在教學過程中使用教案模板可以提高教學效率,保障教學質(zhì)量。如果你感到教案設計困難,不妨參考下面的教案模板,找到靈感和思路。
七年級數(shù)學有理數(shù)的減法教案(模板17篇)篇一
3.進一步感悟“轉(zhuǎn)化”的思想。
把有理數(shù)的加減法混合運算統(tǒng)一為加法運算。
省略負數(shù)前面的加號的有理數(shù)加法,運用運算律交換加數(shù)位置時,符號不變。
根據(jù)有理數(shù)的減法法則,有理數(shù)的加減速混合運算可以統(tǒng)一為加法運算。
1、完成下列計算:
(1)3+7-12;(2)(-8)-(-10)+(-6)-(+4)。
歸納:根據(jù)有理數(shù)的減法法則,有理數(shù)的`加減混合運算可以統(tǒng)一為運算;
省略負數(shù)前面的加號和()后的形式是______________________;
展示交流。
1、把下列運算統(tǒng)一成加法運算:
2、將下列有理數(shù)加法運算中,加號省略:
(1)12+(-8)=________________;
3、將下列運算先統(tǒng)一成加法,再省略加號:
=___[]______________________。
4、仿照本p37例6,完成下列計算:
盤點收獲。
個案補充。
1.計算:
本p39習題2。5第6題(1)、(3)、(5),第7題。
七年級數(shù)學有理數(shù)的減法教案(模板17篇)篇二
學習目標:。
1、理解加減法統(tǒng)一成加法運算的意義.
2、會將有理數(shù)的加減混合運算轉(zhuǎn)化為有理數(shù)的加法運算.
3、培養(yǎng)學習數(shù)學的興趣,增強學習數(shù)學的信心.
教學方法:講練相結合。
教學過程。
1、一架飛機作特技表演,起飛后的高度變化如下表:
高度的變化上升4.5千米下降3.2千米上升1.1千米下降1.4千米。
記作+4.5千米—3.2千米+1.1千米—1.4千米。
請你們想一想,并和同伴一起交流,算算此時飛機比起飛點高了千米.
2、你是怎么算出來的,方法是。
1、現(xiàn)在我們來研究(—20)+(+3)—(—5)—(+7),該怎么計算呢?還是先自己獨立動動手吧!
2、怎么樣,計算出來了嗎,是怎樣計算的,與同伴交流交流,師巡視指導.
如:(-20)+(+3)-(-5)-(+7)有加法也有減法。
=(-20)+(+3)+(+5)+(-7)先把減法轉(zhuǎn)化為加法。
=-20+3+5-7再把加號記在腦子里,省略不寫。
可以讀作:“負20、正3、正5、負7的”或者“負20加3加5減7”.
4、師生完整寫出解題過程。
1、解決引例中的問題,再比較前面的方法,你的感覺是。
2、例題:計算-4.4-(-4)-(+2)+(-2)+12.4。
3、練習:計算1)(—7)—(+5)+(—4)—(—10)。
1、小結:說說這節(jié)課的收獲。
2、p241、2。
3、計算。
1)27—18+(—7)—322)。
五、作業(yè)。
1、p2552、p26第8題、14題。
七年級數(shù)學有理數(shù)的減法教案(模板17篇)篇三
理解有理數(shù)的概念,懂得有理數(shù)的兩種分類方法:會判別一個有理數(shù)是整數(shù)還是分數(shù),是正數(shù)、負數(shù)還是零。
二、過程與方法。
經(jīng)歷對有理數(shù)進行分類的探索過程,初步感受分類討論的思想。
三、情感態(tài)度與價值觀。
通過對有理數(shù)的學習,體會到數(shù)學與現(xiàn)實世界的緊密聯(lián)系。
教學重難點及突破。
在引入了負數(shù)后,本課對所學過的數(shù)按照一定的標準進行分類,提出了有理數(shù)的概念。分類是數(shù)學中解決問題的常用手段,通過本節(jié)課的學習,使學生了解分類的思想并進行簡單的分類是數(shù)學能力的體現(xiàn),教師在教學中應引起足夠的重視。關于分類標準與分類結果的關系,分類標準的確定可向?qū)W生作適當?shù)臐B透,集合的概念比較抽象,學生真正接受需要很長的過程,本課不宜過多展開。
教學準備。
用電腦制作動畫體現(xiàn)有理數(shù)的分類過程。
教學過程。
四、課堂引入。
2.舉例說明現(xiàn)實中具有相反意義的量。
3.如果由a地向南走3千米用3千米表示,那么-5千米表示什么意義?
4.舉兩個例子說明+5與-5的區(qū)別。
七年級數(shù)學有理數(shù)的減法教案(模板17篇)篇四
1.1正數(shù)和負數(shù)(2)。
教學目標:
教學重點:
深化對正負數(shù)概念的理解。
教學難點:
正確理解和表示向指定方向變化的量。
教學準備:彩色粉筆。
教學過程:
一、復習引入:
學生思考并討論.
