教學計劃應該具有合理性和可操作性,能夠有效地引導學生的學習和提升教學效果。以下是一些優秀的教學計劃案例,希望能給大家提供一些思路和靈感。
初中數學勾股定理教學設計(匯總18篇)篇一
理解并掌握勾股定理的逆定理,會應用定理判定直角三角形;理解勾股定理與勾股定理逆定理的區別與聯系;理解原命題和逆命題的概念,知道二者的關系及二者真假性的關系。
【過程與方法】。
經歷得出猜想、推理證明的過程,提升自主探究、分析問題、解決問題的能力。
【情感、態度與價值觀】。
體會事物之間的聯系,感受幾何的魅力。
【重點】勾股定理的逆定理及其證明。
【難點】勾股定理的逆定理的證明。
(一)導入新課。
復習勾股定理,分清其題設和結論。
提問學生畫直角三角形的方法(可用尺類工具),然后要求不能用繩子以外的工具。
出示古埃及人利用等長的3、4、5個繩結間距畫直角三角形的方法,以其中蘊含何道理為切入點引出課題。
(二)講解新知。
請學生思考3,4,5之間的關系,結合勾股定理的學習經驗明確。
出示數據2.5cm,6cm,6.5cm,請學生計算驗證數據滿足上述平方和關系,并畫出相應邊長的三角形檢驗是否為直角三角形。
學生活動:同桌兩人一組,將三邊換成其他滿足上述平方和關系的數據,如4cm,7.5cm,8.5cm,畫出相應邊長的三角形檢驗是否為直角三角形。
初中數學勾股定理教學設計(匯總18篇)篇二
1.知識與技能目標:會用勾股定理及直角三角形的判定條件解決實際問題。
2.過程與方法目標:經歷勾股定理的應用過程,熟練掌握其應用方法,明確應用的條件。
3.情感態度與價值觀目標:通過自主學習的發展體驗獲取數學知識的感受;通過有關勾股定理的歷史講解,對學生進行德育教育。
一、知識點講解。
知識點1:(已知兩邊求第三邊)。
1.在直角三角形中,若兩直角邊的長分別為1cm,2cm,則斜邊長為_____________。
2.已知直角三角形的兩邊長為3、4,則另一條邊長是______________。
3.三角形abc中,ab=10,ac=17,bc邊上的高線ad=8,求bc的長?
知識點2:
利用方程求線段長。
(1)使得c,d兩村到e站的距離相等,e站建在離a站多少km處?
(2)de與ce的位置關系。
(3)使得c,d兩村到e站的距離最短,e站建在離a站多少km處?
利用方程解決翻折問題。
3、在矩形紙片abcd中,ad=4cm,ab=10cm,按圖所示方式折疊,使點b與點d重合,折痕為ef,求de的長。
5、折疊矩形abcd的一邊ad,折痕為ae,且使點d落在bc邊上的點f處,已知ab=8cm,bc=10cm,以b點為原點,bc為x軸,ba為y軸建立平面直角坐標系。求點f和點e坐標。
6、邊長為8和4的矩形oabc的兩邊分別在直角坐標系的x軸和y軸上,若沿對角線ac折疊后,點b落在第四象限b1處,設b1c交x軸于點d,求(1)三角形adc的面積,(2)點b1的坐標,(3)ab1所在的直線解析式.
知識點3:判斷一個三角形是否為直角三角形間接給出三邊的長度或比例關系。
1.(1).若一個三角形的周長12cm,一邊長為3cm,其他兩邊之差為1cm,則這個三角形是___________。
(2).將直角三角形的三邊擴大相同的倍數后,得到的三角形是____________。
(3)在abc中,a:b:c=1:1:,那么abc的確切形狀是_____________。
二、課堂小結。
談一談你這節課都有哪些收獲?
三、課堂練習以上習題。
四、課后作業卷子。
本節課是人教版數學八年級下冊第十七章第一節第二課時的內容,是學生在學習了三角形的有關知識,了解了直角三角形的概念,掌握了直角三角形的性質和一個三角形是直角三角形的條件的基礎上學習勾股定理,加深對勾股定理的理解,提高學生對數形結合的應用與理解。本節第一課時安排了對勾股定理的觀察、計算、猜想、證明及簡單應用的過程;第二課時是通過例題分析與講解,讓學生感受勾股定理在實際生活中的應用,通過從實際問題中抽象出直角三角形這一模型,強化轉化思想,培養學生解決問題的意識和應用能力。
針對本班學生的特點,學生知識水平、學習能力的差距,本節課安排了如下幾個環節:
一、復習引入。
對上節課勾股定理內容進行回顧,強調易錯點。由于學生的注意力集中時間較短,學生知識水平低,引入內容簡短明了,花費時間短。
二、例題講解,鞏固練習,總結數學思想方法。
活動一:用對媒體展示搬運工搬木板的問題,讓學生以小組交流合作,如何將木板運進門內?需要知道們的寬、高,還是其他的條件?學生展示交流結果,之后教師引導學生書寫板書。整個活動以學生為主體,教師及時的引導和強調。
活動二:解決例二梯子滑落的問題。學生自主討論解決問題,書寫過程,之后投影學生書寫過程,教師與學生一起合作修改解題過程。
活動三:學生討論總結如何將實際生活中的問題轉化為數學問題,然后利用勾股定理解決問題。利用勾股定理的前提是什么?如何作輔助線構造這一前提條件?在數學活動中發展了學生的探究意識和合作交流的習慣;體會勾股定理的應用價值,讓學生體會到數學來源于生活,又應用到生活中去,在學習的過程中體會獲得成功的喜悅,提高了學生學習數學的興趣和信心。
二、鞏固練習,熟練新知。
通過測量旗桿活動,發展學生的探究意識,培養學生動手操作的能力,增加學生應用數學知識解決實際問題的經驗和感受。
在教學設計的實施中,也存在著一些問題:
1.由于本班學生能力的差距,本想著通過學生幫帶活動,使學困生充分參與課堂,但在學生合作交流是由于學習能力強的學生,對問題的分析解決所用時間短,而在整個環節設計中轉接的快,未給學困生充分的時間,導致部分學生未能真正的參與到課堂中來。
2.課堂上質疑追問要起到好處,不要增加學生展示的難度,影響展示進程出現中斷或偏離主題的現象。
3.對學生課堂展示的評價方式應體現生評生,師評生,及評價的針對性和及時性。
初中數學勾股定理教學設計(匯總18篇)篇三
學生通過上節課的學習,已經掌握了如何用沒有刻度的直尺和圓規作一條線段等于已知線段。同時在學習中學生已經初步理解了作圖的步驟,具備了基本的作圖能力,并能簡單的表達作圖過程,為本節課的學習奠定了良好的知識基礎。同時在以前的數學學習中學生已經經歷了很多合作學習的過程,具有了一定的合作學習的經驗,具備了一定的合作與交流的能力。
二、教學目標分析。
教科書基于學生在上節課學習了如何作一條線段等于已知線段,并積累了一定的活動經驗,提出本節課的主要教學任務是:會用尺規作一個角等于已知角,并了解它在尺規作圖中的簡單應用。為此,本節課的教學目標是:
1、能按照作圖語言來完成作圖動作,能用尺規作一個角等于已知角,并了解它在尺規作圖中的簡單應用。
2、能利用尺規作角的和、差、倍。
3、能夠通過尺規設計并繪制簡單的圖案。
4、在尺規作圖過程當中,積累數學活動經驗,培養動手能力和邏輯分析能力。
1、回顧與思考。
活動內容:
(1)怎樣利用沒有刻度的直尺和圓規作一條線段等于已知線段?
