作文是一種情感的宣泄和心靈的寄托,可以讓學生表達內心的感受和情感。小編精選的這些總結范文都經過精心篩選,具有一定的可靠性和權威性。
數學建模論文(優秀19篇)篇一
第一條,論文用白色a4紙打印(單面、雙面均可);上下左右各留出至少2.5厘米的頁邊距;從左側裝訂。
第二條,論文第一頁為承諾書,第二頁為編號專用頁,具體內容見本規范第3、4頁。
第三條,論文第三頁為摘要專用頁(含標題和關鍵詞,但不需要翻譯成英文),從此頁開始編寫頁碼;頁碼必須位于每頁頁腳中部,用阿拉伯數字從“1”開始連續編號。摘要專用頁必須單獨一頁,且篇幅不能超過一頁。
第四條,從第四頁開始是論文正文(不要目錄,盡量控制在20頁以內);正文之后是論文附錄(頁數不限)。
第五條,論文附錄至少應包括參賽論文的所有源程序代碼,如實際使用的軟件名稱、命令和編寫的全部可運行的源程序(含excel、spss等軟件的交互命令);通常還應包括自主查閱使用的數據等資料。賽題中提供的數據不要放在附錄。如果缺少必要的源程序或程序不能運行,可能會被取消評獎資格。論文附錄必須打印裝訂在論文紙質版中。如果確實沒有需要以附錄形式提供的信息,論文可以沒有附錄。
第六條,論文正文和附錄不能有任何可能顯示答題人身份和所在學校及賽區的信息。
第七條,引用別人的成果或其他公開的資料(包括網上資料)必須按照科技論文寫作的規范格式列出參考文獻,并在正文引用處予以標注。
第八條,本規范中未作規定的,如排版格式(字號、字體、行距、顏色等)不做統一要求,可由賽區自行決定。在不違反本規范的前提下,各賽區可以對論文增加其他要求。
第九條,參賽隊應按照《全國大學生數學建模競賽報名和參賽須知》的要求命名和提交以下兩個電子文件,分別對應于參賽論文和相關的支撐材料。
第十條,參賽論文的電子版不能包含承諾書和編號專用頁(即電子版論文第一頁為摘要頁)。除此之外,其內容及格式必須與紙質版完全一致(包括正文及附錄),且必須是一個單獨的文件,文件格式只能為pdf或者word格式之一(建議使用pdf格式),不要壓縮,文件大小不要超過20mb。
第十一條,支撐材料(不超過20mb)包括用于支撐論文模型、結果、結論的所有必要文件,至少應包含參賽論文的所有源程序,通常還應包含參賽論文使用的`數據(賽題中提供的原始數據除外)、較大篇幅的中間結果的圖形或表格、難以從公開渠道找到的相關資料等。所有支撐材料使用winrar軟件壓縮在一個文件中(后綴為rar);如果支撐材料與論文內容不相符,該論文可能會被取消評獎資格。支撐材料中不能包含承諾書和編號專用頁,不能有任何可能顯示答題人身份和所在學校及賽區的信息。如果確實沒有需要提供的支撐材料,可以不提供支撐材料。
第十二條,不符合本格式規范的論文將被視為違反競賽規則,可能被取消評獎資格。
第十三條,本規范的解釋權屬于全國大學生數學建模競賽組委會。
說明:
(1)本科組參賽隊從a、b題中任選一題,專科組參賽隊從c、d題中任選一題。
(2)賽區可自行決定是否在競賽結束時收集參賽論文的紙質版,但對于送全國評閱的論文,賽區必須提供符合本規范要求的紙質版論文(承諾書由賽區組委會保存,不必提交給全國組委會)。
(3)賽區評閱前將紙質版論文第一頁(承諾書)取下保存,同時在第一頁和第二頁建立“賽區評閱編號”(由各賽區規定編號方式),“賽區評閱紀錄”表格可供賽區評閱時使用(由各賽區自行決定是否使用)。評閱后,賽區對送全國評閱的論文在第二頁建立“送全國評閱統一編號”(編號方式由全國組委會規定),然后送全國評閱。
數學建模論文(優秀19篇)篇二
走美杯”是“走進美妙的數學花園”的簡稱。
“走進美妙的數學花園”中國青少年數學論壇是中國少年科學院創新素質教育的品牌活動。20xx年,由國際數學家大會組委會、中國數學會、中國教育學會、中國少年科學院成功舉辦了首屆“走進美妙的數學花園”中國少年數學論壇,至今已連續舉辦七屆,全國三十多個城市近三十萬人參與了此項活動,在全國青少年中產生了巨大的影響。“走進美妙的數學花園”中國青少年數學論壇活動是一項面對小學三年級至初中二年級學生的綜合性數學活動。通過“趣味數學解題技能展示”、“數學建模小論文答辯”、“數學益智游戲”、“團體對抗賽”等一系列內容豐富的活動提高廣大中小學生的數學建模意識和數學應用能力,培養他們一種正確的思想方法。著名數學家陳省身先生兩次為同學們親筆題詞“數學好玩”和“走進美妙的數學花園”,大大鼓舞了廣大青少年攀登數學高峰的熱情和信心,使同學們自覺地成為學習的主人,實現從“學數學”到“用數學”過程的轉變,從而進一步推動我國數學文化的傳播與普及。
“走美”活動已連續舉辦七屆,近30萬青少年踴躍參與,已取得良好社會效果,并被寫入全國少工委《少先隊輔導員工作綱要(試行)》,向全國少年兒童推廣。
“走美”作為數學競賽中的后起之秀,憑借其新穎的考試形式以及較高的競賽難度取得了非常迅速的發展,近年來在重點中學選拔中引起了廣泛的關注。客觀地說“走美”一、二等獎對小升初作用非常大,三等獎作用不大。
1、活動對象。
全國各地小學三年級至初中二年級學生。
2、總成績計算。
筆試獲獎率:
一等獎5%,二等獎10%,三等獎15%。
3、筆試時間。
每年3月上、中旬。
報名截止時間:每年12月底。
走美杯比賽流程。
1、全國組委會下發通知,各地組委會開始組織工作。
2、學生到當地組委會報名,填寫《報名表》。
3、各地組委會將報名學生名單全部匯總至全國組委會。
4、全國“走進美妙的數學花園”趣味數學解題技能展示初賽(全國統一筆試)。
6、全國組委會公布初賽獲獎名單并頒發獲獎證書。
7、獲得初賽一、二、三等獎選手有資格報名參加暑期赴英國劍橋大學數學交流活動。
8、各地按照組委會要求提交數學建模小論文。
9、前各地組委會上報參加全國總論壇學生名單。
10、全國總論壇和表彰活動。
數學建模論文(優秀19篇)篇三
1培養創造性思維學生在學習數學知識的過程中,雖然其接受的知識和經驗是前人研究和發現的成果,但對于學生來說,其處于知識再發現的地位。教師向學生教授數學發現的思維和方法,換言之就是重點引導學生重溫數學經驗和知識的研究道路,進而保證學生的再發現能夠順利實現。這也是培養學生創新思維和能力的一個重要途徑。利用數學建模能夠有效地彌補數學教學過程中存在的缺陷,使學生充分體會到數學發現過程中的樂趣,進而激發學生學習數學的熱情和積極性,培養其創造性思維。
2選擇經典案例開展數學建模討論、分析教師在實際的數學課堂教學中,可選擇一些社會實際案例為講授分析的主要對象,如實際生活和高科技的熱點話題。教師可對此類實例進行必要的分析與講解,在此過程中,積極引導學生獨立鉆研和研究問題,并培養學生主動查閱相關資料、自主討論的能力。與此同時,教師還要及時與學生進行交流,答疑釋難,并要求學生在自己實際能力的基礎上構建恰當的模型,由易到難,循序漸進。除此之外,還要使學生充分發揮其主觀能動性,培養學生發現問題,思考問題以及處理問題的能力。以微積分方程為例,教師在課堂教學中,可以“經濟增長”作為主要案例,向學生系統地闡述微積分方程的實際應用過程,進一步加深學生對知識的理解、掌握和應用。
3同時開設數學建模與高等數學課程在職業院校數學教學過程中,同時開設數學建模與高等數學課程,能夠有效提高學生對基礎知識的理解能力和掌握程度,促進學生實踐動手能力的培養。在數學建模課程的開設中,應該在教師的指導下,充分利用教學軟件,引導學生動手實驗和計算,加深學生對知識的掌握。在此過程中,使學生充分了解到運用數學理論和方法去分析和解決實際問題的全過程,進一步提高學生的積極性和思維意識能力,使他們意識到數學在實際生活應用中的關鍵作用。同時,促使學生將計算機技術融入數學學習中去,以現代化的高新科技為媒介,著手實際社會問題的解決。
4創新教學模式根據職業院校學生學習的特點和知識水平,重點提高學生運用數學的技能和思維方式來處理實際生活和專業問題的能力。要想從根本上培養學生的創新能力,一定要改變原來單一固定的教學模式,嘗試和探索基于學生實際情況的教學措施和方式。經過長期的實踐經驗研究,討論式教學和雙向教學方式對培養學生的能力非常有效。這兩種教學模式能夠加深學生參與課堂教學的程度,激發學生學習數學的'主動性,最終達到提高教學效率的目的。所以,數學建模可以以具體問題為媒介,采用小組集體討論解決問題的方法,培養學生的創新能力和意識,進一步加快職業技術院校數學教學模式的創新。
5組建數學建模團隊在實際的數學教學中,教師可引導學生構建數學建模團隊。在教師對數學建模的深入分析為基礎,充分調動學生參與問題解決的主動性,師生積極互動,最終完成數學建模。如此一來,不僅能夠有效培養學生積極進取的良好學習態度,而且還能夠促進學生數學邏輯思維能力的提高。
6搭建校內數學建模網絡平臺在職業技術院校中構建校內數學建模網絡平臺,積極宣傳與數學建模有關的知識經驗,為學生主動獲取數學建模信息提供各種數據資料。數學建模網絡平臺的搭建,能夠有效促進教師和學生,學生與學生之間的交流與溝通,大大縮短學生和數學建模之間的距離,進而促進學生自主學習能力的提高和培養。
總而言之,數學建模思想是學生將基礎理論知識與實際解決問題的方法相結合的最佳途徑。將數學建模融入職業院校數學中,全面培養學生的創新意識和數學應用能力,進一步使數學為達成學院的教學和培養計劃奠定基礎,為培養更多更優秀的現代化社會人才服務。
數學建模論文(優秀19篇)篇四
摘要:運籌學與數學建模2門課程聯系密切,在運籌學教學中,適當融入數學建模思想,能大幅度提高學生應用數學解決實際問題的能力.從運籌學教學中教學大綱的改革、教學環節的設計等方面進行了探索與實踐.教學實踐表明,將數學建模思想融入到運籌學教學中能提高課堂教學的效果,鍛煉學生的動手實踐能力.