(數(shù)0既不是正數(shù)又不是負數(shù),是正數(shù)和負數(shù)的分界,是基準.
二、講解新課。
度,用負數(shù)表示低于海平面的某地的海拔高度。例如,珠穆朗瑪峰的海拔高度為8848.43米,吐魯番盆地的海拔高度為—155米。記賬時,通常用正數(shù)表示收入款額,用負數(shù)表示支出款額。
思考:教科書第4頁(學生先思考,教師再講解)。
三、課堂練習課本p4練習1,2,3,4。
四、課時小結。
引入負數(shù)可以簡明的表示相反意義的量,對于相反意義的量,如果其中一種量用正數(shù)表示,那么另一種量可以用負數(shù)表示.在表示具有相反意義的量時,把哪一種意義的量規(guī)定為正,可根據(jù)實際情況決定.要特別注意零既不是正數(shù)也不是負數(shù),建立正負數(shù)概念后,當考慮一個數(shù)時,一定要考慮它的符號,這與以前學過的數(shù)有很大的區(qū)別.
五、課外作業(yè)教科書p5:2、4。
板書設計:
文檔為doc格式。
七年級數(shù)學有理數(shù)的減法教案(模板17篇)篇五
學習過程:
一、自主學習不動筆墨不讀書!請拿出你的筆和你的激情,探究新知:
1.小學學過的加法運算律有哪些?舉例說明運用運算律有何好處?
2.加法的交換律:
兩個數(shù)相加,交換_______的位置,和不變.用式子表示:a+b=_______.
3.加法的結合律:
七年級數(shù)學有理數(shù)的減法教案(模板17篇)篇六
學習目標:。
1、理解有理數(shù)的運算法則;能根據(jù)有理數(shù)乘法運算法則進行有理的簡單運算。
2、經(jīng)歷探索有理數(shù)乘法法則過程,發(fā)展觀察、歸納、猜想、驗證能力.
3、培養(yǎng)語言表達能力.調(diào)動學習積極性,培養(yǎng)學習數(shù)學的興趣.
學習重點:有理數(shù)乘法。
學習難點:法則推導。
教學方法:引導、探究、歸納與練習相結合。
教學過程。
一、學前準備。
計算:
(1)(一2)十(一2)。
(2)(一2)十(一2)十(一2)。
(3)(一2)十(一2)十(一2)十(一2)。
(4)(一2)十(一2)十(一2)十(一2)十(一2)。
猜想下列各式的值:
(一2)×2(一2)×3。
(一2)×4(一2)×5。
二、探究新知。
1、自學有理數(shù)乘法中不同的形式,完成教科書中29~30頁的填空.
2、觀察以上各式,結合對問題的研究,請同學們回答:
(3)負數(shù)乘以正數(shù)積為__________數(shù),(4)負數(shù)乘以負數(shù)積為__________數(shù)。
提出問題:一個數(shù)和零相乘如何解釋呢?
七年級數(shù)學有理數(shù)的減法教案(模板17篇)篇七
1.1正數(shù)和負數(shù)(2)。
教學目標:
教學重點:
深化對正負數(shù)概念的理解。
教學難點:
正確理解和表示向指定方向變化的量。
教學準備:彩色粉筆。
教學過程:
一、復習引入:
學生思考并討論.
(數(shù)0既不是正數(shù)又不是負數(shù),是正數(shù)和負數(shù)的分界,是基準.
二、講解新課。
度,用負數(shù)表示低于海平面的某地的海拔高度。例如,珠穆朗瑪峰的海拔高度為8848.43米,吐魯番盆地的海拔高度為—155米。記賬時,通常用正數(shù)表示收入款額,用負數(shù)表示支出款額。
思考:教科書第4頁(學生先思考,教師再講解)。
三、課堂練習課本p4練習1,2,3,4。
四、課時小結。
引入負數(shù)可以簡明的表示相反意義的量,對于相反意義的量,如果其中一種量用正數(shù)表示,那么另一種量可以用負數(shù)表示.在表示具有相反意義的量時,把哪一種意義的量規(guī)定為正,可根據(jù)實際情況決定.要特別注意零既不是正數(shù)也不是負數(shù),建立正負數(shù)概念后,當考慮一個數(shù)時,一定要考慮它的符號,這與以前學過的數(shù)有很大的區(qū)別.
五、課外作業(yè)教科書p5:2、4。
板書設計:
七年級數(shù)學有理數(shù)的減法教案(模板17篇)篇八
2.培養(yǎng)學生觀察、分析、歸納及運算能力。
三、教學重點。
四、教學難點。
五、教學用具。
三角尺、小黑板、小卡片。
六、課時安排。
1課時。
七、教學過程。
(一)、從學生原有認知結構提出問題。
1.計算:
(1)(-2.6)+(-3.1);(2)(-2)+3;(3)8+(-3);(4)(-6.9)+0.