(2)練習:已知線段a,b,c,作一條線段m,使得m=a+b—c。
活動目的:
通過回顧上節課學習的用尺規作線段,既達到了復習鞏固,反饋落實的目的,同時熟練尺規的使用,積累活動經驗,也為后面學習用尺規作角起到了鋪墊的作用。
2、情境引入,探索發現。
活動內容:如圖2。
初中數學勾股定理教學設計(匯總18篇)篇四
勾股定理是學生在已經掌握了直角三角形的有關性質的基礎上進行學習的,它是直角三角形的一條非常重要的性質,是幾何中最重要的定理之一,它揭示了一個三角形三條邊之間的數量關系,它可以解決直角三角形中的計算問題,是解直角三角形的主要根據之一,在實際生活中用途很大。教材在編寫時注意培養學生的動手操作能力和分析問題的能力,通過實際分析、拼圖等活動,使學生獲得較為直觀的印象;通過聯系和比較,理解勾股定理,以利于正確的進行運用。
據此,制定教學目標如下:
1、理解并掌握勾股定理及其證明。
2、能夠靈活地運用勾股定理及其計算。
3、培養學生觀察、比較、分析、推理的能力。
4、通過介紹中國古代勾股方面的成就,激發學生熱愛祖國與熱愛祖國悠久文化的思想感情,培養他們的民族自豪感和鉆研精神。
初中數學勾股定理教學設計(匯總18篇)篇五
今天我說課的課題是《勾股定理》。本課選自九年義務教育人教版八年級數學下冊第十八章第一節的第一課時。
一、教學背景分析。
1、教材分析。
本節課是學生在已經掌握了直角三角形有關性質的基礎上進行學習的,通過20xx年國際數學家大會的會徽圖案,引入勾股定理,進而探索直角三角形三邊的數量關系,并應用它解決問題。學好本節不僅為下節勾股定理的逆定理打下良好基礎,而且為今后學習解直角三角形奠定基礎,在實際生活中用途很大。勾股定理是直角三角形的一條非常重要的性質,是幾何中一個非常重要的定理,它揭示了直角三角形三邊之間的數量關系,將數與形密切地聯系起來,它有著豐富的歷史背景,在理論上占有重要的地位。
2、學情分析。
通過前面的學習,學生已具備一些平面幾何的知識,能夠進行一般的推理和論證,但如何通過拼圖來證明勾股定理,學生對這種解決問題的途徑還比較陌生,存在一定的難度,因此,我采用直觀教具、多媒體等手段,讓學生動手、動口、動腦,化難為易,深入淺出,讓學生感受學習知識的樂趣。
3、教學目標:
根據八年級學生的認知水平,依據新課程標準和教學大綱的要求,我制定了如下的教學目標:
過程與方法目標:通過創設情境,導入新課,引導學生探索勾股定理,并應用它解決問題,運用了觀察、演示、實驗、操作等方法學習新知。
情感態度價值觀目標:感受數學文化,激發學生學習的熱情,體驗合作學習成功的喜悅,滲透數形結合的思想。
4、教學重點、難點。
二、教材處理。
根據學生情況,為有效培養學生能力,在教學過程中,以創設問題情境為先導,運用直觀教具、多媒體等手段,激發學生學習興趣,調動學生學習積極性,并開展以探究活動為主的教學模式,邊設疑,邊講解,邊操作,邊討論,啟發學生提出問題,分析問題,進而解決問題,以達到突出重點,攻破難點的目的。
三、教學策略。
1、教法。
“教必有法,而教無定法”,只有方法恰當,才會有效。根據本課內容特點和八年級學生思維活動特點,我采用了引導發現教學法,合作探究教學法,逐步滲透教學法和師生共研相結合的方法。
2、學法。
“授人以魚,不如授人以漁”,通過設計問題序列,引導學生主動探究新知,合作交流,體現學習的自主性,從不同層次發掘不同學生的不同能力,從而達到發展學生思維能力的目的,發掘學生的創新精神。
3、教學模式。
根據新課標要求,要積極倡導自主、合作、探究的學習方式,我采用了創設情境——探究新知——反饋訓練的教學模式,使學生獲取知識,提高素質能力。
四、教學過程。
(一)創設情境,引入新課。
利用多媒體課件,給學生出示20xx年國際數學家大會的場面,通過觀察會徽圖案,提出問題:你見過這個圖案嗎?你聽說過勾股定理嗎?從現實生活中提出趙爽弦圖,激發學生學習的熱情和求知欲,同時為探索勾股定理提供背景材料,進而引出課題。
(二)引導學生,探究新知。
1、初步感知定理:這一環節選擇教材的圖片,講述畢達哥拉斯到朋友家做客時發現用磚鋪成的地面,其中含有直角三角形三邊的數量關系,創設感知情境,提出問題:現在也請你觀察,看看有什么發現?教師配合演示,使問題更形象、具體。適當補充等腰直角三角形邊長為1、2時,所形成的規律,使學生再次感知發現的規律。
2、提出猜想:在活動1的基礎上,學生已發現一些規律,進一步通過活動2進行看一看,想一想,做一做,讓學生感受不只是等腰直角三角形才具有這樣的性質,使學生由淺到深,由特殊到一般的提出問題,啟發學生得出猜想,直角三角形的兩直角邊的平方和等于斜邊的平方。
3、證明猜想:是不是所有的直角三角形都有這樣的特點呢?這就需要我們對一個一般的直角三角形進行證明.通過活動3,充分引導學生利用直觀教具,進行拼圖實驗,在動手操作中放手讓學生思考、討論、合作、交流,探究解決問題的多種方法,鼓勵創新,小組競賽,引入競爭,教師參與討論,與學生交流,獲取信息,從而有針對性地引導學生進行證法的探究,使學生創造性地得出拼圖的多種方法,并使學生在學習的過程中,感受到自我創造的快樂,從而分散了教學難點,發現了利用面積相等去證明勾股定理的方法。培養了學生的發散思維、一題多解和探究數學問題的能力。
4、總結定理:讓學生自己總結定理,不完善之處由教師補充。在前面探究活動的基礎上,學生很容易得出直角三角形的三邊數量關系即勾股定理,培養了學生的語言表達能力和歸納概括能力。
(三)反饋訓練,鞏固新知。
學生對所學的知識是否掌握了,達到了什么程度?為了檢測學生對本課目標的達成情況和加強對學生能力的培養,設計一組有坡度的練習題:a組動腦筋,想一想,是本節基礎知識的理解和直接應用;b組求陰影部分的面積,建立了新舊知識的聯系,培養學生綜合運用知識的能力。c組議一議,是一道實際應用題型,給學生施展才智的機會,讓學生獨立思考后,討論交流得出解決問題的方法,增強了數學來源于實踐,反過來又作用于實踐的應用意識,達到了學以致用的目的。
(四)歸納小結,深化新知。
本節課你有哪些收獲?你最感興趣的地方是什么?你想進一步研究的的問題是什么?通過小結,使學生進一步明確掌握教學目標,使知識成為體系。
(五)布置作業,拓展新知。