1運籌學教學中融入數學建模思想的必要性。
2數學建模思想融入運籌學的教學改革。
3運籌學教學中融入數學建模思想的教學改革成效。
4結束語。
數學建模論文(優秀19篇)篇五
高校學生社團是一種具有共同興趣愛好的學生自發組織的開展一些藝術、娛樂和學術型的活動的團體。學生社團以其鮮明的開放性、自主性以及多樣性等特點,為一些有特長的學生提供了廣闊的舞臺,讓這些學生可以更好的發揮自己的才能,促進其更好的成才。全國大學生數學建模競賽是最早由教育部工業與數學應用學會共同承辦的一個科技性的賽事,該比賽要通過數學和計算機的知識來解決實際生活中的問題,由于其特有的比賽形式,使得高職院校在全校范圍內直接選拔參賽隊員是件費神的事情,因此,為了更好的為數學建模競賽選拔人才,激發學生的學習興趣,學術性社團“數學建模協會”也就應運而生。數學建模協會的成立,可以更好的為學生提供一個展示自己的機會,可以增強學生對數學的學習興趣,培養學生應用數學解決實際問題的能力,激發學生的創新思維,為數學建模競賽選拔人才。本文主要以西安航空職業技術學院數學建模協會為例,探討高職數學建模社團活動開展的形式和意義。
(一)數學建模社團有利于數學建模競賽的開展。高職數學建模協會為數學建模競賽搭建了一個平臺,是數學建模競賽強有力的后盾,數學建模競賽成績的取得與這個平臺密不可分,只有充分發揮數學建模社團的作用,才能源源不斷的為數學建模提供人力和智力保障,才能更好的推動高職數學的學習氛圍。1、數學建模協會起著動員宣傳的作用從沒聽過,到知道,在到熟悉,只有通過大力宣傳和動員,才能讓更多的人了解數學建模,讓更多優秀學生參加到數學建模競賽中。大學校園中有許多數學愛好者,他們對數學建模也有一定的認識,只要有參加數學建模活動的愿望的,都可以利用數學建模協會招新的機會,加入數學建模創新協會。將成績優秀的學生邀請加入數學建模協會,對進一步擴大數學建模協會,夯實數學建模基礎,起著舉足輕重的作用。2、數學建模協會起著知識傳播的作用高職院校學生在校學習時間較短,學業較為繁重,課余時間較少,數學建模培訓的時間不足,無法讓學生在短時期內掌握較多的數學建模相關知識。因此,利用數學建模協會活動可以開展數學建模課程的培訓工作,普及數學建模相關知識。采用“老帶新”的模式進行數學建模知識的普及。通過制定系統的培訓方案,在每年秋季競賽后,參加過競賽的同學對新入協會的成員可以進行初級培訓,為今后的競賽奠定基礎。3、數學建模社團起著選拔學生的作用每年數學建模競賽的隊員需要通過校內賽等形式進行選拔,此時,數學建模協會就起著校內賽命題及選拔隊員的作用,當然這種選拔方式也有的弊端,就是所有隊員都是來自校內賽成績優秀的學生,而校內賽發揮不理想但建模能力突出或計算機技術水平優秀的學生就沒法參加數學建模競賽。為確保每一位有能力的學生都能夠加入到建模競賽隊伍中來,可以通過校內競賽與建模協會推薦兩者相結合的方式選拔建模競賽學生,以確保最優優秀的學生參加數學建模競賽。(二)數學建模社團有利于大學生綜合素質的培養。(1)數學建模社團屬于專業的學術性社團,成立的目的是為了參加全國大學生數學建模競賽,數學建模社團活動的趣味性和實踐性可以提高學生的學習興趣,培養學生自主學習的能力,增加學生參與競賽的熱情。社團活動中的培訓使學生可以更好的應對競賽,取得更好的成績。另外,競賽之余還可以進行其他領域的學術交流,比如計算機,經濟,工程等領域,良好的交流氛圍激發學生的創新思維和意識,從而培養他們的創新能力。(2)數學建模社團是學生自發組織的服務學生的群體,除了學術研究之外,還可以進行一些創新創業的活動,具有更多的實踐的機會。比如,可以利用平時社團所學的知識,以團體的形式進行一些數據處理的校企合作;也可以以微信平臺和微信群等發布一些數學建模相關的微課等,進行一些微信群講座等等。這樣可以讓學生真正體會到數學的用處,達到學以致用的效果。(3)數學建模社團是學生自發組織的學術性社團,社團的組織機構都是學生在擔任,社團的活動也都是學生在協調策劃,甚至很多時候社團的老成員都可以輔助老師進行社團的一些學術性的講座。因此,在學習的同時還鍛煉了他們的處事應變能力團隊合作的能力,可以說提高了學生的綜合素質。
(一)數學建模社團的管理形式。數學建模協會作為一個學生群體組織,需要好的制度和管理模式。以筆者所在學校為例,數學建模創新協會具有自己的一套規章管理制度;在管理形式方面是以“三個管理面”來進行社團管理和學術交流的,具體如下:1、學術交流面這個主要是通過“社團內部進行學術交流活動”和“老帶新培訓”兩部分組成,內部的交流活動主要是學生之間的相互溝通和交流,以及不定期的邀請指導教師和外校專家做一些數學建模報告。老帶新培訓是指社團主席團成員(一般是參加過前一年全國大學生數學建模競賽的學生)為新入社團的學生進行培訓,培訓的內容基本上都是之前指導教師對他們集訓時的內容,這種培訓方式可以提升社團成員的授課和理解問題的能力,對于在校大學生來說是一次很好的鍛煉。2、網絡交流面采用qq群,網絡空間和微信公眾平臺等開展社團成員之間的交流互動,社團宣傳。筆者所在學校的數學建模創新協會每一屆社團都有相應的qq群,另外,在20xx年也積極申請了微信平臺,目前的'關注量也在800余人,微信平臺的建立可以更方面使大學生關注數學建模相關信息,尤其是對大一新生可以更多的取了解數學建模,擴大數學建模的受益面和影響力。力求在大學生中營造一種“人人知數模,人人愛數模,人人參與數模”的良好的教育環境,使建模活動廣泛化、群眾化。3、交流互訪面開展研討會,專家報告會,社團聯誼會等交流活動,既可以豐富數學建模社團學生的知識面,又能促進數學知識的理解和吸收,通過與其他社團的聯誼,豐富了社團學生的業余生活,又能學習其他社團好的管理經驗,促進社團管理的制度化、規范化、專業化,也只有通過不斷的學習,不斷的交流,才能真正“走出去”,建立一個管理完善,富有成效的學生社團。(二)數學建模社團的特色活動。數學建模社團在開展學術活動和輔助教師進行競賽培訓的同時,還不定期的舉行一些活動,在提高學生學習興趣的同時也以擴大了數學建模的影響力。以筆者坐在學校為例,每年可以開展一系列的數學建模活動。比如,數學建模創新協會納新,數學建模創新協會趣味運動會,數學科技節,趣味數學知識競賽,數學建模經驗交流會,數學建模校內賽,數學輔導周,數學建模專題講座。這些社團活動貫穿整個學年,不僅可以“由點及面、由淺入深”的對全國大學生數學建模競賽進行宣傳,在最大的范圍內,提升數學建模大賽的影響力及參與度,成效較好。而且讓枯燥的學術型社團變得豐富多彩,成為學生課后獲取知識的一種平臺,同時也是社團蓬勃發展的利器。
總之,數學建模社團活動的開展,有利于培養學生的創新意識和思維,有利于激發了學生的學習興趣,有利于豐富學生的課后生活,有利于調動了學生參加學術型社團的積極性,同時也是高職院校組織參加數學建模競賽的強有力的后盾。
[1]胡建茹,王搖娟.加強專業社團建設推進大學生創新實踐能力培養[j].中國石油大學學報:社會科學版,20xx(12)。
[2]王珍娥,宋維,孫潔.數學社團建設的探索與實踐[j].機械職業教育,20xx(7)。
[3]李湘玲,王泳興.大學生社團發展與創新型人才培養互動機制研究:以吉首大學為例[j].黑龍江教育,20xx(11)。
[4]孫浩,葉正麟.西北工業大學數學建模創新教育之探索[j].高等數學研究,20xx(4)。
作者:張蘭單位:西安航空職業技術學院通識教育學院。
數學建模論文(優秀19篇)篇六
數學建模隨著人類的進步,科技的發展和社會的日趨數字化,應用領域越來越廣泛,人們身邊的數學內容越來越豐富。強調數學應用及培養應用數學意識對推動素質教育的實施意義十分巨大。數學建模在數學教育中的地位被提到了新的高度,通過數學建模解數學應用題,提高學生的綜合素質。本文將結合數學應用題的特點,把怎樣利用數學建模解好數學應用問題進行剖析,希望得到同仁的幫助和指正。
一、數學應用題的特點。
我們常把來源于客觀世界的實際,具有實際意義或實際背景,要通過數學建模的方法將問題轉化為數學形式表示,從而獲得解決的.一類數學問題叫做數學應用題。數學應用題具有如下特點:
第一、數學應用題的本身具有實際意義或實際背景。這里的實際是指生產實際、社會實際、生活實際等現實世界的各個方面的實際。如與課本知識密切聯系的源于實際生活的應用題;與模向學科知識網絡交匯點有聯系的應用題;與現代科技發展、社會市場經濟、環境保護、實事政治等有關的應用題等。
第二、數學應用題的求解需要采用數學建模的方法,使所求問題數學化,即將問題轉化成數學形式來表示后再求解。
第三、數學應用題涉及的知識點多。是對綜合運用數學知識和方法解決實際問題能力的檢驗,考查的是學生的綜合能力,涉及的知識點一般在三個以上,如果某一知識點掌握的不過關,很難將問題正確解答。
第一層次:直接建模。
根據題設條件,套用現成的數學公式、定理等數學模型,注解圖為:
第二層次:直接建模。可利用現成的數學模型,但必須概括這個數學模型,對應用題進行分析,然后確定解題所需要的具體數學模型或數學模型中所需數學量需進一步求出,然后才能使用現有數學模型。
第三層次:多重建模。對復雜的關系進行提煉加工,忽略次要因素,建立若干個數學模型方能解決問題。
第四層次:假設建模。要進行分析、加工和作出假設,然后才能建立數學模型。如研究十字路口車流量問題,假設車流平穩,沒有突發事件等才能建模。
三、建立數學模型應具備的能力。
從實際問題中建立數學模型,解決數學問題從而解決實際問題,這一數學全過程的教學關鍵是建立數學模型,數學建模能力的強弱,直接關系到數學應用題的解題質量,同時也體現一個學生的綜合能力。
1提高分析、理解、閱讀能力。
2強化將文字語言敘述轉譯成數學符號語言的能力。