2.化簡下列各式符號:
(1)-(-6);(2)-(+8);(3)+(-7);。
(4)+(+4);(5)-(-9);(6)-(+3).
3.填空:
(1)______+6=20;(2)20+______=17;。
(3)______+(-2)=-20;(4)(-20)+______=-6.
在第3題中,已知一個加數(shù)與和,求另一個加數(shù),在小學里就是減法運算。如______+6=20,就是求20-6=14,所以14+6=20.那么(2),(3),(4)是怎樣算出來的?這就是有理數(shù)的減法,減法是加法的逆運算。
(二)、師生共同研究有理數(shù)減法法則。
問題1(1)(+10)-(+3)=______;。
(2)(+10)+(-3)=______.
教師引導學生發(fā)現(xiàn):兩式的結果相同,(更多內(nèi)容請訪問首頁:)即(+10)-(+3)=(+10)+(-3).
(2)(+10)+(+3)=______.
(2)的結果是多少?
于是,(+10)-(-3)=(+10)+(+3).
至此,教師引導學生歸納出有理數(shù)減法法則:
減去一個數(shù),等于加上這個數(shù)的。相反數(shù)。
教師強調(diào)運用此法則時注意“兩變”:一是減法變?yōu)榧臃ǎ欢菧p數(shù)變?yōu)槠湎喾磾?shù)。減數(shù)變號(減法============加法)。
(三)、運用舉例變式練習。
例1計算:
(1)(-3)-(-5);(2)0-7.
例2計算:
(1)18-(-3);(2)(-3)-18;(3)(-18)-(-3);(4)(-3)-(-18).
通過計算上面一組有理數(shù)減法算式,引導學生發(fā)現(xiàn):
在小學里學習的減法,差總是小于被減數(shù),在有理數(shù)減法中,差不一定小于被減數(shù)了,只要減去一個負數(shù),其差就大于被減數(shù)。
閱讀課本63頁例3。
(四)、小結。
1.教師指導學生閱讀教材后強調(diào)指出:
由于把減數(shù)變?yōu)樗南喾磾?shù),從而減法轉(zhuǎn)化為加法。有理數(shù)的加法和減法,當引進負數(shù)后就可以統(tǒng)一用加法來解決。
2.不論減數(shù)是正數(shù)、負數(shù)或是零,都符合有理數(shù)減法法則。在使用法則時,注意被減數(shù)是永不變的。
(五)、課堂練習。
1.計算:
(1)-8-8;(2)(-8)-(-8);(3)8-(-8);(4)8-8;。
2.計算:
3.計算:
(1)1.6-(-2.5);(2)0.4-1;(3)(-3.8)-7;。
(4)(-5.9)-(-6.1);。
(5)(-2.3)-3.6;(6)4.2-5.7;(7)(-3.71)-(-1.45);(8)6.18-(-2.93).
利用有理數(shù)減法解下列問題。
八、布置課后作業(yè):
課本習題2.6知識技能的2、3、4和問題解決1。
九、板書設計。
2.5有理數(shù)的減法。
(一)知識回顧(三)例題解析(五)課堂小結。
例1、例2、例3。
(二)觀察發(fā)現(xiàn)(四)課堂練習練習設計。
十、課后反思。
七年級數(shù)學有理數(shù)的減法教案(模板17篇)篇九
平行公理及推論
(二)難點
平行線概念的理解
(三)解決辦法
通過引導學生嘗試發(fā)現(xiàn)新知、練習鞏固的方法來解決
投影儀、三角板、自制膠片
1通過投影片和適當問題創(chuàng)設情境,引入新課
2通過教師引導,學生積極思維,進行反饋練習,完成新授
3學生自己完成本課小結
(-)明確目標
(二)整體感知
(三)教學過程
創(chuàng)設情境,引出課題
學生齊聲答:不是
師:因此,平面內(nèi)的兩條直線除了相交以外,還有不相交的情形,這就是我們本節(jié)所要研究的內(nèi)容(板書課題)
[板書]24平行線及平行公理
探究新知,講授新課
師:在我們生活的周圍,平面內(nèi)不相交的情形還有許多,你能舉例說明嗎?
學生:窗戶相對的棱,桌面的對邊,書的對邊……
師:我們把它們向兩方無限延伸,得到的直線總也不會相交我們把這樣的直線叫做平行線
[板書]在同一平面內(nèi),不相交的兩條直線叫做平行線
教師出示投影片(課本第74頁圖2?17)
師:請同學們觀察,長方體的棱與無論怎樣延長,它們會不會相交?