讓學生收集有關勾股定理的證明方法,下節課展示、交流.使本節知識得到拓展、延伸,培養了學生能力和思維的深刻性,讓學生感受數學深厚的文化底蘊。
(六)板書設計,明確新知。
本節課的板書設計分為三塊:一塊是拼圖方法,一塊是勾股定理;一塊是例題解析。它突出了重點,層次清楚,便于學生掌握,為獲得知識服務。
文檔為doc格式。
初中數學勾股定理教學設計(匯總18篇)篇六
勾股定理是揭示三角形三條邊數量關系的一條非常重要的性質,也是幾何中最重要的定理之一。它是解直角三角形的主要依據之一,同時在實際生活中具有廣泛的用途,“數學源于生活,又用于生活”正是這章書所體現的主要思想。教材在編寫時注意培養學生的動手操作能力和分析問題的能力,通過實際操作,使學生獲得較為直觀的印象;通過聯系比較、探索、歸納,幫助學生理解勾股定理,以利于進行正確的應用。
本節教科書從畢達哥拉斯觀察地面發現勾股定理的傳說談起,讓學生通過觀察計算一些以直角三角形兩條直角邊為邊長的小正方形的面積與以斜邊為邊長的正方形的面積的關系,發現兩直角邊為邊長的小正方形的面積的和,等于以斜邊為邊長的正方形的面積,從而發現勾股定理,這時教科書以命題的形式呈現了勾股定理。關于勾股定理的證明方法有很多,教科書正文中介紹了我國古人趙爽的證法。之后,通過三個探究欄目,研究了勾股定理在解決實際問題和解決數學問題中的應用,使學生對勾股定理的作用有一定的認識。
一、知識與技能。
1、探索直角三角形三邊關系,掌握勾股定理,發展幾何思維。
2、應用勾股定理解決簡單的實際問題。
3學會簡單的合情推理與數學說理。
二、過程與方法。
引入兩段中西關于勾股定理的史料,激發同學們的興趣,引發同學們的思考。通過動手操作探索與發現直角三角形三邊關系,經歷小組協作與討論,進一步發展合作交流能力和數學表達能力,并感受勾股定理的應用知識。
三、情感與態度目標。
通過對勾股定理歷史的了解,感受數學文化,激發學習興趣;在探究活動中,學生親自動手對勾股定理進行探索與驗證,培養學生的合作交流意識和探索精神,以及自主學習的能力。
四、重點與難點。
一、創設情景,揭示課題。
1、教師展示圖片并介紹第一情景。
以中國最早的一部數學著作——《周髀算經》的開頭為引,介紹周公向商高請教數學知識時的對話,為勾股定理的出現埋下伏筆。
周公問:“竊聞乎大夫善數也,請問古者包犧立周天歷度.夫天不可階而升,地不可得尺寸而度,請問數安從出?”商高答:“數之法出于圓方,圓出于方,方出于矩,矩出九九八十一,故折矩以為勾廣三,股修四,徑隅五。既方其外,半之一矩,環而共盤.得成三、四、五,兩矩共長二十有五,是謂積矩。故禹之所以治天下者,此數之所由生也。”
2、教師展示圖片并介紹第二情景。
畢達哥拉斯是古希臘著名的數學家。相傳在2500年以前,他在朋友家做客時,發現朋友家用地磚鋪成的地面反映了直角三角形的某種特性。
二、師生協作,探究問題。
1、現在請你也動手數一下格子,你能有什么發現嗎?
2、等腰直角三角形是特殊的直角三角形,一般的直角三角形是否也有這樣的特點呢?
3、你能得到什么結論嗎?
三、得出命題。
勾股定理:如果直角三角形的兩直角邊長分別為a、b,斜邊長為c,那么,即直角三角形兩直角邊的平方和等于斜邊的平方。解釋:由于我國古代把直角三角形中較短的直角邊稱為勾,較長的邊稱為股,斜邊稱為弦,所以,把它叫做勾股定理。
第一種方法:邊長為的正方形可以看作是由4個直角邊分別為、,斜邊為的直角三角形圍在外面形成的。因為邊長為的正方形面積加上4個直角三角形的面積等于外圍正方形的面積,所以可以列出等式,化簡得。
第二種方法:邊長為的正方形可以看作是由4個直角邊分別為、,斜邊為的。
角三角形拼接形成的(虛線表示),不過中間缺出一個邊長為的正方形“小洞”。
因為邊長為的正方形面積等于4個直角三角形的面積加上正方形“小洞”的面積,所以可以列出等式,化簡得。
這種證明方法很簡明,很直觀,它表現了我國古代數學家趙爽高超的證題思想和對數學的鉆研精神,是我們中華民族的驕傲。
五、應用舉例,拓展訓練,鞏固反饋。
勾股定理的靈活運用勾股定理在實際的生產生活當中有著廣泛的應用。勾股定理的發現和使用解決了許多生活中的問題,今天我們就來運用勾股定理解決一些問題,你可以嗎?試一試。
六、歸納總結。
2、方法歸納:數方格看圖找關系,利用面積不變的方法。用直角三角形三邊表示正方形的面積觀察歸納注意畫一個直角三角形表示正方形面積,再次驗證自己的發現。
七、討論交流。
讓學生發表自己的意見,提出他們模糊不清的概念,給他們一個梳理知識的機會,通過提示性的引導,讓學生對勾股定理的概念豁然開朗,為后面勾股定理的應用打下基礎。
我們班的同學很聰明。大家很快就通過數格子發現了勾股定理的規律。還有什么地方不懂的嗎?跟大家一起來交流一下。請同學們課后在反思天地中都發表一下自己的學習心得。
初中數學勾股定理教學設計(匯總18篇)篇七
教法和學法是體現在整個教學過程中的,本課的教法和學法體現如下特點:
1、以自學輔導為主,充分發揮教師的主導作用,運用各種手段激發學生學習欲望和興趣,組織學生活動,讓學生主動參與學習全過程。
2、切實體現學生的主體地位,讓學生通過觀察、分析、討論、操作、歸納,理解定理,提高學生動手操作能力,以及分析問題和解決問題的能力。
3、通過演示實物,引導學生觀察、操作、分析、證明,使學生得到獲得新知的成功感受,從而激發學生鉆研新知的欲望。
三、教學程序。
本節內容的教學主要體現在學生動手、動腦方面,根據學生的認知規律和學習心理,教學程序設計如下:
(一)創設情境以古引新。
1、由故事引入,3000多年前有個叫商高的人對周公說,把一根直尺折成直角,兩端連接得到一個直角三角形,如果勾是3,股是4,那么弦等于5。這樣引起學生學習興趣,激發學生求知欲。
2、是不是所有的`直角三角形都有這個性質呢?教師要善于激疑,使學生進入樂學狀態。
3、板書課題,出示學習目標。
(二)初步感知理解教材。
教師指導學生自學教材,通過自學感悟理解新知,體現了學生的自主學習意識,鍛煉學生主動探究知識,養成良好的自學習慣。
(三)質疑解難討論歸納。
1、教師設疑或學生提疑。如:怎樣證明勾股定理?學生通過自學,中等以上的學生基本掌握,這時能激發學生的表現欲。
2、教師引導學生按照要求進行拼圖,觀察并分析;
(1)這兩個圖形有什么特點?