3增強選擇數學模型的能力。
4加強數學運算能力。
數學應用題一般運算量較大、較復雜,且有近似計算。有的盡管思路正確、建模合理,但計算能力欠缺,就會前功盡棄。所以加強數學運算推理能力是使數學建模正確求解的關鍵所在,忽視運算能力,特別是計算能力的培養,只重視推理過程,不重視計算過程的做法是不可取的。
數學建模論文(優秀19篇)篇七
2.1、建立引導機制,激發學習動力。
2.2、建立轉化機制,促進知識向能力的轉化。
2.3、建立協作機制,增強團隊意識。
高校學生在平時的學習過程中,絕大多數情況下,基本上都是獨自學習,與他人合作研究和解決問題機會很少.而在各種層次級別的數學建模競賽中,參賽學生要3人一組,以團隊而不是個人身份參賽.在正式比賽之前,要按照學科、特長等因素尋找隊友,組成隊伍.在比賽期間,由于隊友經常是來自不同專業,知識能力水平各有所長,脾氣秉性各有特點,需要在比賽時認真溝通,相互協調,合理分工,團結協作共同完成整個比賽.為了比賽,在發生矛盾時,要學會忍耐和妥協,而不能意氣用事.在整個比賽期間,求同存異,取長補短,優勢互補,最終合作完成任務.這個過程,無形中就培養了學生的合作意識和團隊精神,使學生親身感受到現代社會與人合作是大多數人成功的必要選擇.依托數學建模競賽,培養創新型人才的團隊協作意識,建立培養人才的.合作交流機制,這是適應社會和時代需要的人才培養過程中的重要環節之一。
2.4、建立溝通表達機制,提高學生的語言及文字表達能力。
2.5、建立問題導向機制,培養學生主動式學習的自主學習能力。
3.1、促進了學生全面發展。
3.2、提高了學生的就業質量。
數學建模論文(優秀19篇)篇八
大量的應用型技能型人才,有效滿足了社會各行各業的用工需求。隨著國家對高職教育的重視和不斷投入,提高教育的教學質量勢在必行[1]。數學建模的核心是以數學模型為基礎的實際運用,鑒于數學建模的這種特點,國內高職數學教育逐步把數學建模理念融入到課題教學中,提高學生的應用能力。以數學建模理念的告知書明確教學改革要求學生結合計算機技術,靈活運用數學的思想和方法獨立地分析和解決問題,不僅能培養學生的探索精神和創新意識,而且能培養學生團結協作、不怕困難、求實嚴謹的作風[2]。筆者結合自身的教學工作經驗,對基于數學建模理念的高職數學教學改革進行了探索,對教學實踐中出現的問題進行了分析梳理,以期為高職數學教學改革提供新思路,推動高職數學教學水平的不斷提高,培養出具有良好數學素養和專業技能的新型高職人才。
近年來,隨著國內產業結構的不斷調整,對于高等職業技術人才需求不斷增大,社會對高等職業技術教育寄予厚望。但是傳統的高職教育由于專業設置不合理,使用教材落后,實訓實踐場地不足,培養出的學生動手能力差、專業能力不足,面對社會發展的新形勢,高職教育必須進行教學改革,提高學生的職業能力和就業競爭力。高職教育不同于普通本科教育,它有以下幾方面的特點。
1人才培養目標不同。
高職教育和本科教育人才培養目標不同,高職教育是以技術應用型高技能人才為培養目標,所有的教學課程設計和人才培養體系設計都是基于此目標展開的,高職教育主要是為了向產業發展提供生產、服務、管理等一線工作的高級技術應用型人才,專業能力培養和目標職業匹配度高,所以高職教育教學成果最直接的評價就是畢業生的就業競爭力和上崗后的適應能力。
2兩者的教學內容不同。
高職教育的教學重點是學生要掌握與實踐工作關系較為密切的業務處理能力、動手能力與交流能力,把學生的職業能力建設列為教學重點,課程設計專業性強,一旦就業能為企業創造明顯的效益,高職教育各專業課程差別較大。
3生源情況不同。
在當前的教育教學體系下,高職教育的生源普遍較差,大多是沒有希望考上大學,轉而進入高職學習,希望通過掌握一定的技術來實現就業,所以高職學生的基礎知識普遍較差,學習興趣不高。數學建模給高職數學教學改革開辟了新思路,數學建模為數學理論學習和工程實踐應用搭建了橋梁,在工學結合的基本原則下,采取數學建模教學理念,培養學生的數學素養及動手應用能力是一個非常有效的手段[3]。
1數學建模的概念數學建模是將數學理論和現實問題相結合的一門科學,它將實際問題抽象、歸納成為相應的數學模型,在此基礎上應用數學概念、數學定理、數學方法等手段研究處理實際問題,從定性或者定理的角度給出科學的結果[4]。數學建模的發展為數學知識的應用提供了途徑,對于現實中的特點問題,可以用數學語言來描述其內在規律和問題,運用數學研究的成果,結合計算機專業軟件,通過抽象、簡化、假設、引進變量等處理過程后,將實際問題用數學方式表達,轉化成為數學問題,借助數學思想建立起數學模型,從而解決實際問題。2基于數學建模思想的教學理念基于數學建模的這種學科特點,可以把數學知識應用化,因此,基于數學建模思想的教學理念可以概括為三個層次:首先,確立提高學生數學應用能力為目標,以提高學生數學學習興趣為手段,以學習數學建模為途徑;其次,結合教學內容,開發相應的數學建模案例,因地制宜、因生制宜,根據專業不同編寫相應的校本教材;最后,改進教學方法,創新課堂教學模式,建立課外數學建模學習興趣小組,帶領學生進行數學應用實踐活動,鼓勵學生參加各種數學建模競賽[5]。
傳統的數學教學模式以教師課堂講授為中心,學生只能被動的接受,由于學生的基礎知識水平不同,掌握新知識的能力也不同,這種沒有區分的教學模式教學效果差,往往帶來的結果是造成基礎差的學生跟不上,對數學感興趣的學生失去興趣。基于數學建模理念的高職數學教學改革,是以學生數學應用能力提高為目標,以數學學習興趣培養為出發點,以數學建模為途徑,以教學方式改革為保障,打造高職數學教學改革新模式,全面提高高職教育應用型人才培養水平。
1結合專業特色,突出數學教育的應用性。
數學作為高職教育的基礎性學科,理論性強,體系性強,對于基礎知識薄弱、學習興趣差的高職生來說感覺難學、枯燥,這是因為高職數學教育沒有教會學生如何在專業學習中和以后的工作中如何去用學到的數學知識,學生感覺知識無用自然也就不會主動去學,之所以引入數學建模的思想就是為了讓學生利用學到的數學知識去解決實際問題,讓學生認識到數學不只是紙面上的寫寫算算,數學可以把實際問題抽象化,變成數學問題,利用數學的研究方法給實際問題進行科學的指導,這樣高職數學教育就不再是課堂上的照本宣科,課下的演算作業,將基礎數學教育和學生的專業教育相結合,帶來學生用數學解決專業問題是大幅度提高學生專業能力的有效途徑。
2結合學生能力,因材施教、因地制宜。
高職學校的生源不如普通高校,一般學習基礎較差,對于專業實訓課并不明顯,但是在基礎學科教學過程特別突出,很多基礎知識掌握不牢,甚至一點印象都沒有,教師在上課時要充分考慮到這種情況,在課堂授課時給予實時的補充,以助于知識的過渡。因材施教是我國傳統的教育思想,在掌握學生知識水平的基礎上,教師要根據不同學習層次學生的具體情況,安排教學內容和設置教學目標,對于基礎知識水平不高、學習興趣較差、學習能力較弱的學生要進行課外輔導。高職基礎課教育是專業課學習的基礎,授課教師要根據學生的專業學習情況和專業特點,把遷移知識運用能力在課堂上結合學生的專業背景進行輔導,高職數學教育不僅僅是為了學習數學,更多的是發揮數學知識在其專業能力培養中的作用。
3培養學生學習興趣,促進整體教學質量提高。
高職學校的學生學習興趣普遍不高,尤其是對于學了十幾年都感覺頭痛的數學,要想提高數學的教學質量,首先必須要培養學生的學習興趣,長期以來學生在數學學習上已經有了根深蒂固的認識,培養數學學習興趣很難,但是如果學生沒有學習興趣,教師授課內容、授課方式改革都起不了太大的作用,學生對于數學學習興趣低由于低年級學習時受到的挫敗感,因此要讓學生建立學習數學的自信心,讓他們體驗學會數學的成就感,這樣才能逐步培養他們的學習興趣。教師可以采取以點帶面的方式,先選擇有一定基礎的學生,再從全部課程學習中發現表現優秀的個體,組織參加建模競賽,進行單獨賽前加強指導,用這些榜樣的力量提高全體同學的學習積極性。數學建模作為提高高職數學教育教學水平的“點”,能夠以其趣味性強,帶動學生的學習興趣,促進高職數學教育教學水平的全面提高。
4改革教學及評價方式,建立面向應用的數學教育體系。
由于基于數學建模思想的高職數學教學改革打破了以往的課堂教學方式和考核方式,學生面對的不再是期末的一張試卷,而是一個個數學建模案例,需要學生運用本學期學到的數學知識解決實際問題,教師根據學生對案例的理解程度,數學模型運用能力,實際過程分析和解題技巧等多方面給出評價,同時積極評價、鼓勵學生的創新思維,并將其納入到考核體系當中。通過以上各個方面評價的加權作為最后的評價指標。這種以數學知識應用為基礎,直接面向應用的高職數學教育模式能極大的激發學生的學習積極性和知識應用能力,符合高職應用型人才培養理念,對提高高職學生的專業能力也打下了堅實的基礎。基于數學建模理念的高職數學教學改革是推動高職應用型人才培養體系建設的新舉措,也是推動高職基礎課教學水平的重要內容,能有效解決學生學習興趣低,基礎知識掌握不牢,數學知識應用能力低等問題,通過“案例驅動法+討論法”,引導學生再次對課本知識進行思考和應用,有利于培養學生的創新思維和應用能力。引入數學建模理念教學,把課堂學習的主動權交回給學生,既保證了高等數學原有的知識體系的完整,也可以提高教學效率。通過教學方式和評價方式改革,學生的學習主動性增強,也改變了以往對于數學學習的學習態度。高等數學作為高職教育學生必修的基礎課,在培養學生基本數學素養上具有重要作用,是理工類專業課程體系的重要組成部分,基于數學建模理念的高職數學教學改革也為同類基礎理論課改革提供了新思路和范例。
[1]孫麗.在高職數學教學改革中應注重數學建模思想的滲透[j].科技資訊,20xx(22):188.