學生:不會相交
師:那么它們是平行線嗎?
學生:不是
師:也就是說平行線的定義必須有怎樣的'前提條件?
學生:在同一平面內(nèi)
師:誰能說為什么要有這個前提條件?
學生:因為空間里,不相交的直線不一定平行
教師在黑板上給出課本第73頁圖2
學生:兩種相交和平行
由此師生共同小結:在同一平面內(nèi),兩條直線的位置關系只有相交、平行兩種
嘗試反饋,鞏固練習(出示投影)
1判斷正誤
(1)兩條不相交的直線叫做平行線()
(2)有且只有一個公共點的兩直線是相交直線()
(3)在同一平面內(nèi),不相交的兩條直線一定平行()
(4)一個平面內(nèi)的兩條直線,必把這個平面分為四部分()
2下列說法中正確的是()
a在同一平面內(nèi),兩條直線的位置關系有相交、垂直、平行三種
b在同一平面內(nèi),不垂直的兩直線必平行
c在同一平面內(nèi),不平行的兩直線必垂直
d在同一平面內(nèi),不相交的兩直線一定不垂直
學生活動:學生回答,并簡要說明理由
師:我們很容易畫出兩條相交直線,而對于平行線的畫法,我們在小學就學過用直尺和三角板畫,下面清同學在練習本上完成下面題目(投影顯示)
已知直線和外一點,過點畫直線
師:請根據(jù)語句,自己畫出已知圖形
學生活動:學生在練習本上畫出圖形
師:下面請你們按要求畫出直線
注意:(1)在推動三角尺時,直尺不要動;
(2)畫平行線必須用直尺三角板,不能徒手畫
嘗試反饋,鞏固練習(出示投影)
1畫線段,畫任意射線,在上取、、三點,使,連結,用三角板畫,,分別交于、,量出、、的長(精確到)
2讀下列語句,并畫圖形
(1)點是直線外的一點,直線經(jīng)過點,且與直線平行
(2)直線、是相交直線,點是直線、外的一點,直線經(jīng)過點與直線平行與直線相交于
(3)過點畫,交的延長線于
學生活動:學生思考并回答,能畫,而且只能畫一條
師:我們把這個結論叫平行公理,教師板書
【板書】平行公理:經(jīng)過直線外一點,有且只有一條直線與這條直線平行
學生:思考后,立即回答,能畫無數(shù)條
師:請同學們在練習本上完成
(出示投影)
已知直線,分別畫直線、,使,
學生活動:學生在練習本上完成
師:請同學們觀察,直線、能不能相交?
學生活動:觀察,回答:不相交,也就是說
師:為什么呢?同桌可以討論
學生活動:學生積極討論,各抒己見
學生活動:教師讓學生積極發(fā)表意見,然后給出正確的引導
師:我們觀察圖形,如果直線與相交,設交點為,那么會產(chǎn)生什么問題呢?請同學們討論
學生活動:學生在教師的啟發(fā)引導下思考、討論,得出結論
[板書]如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行
學生活動:學生思考,回答:不對,給出反例圖形,
例如:如圖1所示,射線與就不相交,也不平行
師:同學們想一想,當我們說兩條射線或線段平行時,實際上是什么平行才可以呢?
生:它們所在的直線平行
嘗試反饋,鞏固練習(投影)
七年級數(shù)學有理數(shù)的減法教案(模板17篇)篇十
3+4表示3和+4的代數(shù)和。
等。代數(shù)和概念是掌握有理數(shù)運算的一個重要概念,請老師務必給予充分注意。
4、先把正數(shù)與負數(shù)分別相加,可以使運算簡便。
5、在交換加數(shù)的位置時,要連同前面的符號一起交換。如。
12-5+7應變成12+7-5,而不能變成12-7+5。
教學設計示例一。
一、素質(zhì)目標。
(一)知識教學點。
1.了解:代數(shù)和的概念.。
2.理解:有理數(shù)加減法可以互相轉(zhuǎn)化.。
(二)能力訓練點。
培養(yǎng)學生的口頭表達能力及計算的準確能力.。
(三)德育滲透點。
(四)美育滲透點。
七年級數(shù)學有理數(shù)的減法教案(模板17篇)篇十一
要想盡最大可能的發(fā)揮出課堂45分鐘的效益,需要從許多方面去準備,去思考,比如對教學重點和難點的突破,對課堂的組織對突發(fā)事件的應對以及對學生實際情況的了解等等。要想上好一節(jié)課需要付出很多的精力。復習課并不是單純的讓學生去重復練習,更重要的是使學生在鞏固基礎的前提下,分析問題解決問題的能力得到提高。
七年級數(shù)學有理數(shù)的減法教案(模板17篇)篇十二
1.1正數(shù)和負數(shù)(2)。
教學目標:
教學重點:
深化對正負數(shù)概念的理解。
教學難點:
正確理解和表示向指定方向變化的量。
教學準備:彩色粉筆。
教學過程:
一、復習引入:
學生思考并討論.