(2)你能寫出這兩個圖形的面積嗎?
(3)如何運用勾股定理?是否還有其他形式?
這時教師組織學生分組討論,調動全體學生的積極性,達到人人參與的效果,接著全班交流。先有某一組代表發言,說明本組對問題的理解程度,其他各組作評價和補充。教師及時進行富有啟發性的點撥,最后,師生共同歸納,形成一致意見,最終解決疑難。
(四)鞏固練習強化提高。
1、出示練習,學生分組解答,并由學生總結解題規律。課堂教學中動靜結合,以免引起學生的疲勞。
2、出示例1學生試解,師生共同評價,以加深對例題的理解與運用。針對例題再次出現鞏固練習,進一步提高學生運用知識的能力,對練習中出現的情況可采取互評、互議的形式,在互評互議中出現的具有代表性的問題,教師可以采取全班討論的形式予以解決,以此突出教學重點。
(五)歸納總結練習反饋。
引導學生對知識要點進行總結,梳理學習思路。分發自我反饋練習,學生獨立完成。
本課意在創設愉悅和諧的樂學氣氛,優化教學手段,借助電教手段提高課堂教學效率,建立平等、民主、和諧的師生關系。加強師生間的合作,營造一種學生敢想、感說、感問的課堂氣氛,讓全體學生都能生動活潑、積極主動地教學活動,在學習中創新精神和實踐能力得到培養。
初中數學勾股定理教學設計(匯總18篇)篇八
教材分析:勾股定理是直角三角形的重要性質,它把三角形有一個直角的"形"的特點,轉化為三邊之間的"數"的關系,它是數形結合的典范。它可以解決許多直角三角形中的計算問題,它是直角三角形特有的性質,是初中數學教學內容重點之一。本節課的重點是發現勾股定理,難點是說明勾股定理的正確性。
學生分析:
1、考慮到三角尺學生天天在用,較為熟悉,但真正能仔細研究過三角尺的同學并不多,通過這樣的情景設計,能非常簡單地將學生的注意力引向本節課的本質。
2、以與勾股定理有關的人文歷史知識為背景展開對直角三角形三邊關系的討論,能激發學生的學習興趣。
設計理念:本教案以學生手中舞動的三角尺為知識背景展開,以勾股定理在古今中外的發展史為主線貫穿課堂始終,讓學生對勾股定理的發展過程有所了解,讓他們感受勾股定理的豐富文化內涵,體驗勾股定理的探索和運用過程,激發學生學習數學的興趣,特別是通過向學生介紹我國古代在勾股定理研究和運用方面的成就,激發學生熱愛祖國,熱愛祖國悠久文化的思想感情,培養他們的民族自豪感和探究創新的精神。
教學目標:
1、經歷用面積割、補法探索勾股定理的過程,培養學生主動探究意識,發展合理推理能力,體現數形結合思想。
2、經歷用多種割、補圖形的方法驗證勾股定理的過程,發展用數學的眼光觀察現實世界和有條理地思考能力以及語言表達能力等,感受勾股定理的文化價值。
3、培養學生學習數學的興趣和愛國熱情。
4、欣賞設計圖形美。
教學準備階段:
學生準備:正方形網格紙若干,全等的直角三角形紙片若干,彩筆、直角三角尺、鉛筆等。
老師準備:畢達哥拉斯、趙爽、劉徽等證明勾股定理的圖片以及其它有關人物歷史資料等投影圖片。
(一)引入。
同學們,當你每天手握三角尺繪制自己的宏偉藍圖時,你是否想過:他們的邊有什么關系呢?今天我們來探索這一小秘密。(板書課題:探索直角三角形三邊關系)。
(二)實驗探究。
設網格正方形的邊長為1,直角三角形的直角邊分別為a、b,斜邊為c,觀察并計算每個正方形的面積,以四人小組為單位填寫下表:
(討論難點:以斜邊為邊的正方形的面積找法)。
交流后得出一般結論:(用關于a、b、c的式子表示)。
(三)探索所得結論的正確性。
當直角三角形的直角邊分別為a、b,斜邊為c時,是否一定成立?