數學建模論文(優秀19篇)篇九
在高等教育事業改革不斷深化的背景下,為了提升教育教學質量,新時期對大學數學教學提出了更高的要求。大學數學作為課堂教學的主體,教師在傳授知識的同時,要注重學生學習能力和解決問題能力的培養。
數學知識來源于生活,應用于生活,如微積分作為高等數學知識中的典型代表,在各個行業中具有不可或缺的作用。為此,任課教師在大學數學教學中培養學生發現問題、分析問題和解決問題的能力十分重要,在傳授知識的過程中幫助學生利用所學知識來解決實際問題。一般情況下,教師著重介紹相關數學概念和原理,推導常用公式,促使學生能夠記住公式,學會公式的應用過程,逐漸掌握解題技巧。
因此,如何能夠在傳授知識的同時,促使學生掌握數學學習方法,將所學知識應用到實踐中來解決數學問題是一個首要問題。從大量教學實踐中可以了解到,在大學數學教學中滲透數學建模思想十分重要,有助于激發學生的學習興趣,促使學生積極投入其中,切實提升學生的數學專業水平。
在大學數學教學中滲透數學建模思想,應該結合實際情況,深入挖掘數學知識。在教學中,教師應該充分發揮自身引導作用,聯系學生數學知識實際學習情況,有針對性地整合數學知識,了解相關數學內容,這樣不僅可以豐富教學內容,還可以為課堂教學注入新的活力,有效激發學生的學習興趣,提升學習成效。具體表現在以下方面:
(一)閉區間連續函數的性質。
閉區間連續函數的性質內容是大學數學教學中的重要組成部分,由于知識理論性較強,知識較為抽象,學習難度較大,在講解完相關理論知識后,可以引入椅子的穩定問題,創建數學模型,提問學生如何在不平穩的地面上平穩地放置椅子。學生可以了解到這一問題同所學知識相關聯,閉區間連續函數的性質可以解決這一問題。學生整合所學知識,通過對問題的分析,可以了解到利用介值定理來解決問題。通過建立數學模型,學生更加充分地掌握了閉區間連續函數的`性質,提升了學習成效,為后續知識學習打下了堅實的基礎。
(二)定積分。
定積分是高等數學教學中的重要組成部分,在解決幾何問題時均有所應用,并且被廣泛應用在實際生活中。如,在一道全國大學生數學建模競賽題目中,計算煤矸石的堆積,煤礦采煤時所產生的煤矸石,為了處理煤矸石就需要征用土地來堆放煤矸石,根據上級主管部門的年產量計劃和經費如何堆放煤矸石?題目中的關鍵點在于堆放煤矸石的征地費用和電費的計算。征地費計算難度較小,但是煤矸石堆積的電費計算難度較高,但此項內容涉及定積分中的變力做功知識點。學生掌握這些內容后就可以建立數學模型,更加高效地了解如何根據預期開采量來堆放煤矸石。通過數學模型,學生也可以了解到定積分內容同實際生活之間的聯系,學習積極性就會大大提升。
(三)最值問題。
在高等數學中,最值問題占比比較大,同時在實際生活中應用較為普遍,導數知識可以解決實際生活中的最值問題,這就需要提高對導數知識實際應用的重視程度。教師在為學生講解完導數的相關概念知識后,通過建立關于天空的采空模型,提問學生為什么雨后太陽出來了,雨滴還在空中,那么將為人們呈現出什么樣的景色?學生回答彩虹。繼續提問彩虹為什么有顏色,是什么決定了天空中彩虹的高度?對此,學生的興趣較為濃厚,可以分為若干個小組進行討論。通過分析可以得出,雨滴可以反射太陽光,形成彩虹。結合光線的反射和折射定律,借助所學的導數知識來計算得出太陽光偏轉角度的最值,有效解決實際學習的問題,加深對知識的理解和記憶,提升數學知識學習成效。
(四)微分方程。
微分方程知識同實際生活之間息息相關,建立微分方程可以有效解決實際生活中的問題。這就需要學生在了解微分方程知識的基礎上,進一步建立數學模型來解決問題。如,在當前社會進步和發展下,人均物質生活水平顯著提升,肥胖成為危害人們身體健康的主要問題之一,受到社會各界廣泛的關注和重視。通過問題精簡化和假設,可以得到微分方程模型,在分析方程中飲食控制和運動鍛煉兩個關鍵要素后,有助于避免人們走入減肥誤區,幫助他們樹立正確的減肥理念。
(五)矩陣。
在高等數學教學中,矩陣的概念較為抽象和復雜,在講解問題之前,應該根據知識點來創設教學情境,輔助教學活動。通過引入企業工廠生產總成本模型,充分描述工廠生產中需要的原材料和勞動力,并且詳細記錄管理費用。這有助于加深人們對矩陣概念的認知和理解,提升學習成效,同時幫助學生深入理解和記憶,鍛煉學生的數學解題思維,加深概念理解和記憶,掌握解題技巧和方法,從而提升學生的數學建模意識。
綜上所述,在大學數學教學中,可以通過數學建模思想來引導學生養成良好的自主學習能力,發揮自身的主體能動性和創新能力,提升學生解決問題的能力,將所學知識靈活運用到實際生活中,養成良好的數學素養。
數學建模論文(優秀19篇)篇十
就當前高等數學的教育教學而言,高數老師對學生的計算能力、思考能力以及邏輯思維能力過于重視,一切以課本為基礎開展教學活動。作為一門充滿活力并讓人感到新奇的學科,由于教育觀念和思想的落后,課堂教學之中沒有穿插應用實例,在工作的時候學生不知道怎樣把問題解決,工作效率無法進一步提升,不僅如此,陳舊的教學理念和思想讓學生漸漸的失去學習的興趣和動力。
(二)教學方法傳統化。
教學方法的優秀與否在學生學習的過程中發揮著重要的作用,也直接影響著學生的學習成績。一般高數老師在授課的時候都是以課本的順次進行,也就意味著老師“由定義到定理”、“由習題到練習”,這種默守陳規的教學方式無法為學生營造活躍的學習氛圍,讓學生獨自學習、思考的能力進一步下降。這就要求教師致力于和諧課堂氛圍營造以及使用新穎的教育教學方法,讓學生在課堂中主動參與學習。
二、建模在高等數學教學中的作用。
對學生的想象力、觀察力、發現、分析并解決問題的能力進行培養的過程中,數學建模發揮著重要的作用。最近幾年,國內出現很多以數學建模為主體的賽事活動以及教研活動,其在學生學習興趣的提升、激發學生主動學習的積極性上扮演著重要的角色,發揮著突出的作用,在高等數學教學中引入數學建模還能培養學生不畏困難的品質,培養踏實的工作精神,在協調學生學習的知識、實際應用能力等上有突出的作用。雖然國內高等院校大都開設了數學建模選修課或者培訓班,但是由于課程的要求和學生的認知水平差異較大,所以課程無法普及為大眾化的教育。如今,高等院校都在積極的尋找一種載體,對學生的整體素質進行培養,提升學生的創新精神以及創造力,讓學生滿足社會對復合型人才的需求,而最好的載體則是高等數學。
高等數學作為工科類學生的一門基礎課,由于其必修課的性質,把數學建模引入高等數學課堂中具有較廣的影響力。把數學建模思想滲入高等數學教學中,不僅能讓數學知識的本來面貌得以還原,更讓學生在日常中應用數學知識的能力得到很好的培養。數學建模要求學生在簡化、抽象、翻譯部分現實世界信息的過程中使用數學的語言以及工具,把內在的聯系使用圖形、表格等方式表現出來,以便于提升學生的表達能力。在實際的學習數學建模之后,需要檢驗現實的信息,確定最后的結果是否正確,通過這一過程中的鍛煉,學生在分析問題的過程中可以主動地、客觀的辯證的運用數學方法,最終得出解決問題的最好方法。因此,在高等數學教學中引入數學建模思想具有重要的意義。
三、將建模思想應用在高等數學教學中的具體措施。
(一)在公式中使用建模思想。
在高數教材中占有重要位置的是公式,也是要求學生必須掌握的內容之一。為了讓教師的'教學效果進一步提升,在課堂上老師不僅要讓學生對計算的技巧進一步提升之余,還要和建模思想結合在一起,讓解題難度更容易,還讓課堂氛圍更活躍。為了讓學生對公式中使用建模思想理解的更透徹,老師還應該結合實例開展教學。
(二)講解習題的時候使用數學模型的方式。
課本例題使用建模思想進行解決,老師通過對例題的講解,很好的講述使用數學建模解決問題的方式,讓學生清醒的認識在解決問題的過程中怎樣使用數學建模。完成每章學習的內容之后,充分的利用時間為學生解疑答惑,以學生所學的專業情況和學生水平的高低選擇合適的例題,完成建模、解決問題的全部過程,提升學生解決問題的效率。
(三)組織學生積極參加數學建模競賽。
一般而言,在競賽中可以很好地鍛煉學生競爭意識以及獨立思考的能力。這就要求學校充分的利用資源并廣泛的宣傳,讓學生積極的參加競賽,在實踐中鍛煉學生的實際能力。在日常生活中使用數學建模解決問題,讓學生獨自思考,然后在競爭的過程中意識到自己的不足,今后也會努力學習,改正錯誤,提升自身的能力。
四、結束語。
高等數學主要對學生從理論學習走向解決實際問題的能力進行培養,在高等數學中應用建模思想,促使學生對高數知識更充分的理解,學習的難度進一步降低,提升應用能力和探索能力。當前,在高等教學過程中引入建模思想還存在一定的不足,需要高校高等數學老師進行深入的研究和探索的同時也需要學生很好的配合,以便于今后的教學中進一步提升教學的質量。
參考文獻。
[1]謝鳳艷,楊永艷。高等數學教學中融入數學建模思想[j]。齊齊哈爾師范高等專科學校學報,20xx(02):119—120。
[2]李薇。在高等數學教學中融入數學建模思想的探索與實踐[j]。教育實踐與改革,20xx(04):177—178,189。
[3]楊四香。淺析高等數學教學中數學建模思想的滲透[j]。長春教育學院學報,20xx(30):89,95。
[4]劉合財。在高等數學教學中融入數學建模思想[j]。貴陽學院學報,20xx(03):63—65。
數學建模論文(優秀19篇)篇十一
運籌學與數學建模2門課程聯系密切,在運籌學教學中,適當融入數學建模思想,能大幅度提高學生應用數學解決實際問題的能力.從運籌學教學中教學大綱的改革、教學環節的設計等方面進行了探索與實踐.教學實踐表明,將數學建模思想融入到運籌學教學中能提高課堂教學的效果,鍛煉學生的動手實踐能力.