(數(shù)0既不是正數(shù)又不是負數(shù),是正數(shù)和負數(shù)的分界,是基準.
二、講解新課。
度,用負數(shù)表示低于海平面的某地的海拔高度。例如,珠穆朗瑪峰的海拔高度為8848.43米,吐魯番盆地的海拔高度為—155米。記賬時,通常用正數(shù)表示收入款額,用負數(shù)表示支出款額。
思考:教科書第4頁(學生先思考,教師再講解)。
三、課堂練習課本p4練習1,2,3,4。
四、課時小結。
引入負數(shù)可以簡明的表示相反意義的量,對于相反意義的量,如果其中一種量用正數(shù)表示,那么另一種量可以用負數(shù)表示.在表示具有相反意義的量時,把哪一種意義的量規(guī)定為正,可根據(jù)實際情況決定.要特別注意零既不是正數(shù)也不是負數(shù),建立正負數(shù)概念后,當考慮一個數(shù)時,一定要考慮它的符號,這與以前學過的數(shù)有很大的區(qū)別.
五、課外作業(yè)教科書p5:2、4。
板書設計:
將本文的word文檔下載到電腦,方便收藏和打印。
七年級數(shù)學有理數(shù)的減法教案(模板17篇)篇十三
學習目標:
1.會用正.負數(shù)表示具有相反意義的量.
2.通過正.負數(shù)學習,培養(yǎng)學生應用數(shù)學知識的意識.
3.通過探究,滲透對立統(tǒng)一的辨證思想。
學習重點:
用正.負數(shù)表示具有相反意義的量。
學習難點:
實際問題中的數(shù)量關系。
教學方法:
講練相結合。
教學過程。
一.學前準備。
通過上節(jié)課的學習,我們知道在實際生產(chǎn)和生活中存在著兩種不同意義的量,為了區(qū)分它們,我們用正數(shù)和負數(shù)來分別表示它們.
問題1:“零”為什么即不是正數(shù)也不是負數(shù)呢?
引導學生思考討論,借助舉例說明.
參考例子:溫度表示中的零上,零下和零度.
二.探究理解解決問題。
問題2:(教科書第4頁例題)。
先引導學生分析,再讓學生獨立完成。
(2)20xx年下列國家的商品進出口總額比上一年的變化情況是:
美國減少6.4%,德國增長1.3%,
法國減少2.4%,英國減少3.5%,
意大利增長0.2%,中國增長7.5%.
寫出這些國家20xx年商品進出口總額的增長率.
解:(1)這個月小明體重增長2kg,小華體重增長―1kg,小強體重增長0kg.
(2)六個國家20xx年商品進出口總額的增長率:
美國―6.4%,德國1.3%,
法國―2.4%,英國―3.5%,
意大利0.2%,中國7.5%.
三.鞏固練習。
從0表示一個也沒有,是正數(shù)和負數(shù)的分界的角度引導學生理解.
在學生的討論中簡單介紹分類的數(shù)學思想先不要給出有理數(shù)的概念.
在例題中,讓學生通過閱讀題中的含義,找出具有相反意義的量,決定哪個用正數(shù)表示,哪個用負數(shù)表示.
通過問題(2)提醒學生審題時要注意要求,題中求的是增長率,不是增長值.
四.閱讀思考1頁。
(教科書第8頁)用正負數(shù)表示加工允許誤差.
問題:1.直徑為30.032mm和直徑為29.97的零件是否合格?
2.你知道還有那些事件可以用正負數(shù)表示允許誤差嗎?請舉例.
五.小結。
1.本節(jié)課你有那些收獲?
2.還有沒解決的問題嗎?
六.應用與拓展。
1.必做題:
教科書5頁習題4.5.:6.7.8題。
2.選做題。
1).甲冷庫的溫度是―12°c,乙冷庫的溫度比甲冷酷低5°c,則乙冷庫的溫度是.
七年級數(shù)學有理數(shù)的減法教案(模板17篇)篇十四
教師在備課時,應充分估計學生在學習時可能提出的問題,確定好重點,難點,疑點,和關鍵。根據(jù)學生的實際改變原先的教學計劃和方法,滿腔熱忱地啟發(fā)學生的思維,針對疑點積極引導。
非常高興,能有機會和同學們共同學習
昨天,老師在七年級三班上課時,把他們分成七個小組,每個小組回答問題的情況以搶答賽的形式記分。你們看(出示投影)這是七年級三班七個小組回答問題的表現(xiàn)情況。答對一題得一分,記作+1分;答錯一題扣一分,記作1分。第幾組最棒?老師還沒來得及計算出每個小組的最后得分,咱們班哪位同學能幫老師算出最后結果?(學生在教師引導下回答)
我們已得出了每個小組的最后分數(shù),那么哪個小組是優(yōu)勝小組?(第一小組),回去以后,老師就把小獎品發(fā)給他們,相信他們一定會很高興。
同學們,這節(jié)課你們愿不愿意也分成幾個小組,看一看那個小組的同學表現(xiàn)得最出色?(原意)那么老師就按座次給同學們分組,每一豎排為一組。老師把組號寫在黑板上,以便記分。
希望各組同學積極思考、踴躍發(fā)言。同學們有沒有信心得到老師的小獎品?(有)同學們加油!
