) 把一段圓柱形的木棒削成一個最大的圓錐,削去部分的體積是圓錐體積的( )。
師:今天,我們學習了什么內容?怎樣計算圓錐的體積?
對,這節課我們認識了圓錐,并推導出了圓錐的體積計算公式。回去以后,先回憶一下今天學過的內容,想一想,在運用v=1/3sh這個公式算圓錐體積時,要特別注意什么。
課外作業:有一個高9厘米,底面積是20平方厘米的圓柱內裝滿水,用一個與它等底等高的圓錐擠壓,最多能擠出多少水?圓柱內還剩多少水?(邊做實驗邊討論)
1、使學生理解和掌握求圓錐體積的計算公式,并能正確求出圓錐的體積。
2、培養學生初步的空間觀念、邏輯思維能力、動手操作能力。
3、向學生滲透知識間"相互轉化"的辯證唯物主義思想,在聯系實際中對學生進行學習目的方面的思想教育。
圓錐的體積計算。
圓錐的體積公式推導。
圓錐的體積是與它等底等高的圓柱體積的三分之一。
多媒體、等底等高的圓柱和圓錐空心實物各一個,水若干。
空心圓錐和圓柱實物各一個,沙土若干。
人教版圓錐的體積教學設計圓錐的體積教學設計及反思篇五
教學目的:
1.使學生理解和掌握求圓錐體積的計算公式,并能正確求出圓錐的體積。
2.培養學生初步的空間觀念、邏輯思維能力、動手操作能力。
3.向學生滲透知識間"相互轉化"的辯證唯物主義思想,在聯系實際中對學生進行學習目的方面的思想教育。
教學重點:
圓錐的體積計算。
教學難點:
圓錐的體積公式推導。
教學關鍵:
圓錐的體積是與它等底等高的圓柱體積的二分之一。
教具準備:
投影儀、小黑板、等底等高的圓柱和圓錐空心實物各一個。圓臺、棱臺實物各一個。
學具準備:
教學過程:
一、復習
1.圓柱的體積公式是什么?
師:剛才我們復習了圓柱的體積公式并應用這個公式計算出了圓柱的體積,那么圓柱和圓錐有什么關系呢?這節課我們就來研究圓錐的體積。
板書:圓錐的體積
[說明:設疑激趣,激發學生探求新知識的欲望。l
二、新課教學
師:請大家把書翻到第48頁,想一想:圓錐的底面是什么形狀的?什么是圓錐的高?(生看書)
投影出示下圖:
師:圓錐的底面是什么形狀?
生:圓錐的底面是圓形的。
師:對。什么是圓錐的高呢?
生:從圓錐的頂點到底面圓心的距離是圓錐的高。
師:你能上來指出這個圓錐的高嗎?
師:很好,因為圓錐的高我們一般無法到里面去測量,所以常常這樣量出它的高。
師演示:將剛才出示的圓錐圖上的高往外移,標上字母h,如圖所示:
師:有人認為,(指母線)這條就是圓錐的高,你們說對嗎?為什么?
生:我認為不對,因為高是指從圓錐的頂點到底面圓心的距離,它不在圓心上,所以不是圓錐的高。
師:說得很好。在我們日常生活中,你們看到過哪些物體是圓錐形狀的?(略)
師:對。在生活中有很多圓錐形的物體。(出示實物圖)如:沙堆、糧堆、鉛錘,還有圓柱型鉛筆用卷刀卷過的部分等等。誰上來指一指這支鉛筆圓錐型部分?(略)
投影出示下列圖形:
生:我認為②、③、④三個圖是圓錐,①、⑤兩個圖不是。
師:第②、③兩個圖與第④個圖并不一樣,為什么說它們也是圓錐呢?
生:我想第②個圖是倒放的圓錐,第③個圖是斜放的圓錐。
師:說得有道理。你能不能將這個圓錐擺正。
(一名學生到前面旋轉投影片,將圓錐圖形一一擺正)
師:拿出實物模型(圓臺、棱臺)。說:大家看,①、⑤兩個圖其實就是這兩個物體,它們究竟叫什么呢?等你們以后學了更多的知識就知道了。
師:剛才我們已經認識了圓錐。現在我們再來研究圓錐的體積(出示教具)。這是一個空心圓錐,這是一個空心圓柱。它們之間有什么關系呢?我們先來比較它們的底面。(師演示:將圓錐和圓柱的底面合在一起,完全重合。)
生:它們的底面是相等的。
師:我們再來比較它們的高。(師演示:用一把直尺架在兩者之間,然后分別量一量它們的高。)
生:它們的高也是相等的。
師:那也就是說,這兩個圓柱和圓錐是等底等高的。下面我們采用實驗的方法來推導圓錐體的體積公式(邊說邊演示),先在圓錐內裝滿水,注意大拇指不要伸進去,然后把水倒入圓柱內,看看幾次可將圓柱倒滿。現在我們分小組做實驗,大家邊做邊討論實驗要求,如有困難可以看書第23頁。
出示小黑板:
3.圓錐的體積怎么算?體職公式是怎樣的?