數學建模論文(優秀19篇)篇十二
信息化時代,數學科學與其他學科交叉融合,使得數學技術變成了一種普適性的關鍵技術。大學加強數學課程的應用功能,不但可以為學生提供解決問題的思想和方法,而且更為重要的是可以培養學生應用數學科學進行定量化、精確化思維的意識,學會創造性地解決問題的應用能力。數學建模課程將數學的基本原理、現代優化算法以及程序設計知識很好地融合在一起,有助于培養學生綜合應用數學知識將現實問題化為數學問題,并進行求解運算的能力,激發學生對解決現實問題的探索欲望,強化數學課程本身的應用功能,凸顯數學課程的教育價值,適應大學數學課程以培養學生創新意識為宗旨的教育改革需要。
大學傳統的數學主干課程,如高等數學、線性代數、概率論與數理統計在奠定學生的數學基礎、培養自學能力以及為后續課程的學習在基礎方面發揮奠基作用。但是,這種原有的教學模式重在突出培養學生嚴格的邏輯思維能力,而對數學的應用重視不夠,這使得學生即使掌握了較為高深的數學理論,卻并不能將其靈活應用于現實生活解決實際問題,更是缺乏將數學應用于專業研究和軍事工程的能力,與創新教育的基本要求差距甚遠。教育轉型要求數學教學模式從傳統的傳授知識為主向以培養能力素質為主轉變,特別是將數學建模的思想方法融入到數學主干課程之中,在教學過程中引導學生將數學知識內化為學生的應用能力,充分發揮數學建模思想在數學教學過程中的引領作用。數學課程教學改革要適應這一教學模式轉型需要,深入探究融入式教學模式的理論與方式,是推進數學教育改革的重要舉措。
2.1理清數學建模思想方法與數學主干課程的關系。數學主干課程提供了大學數學的基礎理論與基本原理,將數學建模的思想方法有機地融入到數學主干課程中,不但可以有效地提升數學課程的應用功能,而且有利于深化學生對數學本原知識的理解,培養學生的綜合應用能力。深入研究數學主干課程的功能定位,主要從課程目標上的一致性、課程內容上的互補性、學習形式上的互促性、功能上的整體優化性等方面,研究數學建模本身所承載的思想、方法與數學主干課程的內容與邏輯關系,闡述數學建模思想方法對提高學生創新能力和對數學教育改革的重要意義,探索開展融入式教學及創新數學課程教學模式的有效途徑。
2.2探索融入式教學模式提升數學主干課程應用功能的方式。融入式教學主要有輕度融入、中度融入和完全融入三種方式。根據主干課程的基本特點,對課程體系進行調整,在問題解決過程中安排需要融入的知識體系,按照三種方式融入數學建模的思想與方法。以學生能力訓練為主導,在培養深厚的數學基礎和嚴格的邏輯思維能力的基礎上,充分發揮數學建模思想方法對學生思維方式的培養功能和引導作用,培養學生敏銳的分析能力、深刻的'歸納演繹能力以及將數學知識應用于工程問題的創新能力。
2.3建立數學建模思想方法融入數學主干課程的評價方式。融入式教學是處于探索中的教學模式,教學成效有待于實踐檢驗。選取開展融入式教學的實驗班級,對數學建模思想方法融入主干課程進行教學效果實踐驗證。設計相應的考察量表,從運用直覺思維深入理解背景知識、符號翻譯開展邏輯思維、依托圖表理順數量關系、大膽嘗試進行建模求解等多方面對實驗課程的教學效果進行檢驗,深入分析融入式教學模式的成效與不足,為探索有效的教學模式提出改進的對策。
3.1改革課程教學內容,滲透數學建模的思想方法。傳統的數學主干課程教學內容,將數學看作嚴謹的演繹體系,教學過程中著力于對學生傳授大學數學的基礎知識,而對應用能力的培養卻重視不夠。使得本應能夠發揮應用功能的數學知識則淪為僵死的教條性數學原理,這失去了教學的活力。學生即使掌握了再高深的數學知識,仍難以學會用數學的基本方法解決現實問題。現行的大學數學課程教學內容中,適當地滲透一些應用性比較廣泛的數學方法,如微元法、迭代法及最佳逼近等方法,有利于促進學生對數學基礎知識的掌握,同時理解數學原理所蘊涵的思想與方法。
這樣,在解決實際問題的時候,學生就會有意識地從數學的角度進行思考,嘗試建立相應的數學模型并進行求解,拓展了數學知識的深度與廣度,提升了學生的數學應用能力四、結語數學建模是數學科學在科技、經濟、軍事等領域廣泛應用的接口,是數學科學轉化成科學技術的重要途徑。在數學主干課程中融入數學建模的思想與方法,可以推動大學數學教育改革的深入發展,加深學生對相關知識的理解和掌握,有助于從思維方式上培養學生的創新意識與創新能力。
此外,數學建模思想方法融入教學主干課程還涉及到許多問題,比如數學建模與計算技術如何有效結合以進行模擬仿真、融入式教學模式的基本理論、構建新的課程體系等問題,仍將有待于更深入的研究。
數學建模論文(優秀19篇)篇十三
摘要:在新課改以后,要求教師要在教學中重視學生的主體地位,提升學生學習興趣,培養他們的自主學習能力。本文從小學數學教學過程中數學建模入手,對如何將數學建模運用到學生解題過程中進行了分析。
數學建模是指利用數學模型的形式去解決實際中遇到的問題,換句話說,就是利用數學思維、數學方法解決各種數學問題。數學建模是在新課程改革后出現的新概念,經過一段時間的觀察我們可以發現,數學建模的方法能夠有效的提高學生的學習興趣,培養學生的數學能力。這種方式能夠將復雜的數學問題利用簡單的方式找到解決方案,是提高小學數學課堂效率及課堂質量的有效手段。小學數學是小學學習中的重要課程之一,也是培養學生數學思維的重要階段。可以說,小學數學的學習是學生學習數學的關鍵,對今后的學習起到極大的影響。因此,對于小學數學教師來說,不斷的完善教學手段,提高數學課堂質量是教學工作中的重中之重。而數學建模就是為了解決數學在生活中的實際問題,能夠讓學生感受到數學本身的魅力,培養他們的數學思維,提高數學學習能力,從而讓小學數學教學質量也得到大幅度的提升。小學數學與數學建模之間有著密不可分的作用,兩者相互聯系、相互促進,如何有效的將數學建模運用在小學數學教學過程中,是每個小學數學教師都值得思考的問題。
數學建模是為了解決數學中遇到的問題,數學本身特別是小學數學也是一門較貼近學生生活的學科。因此在數學學習中,教師要首先培養學生的數學學習意識,讓他們感受到數學與生活的緊密聯系,然后再引導學生用數學建模去解決遇到的問題。在這一過程中,數學教師要注意以下兩個問題:(一)在教學中一定要貼近學生的生活,課堂中所提出的問題也必須要符合生活實際,讓學生對所學內容感到親切。積極引導學生利用多種方式解決同一問題,尤其是利用數學建模的方式,以達到培養他們的數學思維以及想象能力的目的。(二)在學生進行數學建模的過程中要利用多鼓勵的方式調動他們對數學學習的積極性,讓他們在數學建模中獲得成就感,增加自信心,以此來提高學生在今后學習中使用數學建模方法的熱情。
二、提高學生想象力,用數學建模簡化問題。
對于小學生來說,他們的思維與其他年齡段相比極其活躍,擁有了豐富的想象力。在數學學習中,如果能將想象力與數學學習結合在一起,一定會得到意想不到的效果。教師可以根據小學生這一特點,提高他們的想象力,然后再引導他們利用數學建模解決問題,讓題目簡單化。具體來說,就是在面對復雜的'數學問題時,教師可以先為學生創建教學情境,以這樣的方式提高學生的學習興趣,讓他們愿意主動去深入的研究遇到的題目。之后教師再去對他們進行引導,讓他們能夠理解題目中所提問題的含義,并能夠運用他們的想象能力思考解決問題的方式。最后再引導他們進行數學建模,解決問題。這樣的方式充分的利用了學生的想象能力,將所需解決的問題簡單化。
三、選擇合適的題目作為建模案例。
在數學建模過程中,教師也要時刻牢記題目應該貼近學生的生活,符合實際,并且具有一定的趣味性,讓他們有興趣投入到數學建模的過程中去,然后再反復練習之后達到提高他們建模能力的目的。在選擇數學建模案例時教師主要應該注意以下兩點:首先,教師在選擇建模案例時要盡量選擇比較典型的問題,能夠讓學生在學習了該題目以后掌握這一類的解題方法,達到小學數學教學的目的。所以,這就需要教師對題目進行深入的分析,看是否在擁有趣味性、真實性的同時符合教學要求。其次,題目最好能夠擁有可變性,教師能夠通過對題目中已知條件的改變讓學生進行不同方面的建模練習,以此提高他們數學建模的能力。
四、引導學生主動進行數學建模。
在教師經過反復的教學后,學生都已經擁有了基本的數學建模知識,了解了數學建模過程,并且能夠在解題過程中簡單的使用數學建模。此時,教師在教學中就可以引導學生利用數學建模解決數學題目了。引導學生用數學建模方法解決數學問題,就要在解題過程中多對學生進行這一方面的鼓勵,讓他們提高建模信心。在這一過程中,教師還可以嘗試讓學生之間利用合作的方式讓他們進行數學建模方法的探討,并在探討的過程中吸取他人的經驗,提高自己數學建模水平,同時這樣的方式能夠讓數學建模深入到每一個學生的心中,逐漸影響每一個學生的解題思路,讓他們能夠在解題過程中熟練運用建模的方式,提高解題能力。數學建模的方法能夠有效的改變過去的傳統教學思路,增加學生對數學的學習興趣,提高數學解題能力。這種教學方法對于小學數學教師來說,值得不斷的探討研究,并應用在教學中,以此提高數學課堂的教學效率和教學質量。
數學建模論文(優秀19篇)篇十四
大學數學具有高度抽象性和概括性等特點,知識本身難度大再加上學時少、內容多等教學現狀常常造成學生的學習積極性不高、知識掌握不夠透徹、遇到實際問題時束手無策,而數學建模思想能激發學生的學習興趣,培養學生應用數學的意識,提高其解決實際問題的能力。數學建模活動為學生構建了一個由數學知識通向實際問題的橋梁,是學生的數學知識和應用能力共同提高的最佳結合方式。因此在大學數學教育中應加強數學建模教育和活動,讓學生積極主動學習建模思想,認真體驗和感知建模過程,以此啟迪創新意識和創新思維,提高其素質和創新能力,實現向素質教育的轉化和深入。
數學建模即抓住問題的本質,抽取影響研究對象的主因素,將其轉化為數學問題,利用數學思維、數學邏輯進行分析,借助于數學方法及相關工具進行計算,最后將所得的答案回歸實際問題,即模型的檢驗,這就是數學建模的全過程。一般來說",數學建模"包含五個階段。
1.準備階段。
主要分析問題背景,已知條件,建模目的等問題。
2.假設階段。
做出科學合理的假設,既能簡化問題,又能抓住問題的本質。
3.建立階段。
從眾多影響研究對象的因素中適當地取舍,抽取主因素予以考慮,建立能刻畫實際問題本質的數學模型。
4.求解階段。
對已建立的數學模型,運用數學方法、數學軟件及相關的工具進行求解。
5.驗證階段。
用實際數據檢驗模型,如果偏差較大,就要分析假設中某些因素的合理性,修改模型,直至吻合或接近現實。如果建立的模型經得起實踐的檢驗,那么此模型就是符合實際規律的,能解決實際問題或有效預測未來的,這樣的建模就是成功的,得到的模型必被推廣應用。
二、加強數學建模教育的作用和意義。
(一)加強數學建模教育有助于激發學生學習數學的興趣,提高數學修養和素質。
數學建模教育強調如何把實際問題轉化為數學問題,進而利用數學及其有關的工具解決這些問題,因此在大學數學的教學活動中融入數學建模思想,鼓勵學生參與數學建模實踐活動,不但可以使學生學以致用,做到理論聯系實際,而且還會使他們感受到數學的生機與活力,激發求知的興趣和探索的欲望,變被動學習為主動參與其效率就會大為改善。數學修養和素質自然而然得以培養并提高。
(二)加強數學建模教育有助于提高學生的分析解決問題能力、綜合應用能力。
數學建模問題來源于社會生活的眾多領域,在建模過程中,學生首先需要閱讀相關的文獻資料,然后應用數學思維、數學邏輯及相關知識對實際問題進行深入剖析研究并經過一系列復雜計算,得出反映實際問題的最佳數學模型及模型最優解。因此通過數學建模活動學生的視野將會得以拓寬,應用意識、解決復雜問題的能力也會得到增強和提高。
(三)加強數學建模教育有助于培養學生的創造性思維和創新能力。
所謂創造力是指"對已積累的知識和經驗進行科學地加工和創造,產生新概念、新知識、新思想的能力,大體上由感知力、記憶力、思考力、想象力四種能力所構成".現今教育界認為,創造力的培養是人才培養的關鍵,數學建模活動的各個環節無不充滿了創造性思維的挑戰。
很多不同的實際問題,其數學模型可以是相同或相似的,這就要求學生在建模時觸類旁通,挖掘不同事物間的本質,尋找其內在聯系。而對一個具體的建模問題,能否把握其本質轉化為數學問題,是完成建模過程的關鍵所在。同時建模題材有較大的靈活性,沒有統一的標準答案,因此數學建模過程是培養學生創造性思維,提高創新能力的過程.