我們已得到了這7個小組的最后得分,那位同學能試著用算式表示?(學生在教師指導下列算式)
以上這些算是都是什么運算?(加法),兩個加數(shù)都是什么數(shù)?(有理數(shù)),這就是我們這節(jié)課要學習的有理數(shù)的加法(板書課題)。
剛才老師說要給七年級三班的優(yōu)勝組發(fā)獎品,老師手里有12本作業(yè)本,優(yōu)勝組共6人,老師將送出的作業(yè)本數(shù)占總數(shù)的幾分之幾?(二分之一)分數(shù)最低的一組共7人,他們每人交給老師一個作業(yè)本,占總數(shù)的幾分之幾?(十二分之七)如果,老師得到的作業(yè)本記為正數(shù),送出的作業(yè)本記為負數(shù),則老師手里的作業(yè)本增加或減少幾分之幾?同學們能列出算式嗎?(學生列式)對于這個算式,同學們還能輕易的感知出結果嗎?(不能)
對于有理數(shù)的加法,有的同學們能直接感知得到結果,有的靠感知是不夠的,這就需要我們共同探索規(guī)律!(出示投影),觀察這7個算式,每一個算式都是怎樣的兩個有理數(shù)相加?(引導學生回答)你們還能舉出不同以上情況的算式嗎?(不能),這說明這幾個算式概括了有理數(shù)加法的不同情況。
前兩個算式的加數(shù)在符號上有什么共同點?(相同),那么我們就可以說這是什么樣的兩數(shù)相加?(同號兩數(shù)相加)同學們還能觀察出那幾個算式可歸為一類嗎?(3、4、5、異號兩數(shù)相加,6、7一個數(shù)同0相加)
同學們已把這7個算式分成了三種情況,下面我們分別探討規(guī)律。
(2) 異號兩數(shù)相加,其和有何規(guī)律呢?大家觀察這三個式子回答問題。(引導學生分成兩類,容易得到絕對值相同情況的結論。再引導學生觀察絕對值不相同的情況,回答問題)哪位同學能概括一下這個規(guī)律?(引導學生得出)
(3) 一個數(shù)同0相加,其和有什么規(guī)律呢?(易得出結論)
同學們經(jīng)過積極思考,探索出了解決有理數(shù)加法的規(guī)律,顧一下(出哪位同學能帶領大家共同回顧一下?(出示投影,學生大聲朗讀)我們把這個規(guī)律稱為有理數(shù)的加法法則。
同學們都很聰明,積極參與探索規(guī)律,每個組都有不錯的成績。個別落后的組不要氣餒,繼續(xù)努力,下面老師就給大家一個得分的機會,看哪一組能[出題制勝]!(出示)
(活動過程1后評價、加分;教師以其中一題為例,講解題格式及過程;活動過程2后:讓每組第三排同學評價加分)
同學們已經(jīng)基本掌握了有理數(shù)的加法法則,并會運用它,但七年級三班有幾位同學對這一內(nèi)容掌握的不是太好,以致在作業(yè)中出了毛病,他們?yōu)榇撕芸鄲馈OM蹅兺瑢W能幫幫他們,看哪位同學能像妙手回春的神醫(yī)華佗一樣藥到病 除!(師生共同治病)
看來同學們對有理數(shù)的加法已經(jīng)掌握得很好了,大家還記得前面那個難倒我們的有理數(shù)的加法題呢?那位同學能解決這個問題呢?(學生口述 師板書)。在大家的努力下,我們終于攻破了這個難關。
通過這節(jié)課的學習,大家有什么收獲?(學生回答)同學們都有很多收獲,老師認為收獲最多的是優(yōu)勝組的同學,因為他們能得到老師的小獎品,大家趕緊看看那一組獲勝?歡迎優(yōu)勝組上臺領獎,大家掌聲鼓勵!