1、指導學生運用拼圖、或正方形網格紙構造或設計合理分割(或補全)圖形,去探索本結論的正確性:(以四人小組為單位進行)。
在學生所創作圖形中選擇有代表性的割、補圖,展示出來交流講解,并引導學生進行說理:
如圖2(用補的方法說明)。
師介紹:(出示圖片)畢達哥拉斯,公元前約500年左右,古西臘一位哲學家、數學家。一天,他應邀到一位朋友家做客,他一進朋友家門就被朋友家的豪華的方形大理石地磚的形狀深深吸引住了,于是他立刻找來尺子和筆又量又畫,他發現以每塊大理石地磚的相鄰兩直角邊向三角形外作正方形,它們的面積和等于以這塊大理石地磚的對角線為邊向形外作正方形的面積。于是他回到家里立刻對他的這一發現進行了探究證明……,終獲成功。后來西方人們為了紀念他的這一發現,將這一定理命名為"畢達哥拉斯定理"。1952年,希臘政府為了紀念這位偉大的數學家,特別選用他設計的這種圖形為主圖發行了一枚紀念郵票。(見課本52頁彩圖2—1,欣賞圖片)。
如圖3(用割的方法去探索)。
師介紹:(出示圖片)中國古代數學家們很早就發現并運用這個結論。早在公元前2000年左右,大禹治水時期,就曾經用過此方法測量土地的`等高差,公元前1100年左右,西周的數學家商高就曾用"勾三、股四、弦五"測量土地,他們對這一結論的運用至少比古希臘人早500多年。公元200年左右,三國時期吳國數學家趙爽曾構造此圖驗證了這一結論的正確性。他的這個證明,可謂別具匠心,極富創新意識,他用幾何圖形的割、來證明代數式之間的相等關系,既嚴密,又直觀,為中國古代以"形"證"數",形、數統一的獨特風格樹立了一個典范。他是我國有記載以來第一個證明這一結論的數學家。我國數學家們為了紀念我國在這方面的數學成就,將這一結論命名為"勾股定理"。(點題)。
20xx年,世界數學家大會在中國北京召開,當時選用這個圖案作為會場主圖,它標志著我國古代數學的輝煌成就。(見課本50頁彩圖,欣賞圖片)。
如圖4(構造新圖形的方法去探索)。
1、繼續收集、整理有關勾股定理的證明方的探索問題并交流。
初中數學勾股定理教學設計(匯總18篇)篇九
一、教材分析:。
(一)、本節課在教材中的地位作用。
“勾股定理的逆定理”一節,是在上節“勾股定理”之后,繼續學習的一個直角三角形的判斷定理,它是前面知識的繼續和深化,勾股定理的逆定理是初中幾何學習中的重要內容之一,是今后判斷某三角形是直角三角形的重要方法之一,在以后的解題中,將有十分廣泛的應用,同時在應用中滲透了利用代數計算的方法證明幾何問題的思想,為將來學習解析幾何埋下了伏筆,所以本節也是本章的重要內容之一。課標要求學生必須掌握。
(二)、教學目標:。
根據數學課標的要求和教材的具體內容,結合學生實際我確定了本節課的教學目標。
知識技能:
2、掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一個三角形是不是直角三角形。
過程與方法:
2、通過用三角形三邊的數量關系來判斷三角形的形狀,體驗數與形結合方法的應用。
3、通過勾股定理的逆定理的證明,體會數與形結合方法在問題解決中的作用,并能運用勾股定理的逆定理解決相關問題。
情感態度:
(三)、學情分析:
盡管已到初二下學期學生知識增多,能力增強,但思維的局限性還很大,能力也有差距,而勾股定理的逆定理的證明方法學生第一次見到,它要求根據已知條件構造一個直角三角形,根據學生的智能狀況,學生不容易想到,因此勾股定理的逆定理的證明又是本節的難點,這樣如何添輔助線就是解決它的關鍵,這樣就確定了本節課的重點、難點和關鍵。
關鍵:輔助線的添法探索。
二、教學過程:
(一)、復習回顧:復習回顧與勾股定理有關的內容,建立新舊知識之間的聯系。
(二)、創設問題情境。
一開課我就提出了與本節課關系密切、學生用現有的'知識可探索卻又解決不好的問題,去提示本節課的探究宗旨。(演示)古代埃及人把一根長繩打上等距離的13個結,然后用樁釘如圖那樣的三角形,便得到一個直角三角形。這是為什么?……。這個問題一出現馬上激起學生已有知識與待研究知識的認識沖突,引起了學生的重視,激發了學生的興趣,因而全身心地投入到學習中來,創造了我要學的氣氛,同時也說明了幾何知識來源于實踐,不失時機地讓學生感到數學就在身邊。
(三)、學生在教師的指導下嘗試解決問題,總結規律(包括難點突破)。
因為幾何來源于現實生活,對初二學生來說選擇適當的時機,讓他們從個體實踐經驗中開始學習,可以提高學習的主動性和參與意識,所以勾股定理的逆定理不是由教師直接給出的,而是讓學生通過動手折紙在具體的實踐中觀察滿足條件的三角形直觀感覺上是什么三角形,再用直角三角形插入去驗證猜想。
這樣設計是因為勾股定理逆定理的證明方法是學生第一次見到,它要求按照已知條件作一個直角三角形,根據學生的智能狀況學生是不容易想到的,為了突破這個難點,我讓學生動手裁出了一個兩直角邊與所折三角形兩條較小邊相等的直角三角形,通過操作驗證兩三角形全等,從而不僅顯示了符合條件的三角形是直角三角形,還孕育了輔助線的添法,為后面進行邏輯推理論證提供了直觀的數學模型。
接下來就是利用這個數學模型,從理論上證明這個定理。從動手操作到證明,學生自然地聯想到了全等三角形的性質,證明它與一個直角三角形全等,順利作出了輔助直角三角形,整個證明過程自然、無神秘感,實現了從生動直觀向抽象思維的轉化,同時學生親身體會了動手操作——觀察——猜測——探索——論證的全過程,這樣學生不是被動接受勾股定理的逆定理,因而使學生感到自然、親切,學生的學習興趣和學習積極性有所提高。使學生確實在學習過程中享受到自我創造的快樂。
在同學們完成證明之后,可讓他們對照課本把證明過程嚴格的閱讀一遍,充分發揮教課書的作用,養成學生看書的習慣,這也是在培養學生的自學能力。
(四)、組織變式訓練。
初中數學勾股定理教學設計(匯總18篇)篇十
教學目標:
1、知識與技能目標:理解和掌握勾股定理的內容,能夠靈活運用勾股定理進行計算,并解決一些簡單的實際問題。
2、過程與方法目標:通過觀察分析,大膽猜想,并探索勾股定理,培養學生動手操作、合作交流、邏輯推理的能力。
3、情感、態度與價值觀目標:了解中國古代的數學成就,激發學生愛國熱情;學生通過自己的努力探索出結論獲得成就感,培養探索熱情和鉆研精神;同時體驗數學的美感,從而了解數學,喜歡幾何。
教學重點:
引導學生經歷探索及驗證勾股定理的過程,并能運用勾股定理解決一些簡單的實際問題。
教學難點:
課前準備:
多媒體ppt,相關圖片。
教學過程:
(一)情境導入。
1、多媒體課件放映圖片欣賞:勾股定理數形圖,1955年希臘發行的一枚紀念郵票,美麗的勾股樹,國際數學大會會標等。通過圖形欣賞,感受數學之美,感受勾股定理的文化價值。
已知一直角三角形的兩邊,如何求第三邊?