(四)加強數學建模教育有助于提高學生科技論文的撰寫能力。
數學建模的結果是以論文形式呈現的,如何將建模思想、建立的`模型、最優解及其關鍵環節的處理在論文中清晰地表述出來,對本科生來說是一個挑戰。經歷數學建模全過程的磨練,特別是數模論文的撰寫,學生的文字語言、數學表述能力及論文的撰寫能力無疑會得到前所未有的提高。
(五)加強數學建模教育有助于增強學生的團結合作精神并提高協調組織能力建模問題通常較復雜,涉及的知識面也很廣,因此數學建模實踐活動一般效仿正規競賽的規則,三人為一隊在三天內以論文形式完成建模題目。要較好地完成任務,離不開良好的組織與管理、分工與協作.
三、開展數學建模教育及活動的具體途徑和有效方法。
即在課堂教學中,教師以具體的案例作為主要的教學內容,通過具體問題的建模,介紹建模的過程和思想方法及建模中要注意的問題。案例教學法的關鍵在于把握兩個重要環節:
案例的選取和課堂教學的組織。
教學案例一定要精心選取,才能達到預期的教學效果。其選取一般要遵循以下幾點。
1.代表性:案例的選取要具有科學性,能拓寬學生的知識面,突出數學建模活動重在培養興趣提高能力等特點。
2.原始性:來自媒體的信息,企事業單位的報告,現實生活和各學科中的問題等等,都是數學建模問題原始資料的重要來源。
3.創新性:案例應注意選取在建模的某些環節上具有挑戰性,能激發學生的創造性思維,培養學生的創新精神和提高創造能力。
案例教學的課堂組織,一部分是教師講授,從實際問題出發,講清問題的背景、建模的要求和已掌握的信息,介紹如何通過合理的假設和簡化建立優化的數學模型。還要強調如何用求解結果去解釋實際現象即檢驗模型。另一部分是課堂討論,讓學生自由發言各抒己見并提出新的模型,簡介關鍵環節的處理。最后教師做出點評,提供一些改進的方向,讓學生自己課外獨立探索和鉆研,這樣既突出了教學重點,又給學生留下了進一步思考的空間,既避免了教師的"滿堂灌",也活躍了課堂氣氛,提高了學生的課堂學習興趣和積極性,使傳授知識變為學習知識、應用知識,真正地達到提高素質和培養能力的教學目的.
(二)開展數模競賽的專題培訓指導工作。
建立數學建模競賽指導團隊,分專題實行教師負責制。每位教師根據自己的專長,負責講授某一方面的數學建模知識與技巧,并選取相應地建模案例進行剖析。如離散模型、連續模型、優化模型、微分方程模型、概率模型、統計回歸模型及數學軟件的使用等。學生根據自己的薄弱點,選擇適合的專題培訓班進行學習,以彌補自己的不足。這種針對性的數模教學,會極大地提高教學效率。
以現代網絡技術為依托,建立數學建模課程網站,內容包括:課程介紹,課程大綱,教師教案,電子課件,教學實驗,教學錄像,網上答疑等;還可以增加一些有關欄目,如歷年國內外數模競賽介紹,校內競賽,專家點評,獲獎心得交流;同時提供數模學習資源下載如講義,背景材料,歷年國內外競賽題,優秀論文等。以此為學生提供良好的自主學習網絡平臺,實現課堂教學與網絡教學的有機結合,達到有效地提高學生數學建模綜合應用能力的目的。
完全模擬全國大學生數模競賽的形式規則:定時公布賽題,三人一組,只能隊內討論,按時提交論文,之后指導教師、參賽同學集中討論,進一步完善。筆者負責數學建模競賽培訓近20年,多年的實踐證明,每進行一次這樣的訓練,學生在建模思路、建模水平、使用軟件能力、論文書寫方面就有大幅提高。多次訓練之后,學生的建模水平更是突飛猛進,效果甚佳。
如20xx年我指導的隊榮獲全國高教社杯大學生數學建模競賽的最高獎---高教社杯獎,這是此賽設置的唯一一個名額,也是當年從全國(包括香港)院校的約1萬多個本科參賽隊中脫穎而出的。又如20xx年我校57隊參加全國大學生數學建模競賽,43隊獲獎,獲獎比例達75%,創歷年之最。
(五)鼓勵學生積極參加全國大學生數學建模競賽、國際數學建模競賽。
全國大學生數學建模競賽創辦于1992年,每年一屆,目前已成為全國高校規模最大的基礎性學科競賽,國際大學生數學建模競賽是世界上影響范圍最大的高水平大學生學術賽事。參加數學建模大賽可以激勵學生學習數學的積極性,提高運用數學及相關工具分析問題解決問題的綜合能力,開拓知識面,培養創造精神及合作意識。
四、結束語。
數學建模本身是一個創造性的思維過程,它是對數學知識的綜合應用,具有較強的創新性,而高校數學教學改革的目的之一是要著力培養學生的創造性思維,提高學生的創新能力。因此應將數學建模思想融入教學活動中,通過不斷的數學建模教育和實踐培養學生的創新能力和應用能力從而提高學生的基本素質以適應社會發展的要求。
數學建模論文(優秀19篇)篇十五
隨著我國高等教育的發展,高校招生規模越來越大,而生源質量較低,特別是獨立學院院校。就我校而言,絕大多數專業都開設了數學類課程。但在教學中,普遍認為理論性太強,與實際脫節嚴重,不能引起學生的學習興趣。并且,傳統教學忽視了學生用數學解決實際問題的能力,所以,進行數學教學改革勢在必行。數學建模可培養學生利用數學知識解決實際問題的能力,通過數模方法對實際問題進行巧妙處理,讓學生體會到數學不僅能傳播理論知識和求解一些數學問題,還可將其應用到實際問題中,讓學生看到一些實際模型的來龍去脈,提高學生的學習積極性。數學建模是培養學生綜合科學素質和創新能力的一個極好載體,而且能充分考驗學生的洞察能力、創新能力、聯想能力、使用當代科技最新成果的能力等。學生們同舟共濟的團隊合作精神和協調組織能力,以及誠信意識和自律精神的塑造,都能得到很好的培養。技能技術的掌握和團隊合作精神對于獨立學院學生將來進入社會十分重要,這也是衡量獨立學院辦學成功與否的一個方面。因此,獨立學院的人才培養目標定位,既要達到本科生應具備的理論基礎,又要有相對突出的專業技能,應培養“應用型本科”人才。因而,獨立學院的數學課堂上應該多方面滲透數學模型的思想。
(一)人才培養創新的需要。
根據獨立學院人才培養目標和實際情況,有針對性的加大基礎課和實踐環節教學的'比重,側重于實踐能力的培養,在專業課程體系中適當增加實驗、實踐教學內容,加強與社會實體的聯系。力求培養出具有實際操作能力的高素質大學生。數學建模是將一個實際問題,對其作出一些必要的簡化與假設,將其轉化成一個數學問題,借助數學工具和數學方法精確或近似地解決該問題,并用數學結果解釋客觀現象、回答實際問題并接受客觀實際的檢驗。數學建模能彌補傳統數學教學在實際應用方面的不足,促進數學教師在現代化教學手段、教學模式方面的更新。數學建模有助于調動學生的學習興趣,在計算機應用能力、實踐能力和創新意識的培養方面都有著非常大的作用,以便學生將來能更好地適應工作崗位。
(二)高校教學改革的需要。
當今社會信息高度發達,競爭日益激烈,必須具備一定的創新意識和創新能力,否則很難適應社會信息時代的要求。傳統的教學模式是以課堂理論講授為主,學生絕大部分時間都集中學習書本知識,很少有機會接觸社會,也難做到學以致用。絕大多數課程都是教師的一言堂,考試也是以教師講課內容為主。學生忙于記錄和背誦而閑置其聰慧的頭腦。長期的灌輸式教學導致學生明顯缺乏學習的主動性,會聽從而不會質疑,更不會形成開創性的觀點,很難適應企事業單位動態的工作環境。數學作為一門傳統基礎學科,對獨立學院的學生來說,學習上有一定的難度。我們的教學應以“必需,夠用”為度。數學建模從形式到內容,都與畢業后工作時的條件非常相近,是一次非常好的鍛煉,學生通過自主的學習,把實際的問題轉化為數學理論解決,有助于學生創新能力的培養動手能力的提高,這也正是獨立學院院校應用型本科人才培養的方向。
(三)學生參加數學建模競賽的需要。
獨立學院學生思維活躍,且比較注重個人能力素質的提高。很多學生愿意在學校參加一些競賽來提高自己。全國大學生數學建模競賽尤其受學生重視,但仍有很多大學生不了解這類競賽,因此,在數學課堂上引入數學建模思想,學生既了解了數學建模,又對數學公式提起了興趣,還有助于獨立學院學生在全國大學生數學建模競賽中取得優異成績。
高等數學的作用表現在為各專業后續課程的學習提供必要的數學知識,培養各專業學生的數學思想與數學修養,全面提高大學生創新思維和應用能力。只有把數學建模思想融入數學教學中,才能調動學生學習數學的積極性,培養學生的創新能力,實現提高學生綜合分析問題能力的最終目標。
作者:崔瑋王文麗單位:中國地質大學長城學院信息工程系。
數學建模論文(優秀19篇)篇十六
摘要:隨著現代社會的發展,數學的廣泛用途已經無需質疑,他深入到我們生活的方方面面。現階段,數學建模已經成為應用數學知識解決日常問題的一個重要手段。本文通過簡述數學建模的方法與過程,以及應用數學建模解決實際經濟問題的應用,展現的了數學學習的重要意義,以及數學在經濟問題解決中的重要作用。
經濟現象具有多變性,隨著經濟社會的發展,國際間貿易往來的日趨緊密,日常經濟形勢受到的影響因素越來越復雜多變。而日常經濟生活中所遇到的經濟現象同樣存在著諸多的變化的影響因素。如何應對這些難以把控的變量,做好風險的預估、成本的核算、進行最大成本的規劃,所有這些都可以借助數學知識、應用數學建模為工具進行較為理性的計算,為經濟決策、企業規劃提供重要的幫助。