學生分組做實驗,老師巡回指導。
師:我們先來回答第一個問題。在你們做實驗用的
器材中,圓錐的底面和圓柱的底面有什么關系?它們的高有什么關系?
生:在實驗器材中,圓錐的底面和圓柱的底面是相等的,它們的高也是相等的。
師:得出這個結論的同學請舉手。(略)你們是怎么得出這個結論的呢?
生:我們先在圓錐內裝滿水,然后倒人圓柱內。這樣倒了三次,正好將圓柱裝滿。所以,圓錐的體積是同它等底等高的圓柱體積的1/3。
師:說得很好。那么圓錐的體積怎么算呢?
生:可以先算出與它等底等高的圓柱的體積,用底面積乘以高,再除以3,就是圓錐的體積。
師:誰能說說圓錐的體積公式。
生:圓錐的體積公式是v=1/3sh。
師:請大家把書翻到第49頁,將你認為重要的字、詞、句圈圈劃劃,并說說理由。
生:我認為"圓錐的體積v等于和它等底等高的圓柱體積的三分之一。"這句話很重要。
生:我認為這句話中"等底等高"和"三分之一"這幾個字特別重要。
師:大家說得很對,那么為什么這幾個字特別重要?如果底和離不相等的圓錐和圓柱有沒有三分之一這個關系呢?我們也來做個實驗。這兩個是等底不等高的圓錐和圓柱,邊兩個是等高不等底的圓錐和圓柱,我請兩個同學上來用剛才做實驗的方法試試看。
(請兩名學生上講臺示范實驗)
師:現在大家看清楚了嗎?等底不等高或者等高不等底的圓錐體積不是圓柱體積的1/3。
生齊答:不是。
師:下面我們就根據"等底等高的圓錐體積是圓柱體積的1/3"這個關系,口答三道題目。師:出示小黑板,口算。
求與下面圓柱等底等高的圓錐體的體積。
1.圓柱體的體積是3立方厘米;
2.圓柱體的體積是2.4立方分米;
3.圓柱體的體積是1/2立方米;"
生答略。
師:大家回答得很好。接下來,請大家用圓錐的體積計算公式來解答一道應用題。師出示第50頁例1。
(兩名學生板演,老師巡視)
師:這位同學做的對不對?
生:對!
師:和他做的一-樣的同學請舉手。(絕大多數同學舉手)
師:那么這位同學做錯在哪里呢?(指那位做錯的同學做的)
生:他漏寫了1/3。用底面積乘以高算出來的是圓柱的體積,圓錐的體積還要再乘以1/3。
師:對了。剛才我們通過實驗4知道了圓錐的體積等于同它等底等高的圓柱體積的三分之一,從而推導出圓錐的體積計算公式,即v=1/3sh。我們在用這個公式計算圓錐的體積時,要特別注意,1/3不能漏掉。
三、鞏固練習
師:現在我們一起來做填表練習。
出示小黑板:
1. 填表:
底面積s (平方米) 高h(米) 圓錐的體積(立方米)
15 9 ()
16 0.6 ()
師:兩題都填對了。接下來我要考考你們,看是不是掌握了今天的知識。
2.求下面各圓錐的體積。
(1)半徑是3米,高是2米。
(2)直徑是4分米,高是6分米。
(3)周長是6,28厘米,高是3厘米。
3.有一個高9厘米,底面積是20平方厘米的圓柱內裝滿水,用一個與它等底等高的圓錐擠壓,最多能擠出多少水?圓柱內還剩多少水?(邊做實驗邊討論)
師:這節課我們認識了圓錐,并推導出了圓錐的體積計算公式。回去以后,先回憶一下今天學過的內容,想一想,在運用v=1/3sh這個公式算圓錐體積時,要特別注意什么。