學習了今天的這節課后,同學們就會有辦法解決了。
(二)學習新課。
初中數學勾股定理教學設計(匯總18篇)篇十一
新學期已到來,我們又要投入到緊張、繁忙而有序地教育教學工作中,使自己今后的教學工作中能有效地、有序地貫徹新的教育精神,圍繞我校新學期的工作計劃要求制定初中一年級數學教學設計方案:
一、教材分析:
二、教學目標:
三、教學措施:
2、把握學生思想動態,及時與學生溝通,搞好師生關系、
7、加強培優補中促差生的個別輔導,因材施教,培養學生的個性特長、特別要多鼓勵后進生,提高他們的學習興趣,培養他們良好的學習習慣:(1)課前預習習慣;(2)積極思考,主動發言習慣;(3)自主作業習慣;(4)課后復習習慣。
初中數學勾股定理教學設計(匯總18篇)篇十二
1、了解公式的意義,使學生能用公式解決簡單的實際問題;。
2、初步培養學生觀察、分析及概括的能力;。
3、通過本節課的教學,使學生初步了解公式來源于實踐又反作用于實踐。
一、教學重點、難點。
重點:通過具體例子了解公式、應用公式、
難點:從實際問題中發現數量之間的關系并抽象為具體的公式,要注意從中反應出來的歸納的思想方法。
二、重點、難點分析。
人們從一些實際問題中抽象出許多常用的、基本的數量關系,往往寫成公式,以便應用。如本課中梯形、圓的面積公式。應用這些公式時,首先要弄清楚公式中的字母所表示的意義,以及這些字母之間的數量關系,然后就可以利用公式由已知數求出所需的未知數。具體計算時,就是求代數式的值了。有的公式,可以借助運算推導出來;有的公式,則可以通過實驗,從得到的反映數量關系的一些數據(如數據表)出發,用數學方法歸納出來。用這些抽象出的具有一般性的公式解決一些問題,會給我們認識和改造世界帶來很多方便。
三、知識結構。
本節一開始首先概述了一些常見的公式,接著三道例題循序漸進的講解了公式的直接應用、公式的先推導后應用以及通過觀察歸納推導公式解決一些實際問題。整節內容滲透了由一般到特殊、再由特殊到一般的辨證思想。
四、教法建議。
1、對于給定的可以直接應用的公式,首先在給出具體例子的前提下,教師創設情境,引導學生清晰地認識公式中每一個字母、數字的意義,以及這些數量之間的對應關系,在具體例子的基礎上,使學生參與挖倔其中蘊涵的思想,明確公式的應用具有普遍性,達到對公式的靈活應用。
2、在教學過程中,應使學生認識有時問題的解決并沒有現成的公式可套,這就需要學生自己嘗試探求數量之間的關系,在已有公式的基礎上,通過分析和具體運算推導新公式。
3、在解決實際問題時,學生應觀察哪些量是不變的,哪些量是變化的,明確數量之間的對應變化規律,依據規律列出公式,再根據公式進一步地解決問題。這種從特殊到一般、再從一般到特殊認識過程,有助于提高學生分析問題、解決問題的能力。
(一)知識教學點。
1、使學生能利用公式解決簡單的實際問題、
2、使學生理解公式與代數式的關系、
(二)能力訓練點。
1、利用數學公式解決實際問題的能力、
2、利用已知的公式推導新公式的能力、
(三)德育滲透點。
數學來源于生產實踐,又反過來服務于生產實踐、
(四)美育滲透點。
二、學法引導。
1、數學方法:引導發現法,以復習提問小學里學過的公式為基礎、突破難點。
2、學生學法:觀察分析推導計算。
三、重點、難點、疑點及解決辦法。
1、重點:利用舊公式推導出新的圖形的計算公式、
2、難點:同重點、
3、疑點:把要求的圖形如何分解成已經熟悉的圖形的和或差、
四、課時安排。
1課時。
五、教具學具準備。
投影儀,自制膠片。
六、師生互動活動設計。
七、教學步驟。
(一)創設情景,復習引入。
板書:公式。
師:小學里學過哪些面積公式?
板書:s=ah。
(出示投影1)。解釋三角形,梯形面積公式。
【教法說明】讓學生感知用割補法求圖形的面積。
(二)探索求知,講授新課。
師:下面利用面積公式進行有關計算。
(出示投影2)。
例1如圖是一個梯形,下底(米),上底,高,利用梯形面積公式求這個梯形的面積s。
師生共同分析:
1、根據梯形面積計算公式,要計算梯形面積,必須知道哪些量?這些現在知道嗎?
2、題中“m”是什么意思?(師補充說明厘米可寫作cm,千米寫作km,平方厘米寫作等)。
學生口述解題過程,教師予以指正并指出,強調解題的規范性。
【教法說明】。
1、通過分析,引導學生在一個實際問題中,必須明確哪些量是已知的,哪些量是未知的,要解決這個問題,必須已知哪些量。
2、用公式計算時,要先寫出公式,然后代入計算,養成良好的解題習慣。
(出示投影3)。
例2如圖是一個環形,外圓半徑,內圓半徑求這個環形的面積。
學生討論:
1、環形是怎樣形成的、
2、如何求環形的面積討論后請學生板演,其他同學做在練習本上,教育巡回指導。
評講時注意:
1、如果有學生作了簡便計算,則給予表揚和鼓勵:如果沒有學生這樣計算,則啟發學生這樣計算。
2、本題實際上是由圓的面積公式推導出環形面積公式。
3、進一步強調解題的規范性。
教法說明,讓學生做例題,學生能自己評判對與錯,優與劣,是獲取知識的一個很好的途徑。
測試反饋,鞏固練習。
(出示投影4)。
1、計算底,高的三角形面積。
3、已知圓的半徑,,求圓的周長c和面積s。
4、從a地到b地有20千米上坡路和30千米下坡路,某車上坡時每小時走千米,下坡時每小時走千米。
(1)求a地到b地所用的時間公式。
(2)若千米/時,千米/時,求從a地到b地所用的時間。
【教法說明】面向全體,分層教學,能照顧兩極,使所有的同學有所發展、
八、隨堂練習。
(一)填空。
1、圓的半徑為r,它的面積________,周長_____________。
(二)一種塑料三角板形狀,尺寸如圖,它的厚度是,求它的體積v,如果,v是多少?