數學建模,其實就是建立數學模型的簡稱,實際上數學建模可以稱之為解決問題的一種思考方法,借助數學工具應用已知的定理定義進行合理的運算,推導出一種理性的結果的過程。數學建模是可以聯系數學和外部世界的一個中介和橋梁,在工業設計、經濟領域、工程建設等各個方面,運用數學的語言和方法進行問題的求解和推導,實際上,都是一種數學建模的過程。數學建模的主要過程可以總結為如下的框圖形式:實際上,數學模型的最終建立是一個反復驗證、修改、完善的動態過程,很少能夠通過一次過程就建立起完美適合實際問題的數學模型。通過上述過程的多次循環執行:1.模型準備:分析問題,明確建模的目的,統計各種信息數據;2.模型假設:根據建模目的,結合實際對象的特性,對復雜問題進行簡化,提取主要因素,提煉精確的數學語言;3.模型建立:根據提煉的主要因素,選擇適當的數學工具,建立各個量(變量、常量)間的數學關系,化實際問題為數學語言;4.模型求解:對上述數學關系進行求解(包括解方程、圖形分析、邏輯運算等);5.模型分析:將求解結果與實際問題結合,綜合分析,找到模型的缺陷和不足,進行數學上的優化,建立穩定模型;6.模型檢驗:將模型得到的結果與實際情況相驗證,檢驗模型的合理性和適用性。
二、經濟問題數學模型的建立。
經濟類問題因為其特有的特點,可以按照變量的性質分為兩類:概率型和確定型。概率型應用于處理具有隨機性情況的模型,可以解決類似風險評估、最優產量計算、庫存平衡等問題;確定型則可以基于一定的條件與假設,精確的對一種特定情況的結果做出判斷,如成本核算、損失評估等。對經濟問題的建模計算實際上是一個從經濟世界進入數學世界再回到經濟世界的過程。建立經濟數學模型,需要首先對實際經濟問題和情況有一個較為深入的認識,然后通過細致的觀察梳理,抽出最為本質的特征性的東西。將原始的復雜的經濟問題簡化提煉為一個較為理想的自然模型,然后基于這個原始模型應用數學知識建立完整的數學經濟模型。
三、建模舉例。
四、結語。
綜上所述,我們可以看到,數學建模在經濟中的應用可以非常廣泛,對很多的決策和工作都可以提供參考和指導,如提高利潤、規避風險、降低成本、節省開支等各個方面。上文只提供了一個簡單的例子,和初步的介紹,其深入的理念和概念更加值得我們去努力的學習和思考。
數學建模論文(優秀19篇)篇十七
數學建模是銜接數學與應用問題的橋梁,該課程主要培養學生的綜合素質要求。本文針對于數學建模的課程考核問題進行探討,分析數學建模課程考核存在問題,改革思路,并提出多層次綜合考核方式,應用于數學建模的課程考核,效果良好。
數學建模是一門介紹數學知識應用于解決實際問題的方法課程,該課程主要講授如何針對日常生活中的實際問題,做假設簡化并進行抽象提取,然后用數學表達式或者數學公式等將該問題表達出來,并求解該問題,從而達到解決實際問題的目的。數學建模的教學內容包含常見數學模型的介紹、數學軟件編程和處理實際問題的數學方法。即數學建模是一門銜接數學與實際問題的應用型課程,其教學、考核等都與其他數學課程不同。中共中央國務院《關于深化教育改革全面推進素質教育的決定》明確指出:“高等教育要重視培養大學生的創新能力、實踐能力和創業精神,普遍提高大學生的人文素養和科學素質。”特別對于當前處于經濟結構調整期,“中國制造”向“中國創造”轉型,國家需要大量的高素質創新型人才。而高校是培養高素質創新型人才的重要基地,需要改變原有的人才培養模式,提高學生的動手能力和綜合素質,培養適合經濟發展需要的高素質創新型人才。因此,本科教學中越來越重視培養學生收集處理信息的能力、獲取新知識的能力、分析和解決問題的能力、語言文字表達能力以及團結協作和社會活動的能力。數學建模競賽是利用數學知識解決實際問題的競賽活動,要求參賽學生利用三天三夜的時間完成數學建模競賽,整個競賽過程中學生需要分析問題、查找資料、建立模型、編程求解、撰寫建模論文等步驟。這些步驟要求參賽學生具有較強的信息收集、知識獲取、分析、編程、論文撰寫、團隊協作等能力。因此,數學建模競賽活動是培養學生各方面能力的競賽,也是全國參與人數最多、受益面最廣、舉辦時間最長的競賽活動之一。數學建模是信息與計算科學和應用數學專業的專業必修課,參加數學建模競賽的必須培訓課程,數學建模的考核不僅僅是給出該課程的成績,更重要的承擔為數學建模競賽選拔參賽人員的任務。本文針對數學建模的考核問題進行討論。
(1)考核手段和目的存在誤區。傳統的考核方法注重于理論知識的檢驗,忽略了對學生創新意識、實踐能力的培養。同時,教育主管部門對于該課程的考核要求與其他課程類似,僅僅考核知識點的.掌握,忽視了該課程的開設目地,從而使得部分學生的利用數學方法解決實際問題的能力未能提高,沒有達到學習此課程的目的。(2)考核重結果,輕過程。目前,數學建模是考查課程,該課程的考核存在兩個極端:簡單根據學生的數學建模論文給予成績或試卷考試成績。考核結果忽略了對學生的各方面能力的考察,導致開卷考試變成了學生的簡單應付了事;而且部分考核只看最后的結果,而忽略了數學建模的整個訓練過程。(3)考核方式單一。數學建模課程牽涉數學方法、編程能力、論文的寫作能力、及其綜合動手能力等。單純從試卷或最終數學建模論文不能體現學生的各種能力。導致學生的某一種能力掩蓋了其他能力的展現,導致數學建模競賽學生選拔過程中存在一種現象:通過各種方式選拔的“優秀”學生,真正參加數學建模競賽時,根本無法動手。(4)教學改革需要。隨著大數據、人工智能、深度學習等領域的興起,數學知識是解決此類實際問題的必須工具,解決該類問題的過程其實就是數學建模的過程。隨著“新工科”培養計劃的興起,數學、編程、寫作能力成為衡量人才的重要指標。數學建模是銜接數學和實際問題的橋梁,設置合理的考核方式,體現學生多方面能力是數學建模課程考核改革的動力。
(1)轉變教育觀念,樹立科學考核。數學建模是一門利用數學方法、計算機編程、論文寫作等方面知識解決實際問題的課程。該課程主要培養學生利用數學建模方法解決實際問題的能力。因此,任課教師改變課程考核等同于考試的觀念,將考核過程貫穿學生的學習階段,學習階段融入整個考核過程。從而避免教、考脫節的現象,形成教考相互融合,提高學生的積極性。(2)實施多元化考核,提高學生的動手能力。數學建模課程是綜合利用各種能力解決實際問題的方法論型課程,該課程的最終目的是培養學生的各種能力及其解決實際問題的綜合能力。包含多個知識點的試卷測試是應試教育的體現,不足以反映學生的動手能力。多元化的考核方式能促進教學過程逐步向以訓練學生的解決實際問題能力為導向,激發學生的創新意識、鍛煉學生的實踐能力。(3)實施多元化考核,促進學生學風。多元化考核將教學和考核的過程相互融合,學生的學習和考核交替進行,能夠促使學生、自我反省,發現自己學習的不足,及時改進。同時,教考融合能夠促使學生自發學習,調到學生的學習積極性,避免出現“平時送、考前緊、考后忘”的現象。
鑒于數學建模是利用計算機、數學解決實際問題的方法論文課程。該課程的教學過程包含介紹數學建模所用知識點和綜合利用各個知識點解決實際問題兩個階段。該課程考核改革主要訓練學生綜合利用知識解決實際問題的能力,過程的訓練是教學的重點。考試改革需貫穿于該課程的具體教學過程,因此將考核分為階段考核、綜合考核、結課考核、參賽考核四種方式。(1)階段考核。數學建模的教學內容包括編程語言介紹、數學建模方法介紹和數學論文寫作介紹幾個主要的方面。相應地,編程能力、應用數學建模能力和論文寫作能力的訓練是數學建模的根本目的。因此,本項目擬根據數學建模的教學大綱安排,對每種能力進行單獨考核,結合每種能力的特點,設置不同的題目,考核每種能力的得分。根據教學進度發布測試題目,初步擬定每種能力的測試成績各占總成績的10%,共占總成績的30%。(2)綜合考核。數學建模是綜合運用各種能力的解決實際問題。在各種能力訓練的基礎上,強化訓練學生的綜合運用各種知識的能力。在此階段,從歷年數學建模題目和日常生活中挑出2~3個題目,進行適當簡化處理,促使學生利用3~5天的時間完成一篇論文,進行點評評分,挑選部分典型論文進行講解;然后要求學生繼續完善論文,再次點評評分,如此循環多次。每個題目的成績約占總成績的10%,該階段共占總成績的30%。(3)結課考核。針對數學建模授課期間的知識點訓練和綜合訓練,最后仿照數學建模的參賽組織形式,從實際生活中挑選2個側重點不同的題目;同時,建議選課學生自由組合,3人一組,共同完成數學建模論文。該階段對前期訓練的檢測,同時考核學生的團隊精神,最終論文的成績占總成績的40%。(4)參賽考核。數學建模課程可作為數學建模競賽的前期培訓,從選課選手中選取部分成績優秀的學生,組織他們參加全國大學生數學建模競賽,競賽獲國家級獎,最終成績直接評為優秀;廣西區級獎最終成績可直接評為良好。