同學們,希望你們在未來的學習和生活中都能積極進取,獲得一個又一個的勝利。
七年級數(shù)學有理數(shù)的減法教案(模板17篇)篇十五
教學目標:
2.過程與方法:經(jīng)歷加減法統(tǒng)一成加法的過程,體會加法的運算律在運算中的應用。
教學重點:能準確、熟練地進行加減混合運算,能自覺地運用加法的運算律簡化運算,
教學難點:準確、熟練地進行加減混合運算。
教學過程。
一、課前預習。
二、自主探索。
例1、計算(1)14-(-12)+(-25)-17(2)2+5-8(3)7-(-4)+(-5)(4)-7.2+4.7-(-8.9)+(-6)(5)-+(-)-(-)-(+)解:(1)14-(-12)+(-25)-17=14+12+(-25)+(-17)---------------------------統(tǒng)一為加法=26+(-42)---------------------------------------運用運算律=-16(2)(3)(4)(5)。
算式(-6)-(-13)+(-5)-(+3)+(+6)是有理數(shù)的加減混合運算,我們還可以按下列步驟進行計算:解:(-6)-(-13)+(-5)-(+3)+(+6)。
=(-6)+(+13)+(-5)+(-3)+(+6)------------統(tǒng)一加號=-6+13-5-3+6----------------------------------------省略加號=-6-5-3+13+6-----------------------------------------運用運算律=-14+19=5說明:省略加號的形式-6+13-5-3+6表示-6,+13,-5,-3,+6這五個數(shù)的和。
例2.計算:
解:(1)(2)。
例4、若a=-2,b=3,c=-4,求值。
(1)a+b-c(2)-a+b-|c|(3)a-b+c(4)-a-b-c。
(2)(3)(4)。
例5、在伊拉克的戰(zhàn)爭中,謀生化小組沿東西方向路進行檢查,約定向東為正,某天從a地到b地結束時行走記錄為(單位:km)。
(2)這小組這一天共走了多少千米。
三、學習小結。
這節(jié)課你學會了哪幾種運算?
四、隨堂練習。
a類。
1、計算:(1)(-30)-(+24)-(-20)+(-32)-(-32)(2)(-2.1)+(-3.2)-(-2.4)-(-4.3)。
(3)(+)-(-)+(-)-(+)(4)-7.52+-1.48。
2計算。
(6)-2.7-[3-(-0.6+1.3)]。
b類。
3.計算(1)++++(2)++++。
板書設計教后感。
七年級數(shù)學有理數(shù)的減法教案(模板17篇)篇十六
2.使學生掌握求一個已知數(shù)的;。
3.培養(yǎng)學生的觀察、歸納與概括的能力.
重點:理解的意義,理解的代數(shù)定義與幾何定義的一致性.
難點:多重符號的化簡.
一、從學生原有的認知結構提出問題。
二、師生共同研究的定義。
特點?
引導學生回答:符號不同,一正一負;數(shù)字相同.
像這樣,只有符號不同的兩個數(shù),我們說它們互為,如+5與。
應點有什么特點?
引導學生回答:分別在原點的兩側;到原點的距離相等.
這樣我們也可以說,在數(shù)軸上的原點兩旁,離開原點距離相等的兩個點所表示的數(shù)互為.這個概念很重要,它幫助我們直觀地看出的意義,所以有的書上又稱它為的幾何意義.
3.0的是0.
這是因為0既不是正數(shù),也不是負數(shù),它到原點的距離就是0.這是等于它本身的的數(shù).
三、運用舉例變式練習。
例1(1)分別寫出9與-7的;。
例1由學生完成.
在學習有理數(shù)時我們就指出字母可以表示一切有理數(shù),那么數(shù)a的如何表示?
引導學生觀察例1,自己得出結論:
數(shù)a的是-a,即在一個數(shù)前面加上一個負號即是它的。
1.當a=7時,-a=-7,7的是-7;。
2.當-5時,-a=-(-5),讀作“-5的”,-5的是5,因此,-(-5)=5.
3.當a=0時,-a=-0,0的是0,因此,-0=0.
么意思?引導學生回答:-(-8)表示-8的;-(+4)表示+4的`;。
例2簡化-(+3),-(-4),+(-6),+(+5)的符號.
能自己總結出簡化符號的規(guī)律嗎?
括號外的符號與括號內(nèi)的符號同號,則簡化符號后的數(shù)是正數(shù);括號內(nèi)、外的符號是異號,則簡化符號后的數(shù)是負數(shù).
課堂練習。
1.填空:
(1)+1.3的是______;(2)-3的是______;。
(5)-(+4)是______的;(6)-(-7)是______的。
2.簡化下列各數(shù)的符號:
-(+8),+(-9),-(-6),-(+7),+(+5).
3.下列兩對數(shù)中,哪些是相等的數(shù)?哪對互為?
-(-8)與+(-8);-(+8)與+(-8).
四、小結。
指導學生閱讀教材,并總結本節(jié)課學習的主要內(nèi)容:一是理解的定義——代數(shù)定義與幾何定義;二是求a的;三是簡化多重符號的問題.