九、布置作業。
(一)必做題課本第___頁x、x、x第___頁x組x。
(二)選做題課本第___頁___組x。
初中數學勾股定理教學設計(匯總18篇)篇十三
在這一環節中,我設計了這樣一個情境,多媒體動畫展示,米老鼠來到了數學王國里的三角形城堡,要求只利用一根繩子,構造一個直角三角形,方可入城,這可難壞了米老鼠,你能幫它想辦法嗎?預測大多數同學會無從下手,這樣引出課題。只有學習了勾股定理的逆定理后,大家都能幫助米老鼠進入城堡,我認為:“大疑而大進”這樣做,充分調動學習內容,激發求知欲望,動漫演示,又有了很強的趣味性,做到課之初,趣已生,疑已質。
本環節要圍繞以下幾個活動展開:
1、算一算:求以線段a,b為直角邊的直角三角形的斜邊c長。
2、猜一猜,以下列線段長為三邊的三角形形狀。
3、擺一擺利用方便筷來操作問題2,利用量角器來度量,驗證問題2的發現。
4、用恰當的語言敘述你的結論。
1)學生的參與意識與動手能力。
2)是否清楚三角形三邊長度的平方關系是因,直角三角形是果。既先有數,后有形。
3)數形結合的思想方法及歸納能力。
八年級正是學生由實驗幾何向推理幾何過渡的重要時期,多數學生難以由直觀到抽象這一思維的飛躍,而勾股定理的逆定理的證明又不同于以往的幾何圖形的證明,需要構造直角三角形才能完成,而構造直角三角形就成為解決問題的關鍵,直接拋給學生證明,無疑會石沉大海,所以,我采用分層導進的方法,以求一石激起千層浪。
為了較好完成教師的誘導,教師要給學生獨立思考的時間,要給學生在組內交流個別意見的時間,教師要深入小組指導與幫助,并利用實物投影儀展示小組成果,取得階段性成果再探究問題2.這樣由特殊到一般,凸顯了構造直角三角形這一解決問題的關鍵,讓他們在不斷的探究過程中,親自體驗參與發現創造的愉悅,有效的突破了難點。
初中數學勾股定理教學設計(匯總18篇)篇十四
隨著科學技術的發展,教育資源和教育需求也隨之增長和變化。我校進行了初中數學分層教學課題研究,而分層次備課是搞好分層教學的關鍵,教師應在吃透教材、大綱的情況下,按照不同層次學生的實際情況,設計好分層次教學的全過程。本文將結合本人的教學經驗,對分層教學教案設計進行初步探討。
1教學目標的制定。
制定具體可行的教學目標,先要分清哪些屬于共同目標,哪些屬于層次目標。并在知識與技能、過程與方法、情感態度與價值觀三個方面對不同層次的學生制定具體的要求。
2教法學法的制定。
制定教法學法應結合各層次學生的具體情況而定,如對a層學生少講多練,注重培養其自學能力;對b層學生,則實行精講精練,注重課本上的例題和習題的處理;對c層學生則要求要低,淺講多練,弄懂基本概念,掌握必要的基礎知識和基本技能。
3教學重難點的制定。
教學重難點的制定也應結合各層次學生的具體情況而定。
4.1情境導向,分層定標。教師以實例演示、設問等多種方法導入新課。要利用各種教學資料創設恰當的學習情境為各層學生呈現適合于本層學生水平學習的內容。
4.2分層練習,探討生疑。學生對照各自的目標分層自學。教師要鼓勵學生主動實踐,自覺地去發現問題、探討問題、解決問題。
4.3集體回授,異步釋疑。“集體回授”主要是針對人數占優勢的b層學生,為解決具有共性的問題而組織的一種集體教學活動。教師為那些來不及解決的、不具有共性的問題分先后在層內釋疑即“異步釋疑”。
5練習與作業的設計。
教師在設計練習或布置作業時要遵循“兩部三層”的原則。“兩部”是指練習或作業分為必做題和選做題兩部分;“三層”是指教師在處理練習時要具有三個層次:第一層次為知識的直接運用和基礎練習;第二、三兩層次的題目為選做題,這樣可使a層學生有練習的機會,b、c兩層學生也有充分發展的余地。
分層教學下教師不能再“拿一個教案用到底”,而要精心地設計課堂教學活動,針對不同層次的學生選擇恰當的方法和手段,了解學生的實際需求,關心他們的進步,改革課堂教學模式,充分調動學生的學習主動性,創造良好的課堂教學氛圍,形成成功的激勵機制,確保每一個學生都有所進步。
初中數學勾股定理教學設計(匯總18篇)篇十五
全期共有六章。新授課程主要有一元一次不等式組、二元一次方程組、平面上直線的位置關系和度量關系、多項式的運算、軸對稱圖形、數據的分析與比較。
本學期是本年級學生初中學習階段的第二學期。通過上期的學習,大多數學生對學習數學產生了濃厚的學習興趣。更有像陳琦、嚴細毛、瞿俐純等同學更是對數學探究活動情有獨衷。上期期末考試中,0901整體水平稍高于兄弟班級,但有兩極分化的趨勢。0902班的及格率稍高于兄弟班,但低分段學生高于10%,而且這部分學生對學習缺乏應有的熱情和自信,有自暴自棄之嫌。
本學期的數學教學要從學生的實際問題出發,積極引導學生觀察、思考、探究、討論、歸納數學問題,要鼓勵學生去探索、發現數學的奧妙,用學到的本領去解決復習鞏固、綜合運用、拓展探索等不同層次的問題。教學中既要注意知識的覆蓋面,關注中考的重點、熱點和難點,又要突出數學知識在社會、科技中的運用,讓學生在學習、練習中熟記知識要點、考試內容,掌握應試技巧和數學思想方法,提高綜合素質,培養創新意識和探索能力。在期中、期末考試中力爭生均分70分左右,合格率60%以上,優秀率30%以上,并將低分率控制到10%以下。
1、認真鉆研教材,積極捕捉課改信息,盡力倡導自主、合作、探究學習,努力培養學生的學習興趣和個性品質。
2、把握學生思想動態,及時與學生溝通,搞好師生關系。
3、充分利用課堂教學時間,幫助學生理解教學重難點,訓練考點、熱點,強化記憶,形成能力,提高成績。
4、改進教學方法,用多媒體課件,實物等創設情景進行教學,力求課堂的多樣化、生活化和開放化,力爭有更多的師生互動、生生互動的機會。
5、精講多練,在教學新知識的同時,注重舊知識的復習,使所學知識系統化,條理化,讓學生在練習、測試中鞏固提高,減少遺忘。
6、開辟第二課堂,在不加重學生負擔的前提下,積極引導學生閱讀課外書,促進學生自主、合作,探究學習,培養興趣,提高能力。
初中數學勾股定理教學設計(匯總18篇)篇十六
1、讓學生了解鄂倫春族的服飾特點、生活習性等簡單知識。培養學生熱愛少數民族的感情。
2、有感情地演唱歌曲《勇敢的鄂倫春》。
重點:演唱歌曲《勇敢的鄂倫春》。
難點:
1、歌曲中“一呀一桿槍”“日夜巡邏”的音準及咬字吐字。
2、用打擊樂器敲打節奏并嘗試三個聲部的敲擊并能為歌曲伴奏。
一、情境引入。
教師頭戴小鹿頭飾:小朋友們,大家好!我是森林里的小鹿,今天,我想邀請大家到森林里去郊游。(課件:出示森林圖片,背景音樂《小鹿,小鹿》。)。
師:森林里有許多可愛的小動物,我們來看看都有誰呀!
(課件:逐一出示各種小動物圖片。)。
師:我還給大家帶來一首好聽的兒歌,請小朋友們輕輕拍手為我伴奏好嗎?