五、作業(yè)。
1.分別寫出下列各數(shù)的:
2.在數(shù)軸上標出2,-4.5,0各數(shù)與它們的。
3.填空:
(1)-1.6是______的,______的是-0.2.
4.化簡下列各數(shù):
5.填空:
(3)如果-x=-6,那么x=______;(4)如果-x=9,那么x=______.
教學過程是以《教學大綱》中“重視基礎知識的教學、基本技能的訓練和能力的培養(yǎng)”,“數(shù)學教學中,發(fā)展思維能力是培養(yǎng)能力的核心”,“堅持啟發(fā)式,反對注入式”等規(guī)定的精神,結合教材特點,以及學生的學習基礎和學習特征而設計的由于內(nèi)容較為簡單,經(jīng)過教師適當引導,便可使學生充分參與認知過程.由于“新”知識與有關的“舊”知識的聯(lián)系較為直接,在教學中則著力引導觀察、歸納和概括的過程.
探究活動。
有理數(shù)a、b在數(shù)軸上的位置如圖:
將a,-a,b,-b,1,-1用“”號排列出來.
分析:由圖看出,a1,-1。
解:在數(shù)軸上畫出表示-a、-b的點:
由圖看出:-a-1。
點評:通過數(shù)軸,運用數(shù)形結合的方法排列三個以上數(shù)的大小順序,經(jīng)常是解這一類問題的最快捷,準確的方法.
七年級數(shù)學有理數(shù)的減法教案(模板17篇)篇十七
本課(節(jié))課題3.1認識直棱柱第1課時/共課時。
教學目標(含重點、難點)及。
1、了解多面體、直棱柱的有關概念.
2、會認直棱柱的側棱、側面、底面.。
3、了解直棱柱的側棱互相平行且相等,側面是長方形(含正方形)等特征.。
教學重點與難點。
教學重點:直棱柱的有關概念.
教學難點:本節(jié)的例題描述一個物體的形狀,把它看成怎樣的兩個幾何體的組合,都需要一定的空間想象能力和表達能力.
內(nèi)容與環(huán)節(jié)預設、簡明設計意圖二度備課(即時反思與糾正)。
析:學生很容易回答出更多的答案。
師:(繼續(xù)補充)有許多著名的建筑,像古埃及的金字塔、巴黎的艾菲爾鐵塔、美國的迪思尼樂園、德國的古堡風光,中國北京的西客站,它們也是由不同的立體圖形組成的;那么立體圖形在生活中有著怎樣的廣泛的應用呢?瞧,食物中的冰激凌、櫻桃、端午節(jié)的粽子等。
1.多面體、棱、頂點概念:
2.合作交流。
師:以學習小組為單位,拿出事先準備好的幾何體。
學生活動:(讓學生從中閉眼摸出某些幾何體,邊摸邊用語言描。
述其特征。)。
師:同學們再討論一下,能否把自己的語言轉(zhuǎn)化為數(shù)學語言。
學生活動:分小組討論。
說明:真正體現(xiàn)了“以生為本”。讓學生在主動探究中發(fā)現(xiàn)知識,充分發(fā)揮了學生的主體作用和教師的主導作用,課堂氣氛活躍,教師教的輕松,學生學的愉快。
師:請大家找出與長方體,立方體類似的物體或模型。
析:舉出實例。(找出區(qū)別)。
師:(總結)棱柱分為之直棱柱和斜棱柱。(根據(jù)其側棱與底面是否垂直)根據(jù)底面多邊形的邊數(shù)而分為直三棱柱、直四棱柱……直棱柱有以下特征:
有上、下兩個底面,底面是平面圖形中的多邊形,而且彼此全等;
側面都是長方形含正方形。
長方體和正方體都是直四棱柱。
3.反饋鞏固。
完成“做一做”
析:由第(3)小題可以得到:
直棱柱的'相鄰兩條側棱互相平行且相等。
4.學以至用。
出示例題。(先請學生單獨考慮,再作講解)。
析:引導學生著重觀察首飾盒的側面是什么圖形,上底面是什么圖形,然后與直棱柱的特征作比較。(使學生養(yǎng)成發(fā)現(xiàn)問題,解決問題的創(chuàng)造性思維習慣)。
最后完成例題中的“想一想”
5.鞏固練習(學生練習)。
完成“課內(nèi)練習”
師:我們這節(jié)課的重點是什么?哪些地方比較難學呢?
合作交流后得到:重點直棱柱的有關概念。
直棱柱有以下特征:
有上、下兩個底面,底面是平面圖形中的多邊形,而且彼此全等;
側面都是長方形含正方形。
例題中的把首飾盒看成是由兩個直三棱柱、直四棱柱的組合,或著是兩個直四棱柱的組合需要一定的空間想象能力和表達能力。這一點比較難。
板書設計。
作業(yè)布置或設計作業(yè)本及課時特訓。