(教師拍手讀兩遍歌詞,適當做簡單律動。)。
二、學唱歌曲。
師:小朋友快瞧,那里有一群我的小伙伴唱著歌向我們跑過來了。
(課件:出示一群奔跑的小鹿,同時播放歌曲錄音。)。
師:現在我們來到了森林游樂園,大家看,這只看門的小鹿好象有話要對我們說。
三、游戲創編。
學生戴上各種小動物的頭飾。
(課件:小鹿說:“大家先別著急,我還有要求呢,你們要把歌里唱的小鹿是怎么做的跟自己平時玩的游戲結合起來,教給游樂園里的小動物,怎么樣,能做到嗎?)。
學生分組創編,教師巡視指導。
四、分組展示。
學生依次展示兩到三組,每組展示完可由教師和學生進行評價。
五、集體游戲。
師:小朋友們玩的游戲可真精彩,我也想把自己編的游戲跟大家一起玩,誰愿意上來?(挑選10人左右上臺)。下面的小朋友,請你拍手為我們伴奏,學會了這個游戲,下課后可以跟你的小伙伴一起玩呢!
教師講解游戲規則,與學生進行游戲。
六、結束部分。
(課件:小鹿說:“小朋友們,時間過得真快,我們的郊游要結束了,可我看到咱們玩過的地方有許多小朋友留下的垃圾,如果每個人都這樣不愛護環境,我的家會變成什么樣子呀!”)。
師:小朋友們,我們該怎么辦呢?(學生自由說)。
師:那讓我們一起行動起來,還小動物們一個美麗的家吧!
將本文的word文檔下載到電腦,方便收藏和打印。
初中數學勾股定理教學設計(匯總18篇)篇十七
教學目標:
1、知識與技能目標:理解和掌握勾股定理的內容,能夠靈活運用勾股定理進行計算,并解決一些簡單的實際問題。
2、過程與方法目標:通過觀察分析,大膽猜想,并探索勾股定理,培養學生動手操作、合作交流、邏輯推理的能力。
3、情感、態度與價值觀目標:了解中國古代的數學成就,激發學生愛國熱情;學生通過自己的努力探索出結論獲得成就感,培養探索熱情和鉆研精神;同時體驗數學的美感,從而了解數學,喜歡幾何。
教學重點:
引導學生經歷探索及驗證勾股定理的過程,并能運用勾股定理解決一些簡單的實際問題。
教學難點:
課前準備:
多媒體ppt,相關圖片。
教學過程:
(一)情境導入。
1、多媒體課件放映圖片欣賞:勾股定理數形圖,1955年希臘發行的一枚紀念郵票,美麗的勾股樹,國際數學大會會標等。通過圖形欣賞,感受數學之美,感受勾股定理的文化價值。
初中數學勾股定理教學設計(匯總18篇)篇十八
(1)學生在教師引導下,積極主動地經歷探索三角形全等的條件的過程,體會利用操作、歸納獲得數學結論的過程。
(2)掌握三角形全等的“邊邊邊”、“邊角邊”、“角邊角”、“角角邊”的判定方法,了解三角形的穩定性,能用三角形的全等解決一些實際問題。
(3)培養學生的空間觀念,推理能力,發展有條理地表達能力,積累數學活動經驗。
重點:三角形全等條件的探索過程是本節課的重點。
從設置情景提出問題,到動手操作,交流,直至歸納得出結論,整個過程學生不僅得到了兩個三角形全等的條件,更重要得是經歷了知識的形成過程,體會了一種分析問題的方法,積累了數學活動經驗,這將有利于學生更好的理解數學,應用數學。
難點:三角形全等條件的探索過程,特別是創設出問題后,學生面對開放性問題,要做出全面、正確得分析,并對各種情況進行討論,對初一學生有一定的難度。
點撥、引導,盡可能調動所有學生的積極性、主動性參與到合作探討中來,使學生在與他人的合作交流中獲取新知,并使個性思維得以發展。
電腦顯示,帶領學生復習全等三角定義及其性質。電腦顯示,小明畫了一個三角形,怎樣才能畫一個三角形與他的三角形全等?我們知道全等三角形三條邊分別對應相等,三個角分別對應相等,那麼,反之這六個元素分別對應,這樣的兩個三角形一定全等。但是,是否一定需要六個條件呢?條件能否盡可能少嗎?對學生分類中出現的問題,予以糾正,對學生提出的解決問題的不同策略,要給予肯定和鼓勵,以滿足多樣化的學生需要,發展學生個性思維。
按照三角形“邊、角”元素進行分類,師生共同歸納得出:
1、一個條件:一角,一邊。
2、兩個條件:兩角;兩邊;一角一邊。
3、三個條件:三角;三邊;兩角一邊;兩邊一角。
按以上分類順序動腦、動手操作,驗證。
教師收集學生的作品,加以比較,得出結論:
只給出一個或兩個條件時,都不能保證所畫出的三角形一定全等。
下面將研究三個條件下三角形全等的判定。
(1)已知三角形的三個角分別為40°、60°、80°,畫出這個三角形,并與同伴比較是否全等。
學生得出結論后,再舉例體會一下。舉例說明:
再如同是:等邊三角形,邊長不等,兩個三角形也不全等。等等。
(2)已知三角形三條邊分別是4cm,5cm,7cm,畫出這個三角形,并與同伴比較是否全等。
板演:三邊對應相等的`兩個三角形全等,簡寫為“邊邊邊”或“sss”。
由上面的結論可知:只要三角形三邊的長度確定了,這個三角形的形狀和大小就確定了。
實物演示:
由三根木條釘成的一個三角形框架,它的大小和形狀是固定不變的,三角形的這個性質叫三角形的穩定性。
舉例說明該性質在生活中的應用。
類比著三角形,讓學生動手操作,研究四邊形、五邊性有無穩定性。
圖形的穩定性與不穩定性在生活中都有其作用,讓學生舉例說明。
題組練習(略)。
3、(對有能力的學生要求把實際問題抽象成數學問題,根據自己的理解寫出推理過程。對一般學生要求口頭表達理由,并能說明每一步的根據。)。
教師帶領,回顧反思本節課對知識的研究探索過程,小結方法及結論,提煉數學思想,掌握數學規律。
在教師引導下回憶前面知識,為探究新知識作好準備。議一議:
學生分小組進行討論交流。受教師啟發,從最少條件開始考慮,一個條件;兩個條件;三個條件?經過學生逐步分析,各種情況漸漸明朗,進行交流予以匯總,歸納。
想一想:
對只給一個條件畫三角形,畫出的三角形一定全等嗎?
畫一畫:
30,一條邊為3cm。
剪一剪:
把所畫的三角形分別剪下來。
比一比:
學生模仿上面的研究方法,獨立完成操作過程,通過交流,歸納得出結論。鼓勵學生自己舉出實例,體驗數學在生活中的應用。學生那出準備好的硬紙條,進行實驗,得出結論:四邊形、五邊形不具穩定性。
學生練習。
學生在教師引導下回顧反思,歸納整理。
z+z平臺演示。
z+z平臺演示,教師加以分析。學生分組討論,師生互動合作。
經過對各種情況得分析,歸納,總結,對學生滲透分類討論的數學思想。結論很顯然只需學生想像即可,z+z平臺輔助直觀演示。學生動手操作,通過實踐、自主探索、交流,獲得新知。