該考核方案在信息與計算科學專業的數學建模課程試用。教學中將考核過程融入教學過程,教學過程穿插考核,這樣能夠防止“考核型學習現象”,促使學生逐步向“學習型考核”轉變。同時,數學建模是應用型課程,多元化考試能夠訓練學生的應用數學、計算機編程和論文書寫能力,單一考核不再適應,多元化考核能夠發現學生的優點,促進教學過程轉變為“以能力為導向”,符合當前的教育改革理念。數學建模講授的內容有:線性規劃模型、非線性規劃模型、圖論模型(最短路模型、生成樹模型、網絡圖模型)、微分方程模型、差分方程模型、插值模型、擬合模型、回歸分析模型、因子分析模型、統計檢驗模型、綜合評價模型、模擬仿真模型等模型及其相關算法的軟件編程。在教學安排中,對于數學模型部分盡可能講解數學建模中常見模型的建模方法、模型特點及其適應范圍、該模型的求解算法等。對于涉及模型求解算法的理論及其具體的求解步驟略講或者不講解,對于調用軟件的算法集成命令及其調用方法等詳細介紹。對于數學建模論文寫作方面,通過閱讀優秀論文,特別是我校20xx年的“matlab創新獎”論文。同時,選取部分簡單例題,根據完整數學建模論文的章節要求布置任務,要求完成相應論文。然后根據學生的完成情況,進行詳細點評,特別數學建模論文的寫作及其注意事項。學生主動完成平時練習的積極性高,80%的同學能夠按時完成布置的任務。剩下部分同學再經過多次提醒之后也補交了布置的任務。從提交的作業發現,大部分同學的作業都是自己認真完成,少數同學是在參考他人的基礎之上完成。在課程結束后,參照數學建模的形式,要求同學們可以自由組隊,隊員人數為1~3人,根據人數的多少,設置不同的評價標準。為考查學生的學習情況,本人給出幾道歷年真題或類真題,這些題目是根據當前的熱點新聞等經過加工而提出。從學生提交的結課論文來看,已經達到了預期效果,大部分同學具備了數學建模的基本素質,掌握了數學建模技巧,能夠完成數學建模論文。通過兩年的試用,信息與計算科學專業參加數學建模競賽的人數比往年增加20%,而獲得省(區)級獎以上的獎項比往年增加40%。因此,說明數學建模考核方案對學生的評價具備一定的準確性。
為配合考核方案的實施,特擬定考核改革調查問卷,本人共做了兩次問卷調查,共收到近八十分問卷。問卷包括數學學習興趣、參加數學建模的積極性、考核嚴厲與否、考核方案認同度等內容。統計調查問卷發現,學生對數學知識的學習興趣明顯提高,參加數學建模競賽的積極性也大幅度提高。并且大部分學生認同考核方案,也贊成將考核過程與教學過程相結合。從調查問卷的統計結果看:有近70%的學生認為該課程應該嚴格考核;76%的學生認同該考核方案。由此可見,數學建模考核方式改革具有一定的推廣和實施價值(見圖1)。
根據實施《數學建模》考核改革方案的學生反饋情況,總的來看,學生對考核方案比較認同,也同意嚴格考核。從學生的參賽人數和獲獎比例也說明了該考核方案能有效提升學生的學習興趣,提高學生的各方面能力。
[2]謝發忠,楊彩霞,馬修水.創新人才培養與高校課程考試改革[j].合肥工業大學學報,20xx.24(2):21-4.
[3]李紅枝,毛建文,古宏標,黃榕波,邢德剛.創新意識和創新能力培養中高校考試改革的探索[j].山西醫科大學學報,20xx.13(4):397-400.
[5]蒲俊,張朝倫,李順初,付曉艦.地方綜合性大學理工科學生數學建模創新培養改革的探討[j].中國大學教學,20xx.7:56-8.
數學建模論文(優秀19篇)篇十八
摘要:在新課改以后,要求教師要在教學中重視學生的主體地位,提升學生學習興趣,培養他們的自主學習能力。本文從初中數學教學過程中數學建模入手,對如何將數學建模運用到學生解題過程中進行了分析。
數學建模是指利用數學模型的形式去解決實際中遇到的問題,換句話說,就是利用數學思維、數學方法解決各種數學問題。數學建模是在新課程改革后出現的新概念,經過一段時間的觀察我們可以發現,數學建模的方法能夠有效的提高學生的學習興趣,培養學生的數學能力。這種方式能夠將復雜的數學問題利用簡單的方式找到解決方案,是提高初中數學課堂效率及課堂質量的有效手段。初中數學是初中學習中的重要課程之一,也是培養學生數學思維的重要階段。可以說,初中數學的學習是學生學習數學的關鍵,對今后的學習起到極大的影響。因此,對于初中數學教師來說,不斷的完善教學手段,提高數學課堂質量是教學工作中的重中之重。而數學建模就是為了解決數學在生活中的實際問題,能夠讓學生感受到數學本身的魅力,培養他們的數學思維,提高數學學習能力,從而讓初中數學教學質量也得到大幅度的提升。初中數學與數學建模之間有著密不可分的作用,兩者相互聯系、相互促進,如何有效的.將數學建模運用在初中數學教學過程中,是每個初中數學教師都值得思考的問題。
數學建模是為了解決數學中遇到的問題,數學本身特別是初中數學也是一門較貼近學生生活的學科。因此在數學學習中,教師要首先培養學生的數學學習意識,讓他們感受到數學與生活的緊密聯系,然后再引導學生用數學建模去解決遇到的問題。在這一過程中,數學教師要注意以下兩個問題:(一)在教學中一定要貼近學生的生活,課堂中所提出的問題也必須要符合生活實際,讓學生對所學內容感到親切。積極引導學生利用多種方式解決同一問題,尤其是利用數學建模的方式,以達到培養他們的數學思維以及想象能力的目的。(二)在學生進行數學建模的過程中要利用多鼓勵的方式調動他們對數學學習的積極性,讓他們在數學建模中獲得成就感,增加自信心,以此來提高學生在今后學習中使用數學建模方法的熱情。
二、提高學生想象力,用數學建模簡化問題。
對于初中生來說,他們的思維與其他年齡段相比極其活躍,擁有了豐富的想象力。在數學學習中,如果能將想象力與數學學習結合在一起,一定會得到意想不到的效果。教師可以根據初中生這一特點,提高他們的想象力,然后再引導他們利用數學建模解決問題,讓題目簡單化。具體來說,就是在面對復雜的數學問題時,教師可以先為學生創建教學情境,以這樣的方式提高學生的學習興趣,讓他們愿意主動去深入的研究遇到的題目。之后教師再去對他們進行引導,讓他們能夠理解題目中所提問題的含義,并能夠運用他們的想象能力思考解決問題的方式。最后再引導他們進行數學建模,解決問題。這樣的方式充分的利用了學生的想象能力,將所需解決的問題簡單化。
三、選擇合適的題目作為建模案例。
在數學建模過程中,教師也要時刻牢記題目應該貼近學生的生活,符合實際,并且具有一定的趣味性,讓他們有興趣投入到數學建模的過程中去,然后再反復練習之后達到提高他們建模能力的目的。在選擇數學建模案例時教師主要應該注意以下兩點:首先,教師在選擇建模案例時要盡量選擇比較典型的問題,能夠讓學生在學習了該題目以后掌握這一類的解題方法,達到初中數學教學的目的。所以,這就需要教師對題目進行深入的分析,看是否在擁有趣味性、真實性的同時符合教學要求。其次,題目最好能夠擁有可變性,教師能夠通過對題目中已知條件的改變讓學生進行不同方面的建模練習,以此提高他們數學建模的能力。
四、引導學生主動進行數學建模。
在教師經過反復的教學后,學生都已經擁有了基本的數學建模知識,了解了數學建模過程,并且能夠在解題過程中簡單的使用數學建模。此時,教師在教學中就可以引導學生利用數學建模解決數學題目了。引導學生用數學建模方法解決數學問題,就要在解題過程中多對學生進行這一方面的鼓勵,讓他們提高建模信心。在這一過程中,教師還可以嘗試讓學生之間利用合作的方式讓他們進行數學建模方法的探討,并在探討的過程中吸取他人的經驗,提高自己數學建模水平,同時這樣的方式能夠讓數學建模深入到每一個學生的心中,逐漸影響每一個學生的解題思路,讓他們能夠在解題過程中熟練運用建模的方式,提高解題能力。數學建模的方法能夠有效的改變過去的傳統教學思路,增加學生對數學的學習興趣,提高數學解題能力。這種教學方法對于初中數學教師來說,值得不斷的探討研究,并應用在教學中,以此提高數學課堂的教學效率和教學質量。
數學建模論文(優秀19篇)篇十九
使學生的綜合應用能力、實踐創新能力和綜合應用素質等多方面均能得到提升和發展。
對于醫學專業的學生來說,在校所學的數學基礎理論課程比較有限,并且學生對純粹的數學知識與復雜的理論推導已經極為厭倦,如果數學建模還是以傳統的“灌輸式”和教師“主導型”為主、簡單的應用案例為主要教學內容的話,其結果勢必會使學生有一種再講數學課和做應用題的感覺,既不能很好地激發學生的學習興趣,也不能體現數學建模的思想方法和本質特色。
因此,如何使學生擺脫這種尷尬的現狀已成為我們教學的一大難點。針對這種情況,在教學模式上,我們大膽嘗試研究型教學模式,即采用“從實踐中來,到實踐中去”的教學理念。一方面,從最現實、最熱門的醫學話題出發,從學生最感興趣的.問題入手,激發學生的學習興趣和進一步學習的主動性,使他們從一開始就能進入到學習的角色中去;另一方面,通過開展多種方式的實踐教學活動,使學生在實踐中掌握數學建模的常用方法和基本技能,忽略繁瑣的數學推導過程,讓學生體會發現問題和思考問題的過程,培養學生解決問題的創新能力。
近些年來,我們開設的醫藥數學建模課受到了學生的一致好評,其關鍵之處在于我們一改傳統的教學模式,通過組織數學建模興趣研討班,讓每位同學都能充分地參與到研究中去并且使每位學生都有發言的機會。這些舉措旨在進一步激發學生的創新意識,提高學生的數學建模實踐能力。研討班面向全校各類醫學專業的學生,并以三人為單位,劃分成若干個組,通過專題研討的形式開展活動。實踐證明:通過這種研討過程,學生不僅對所學的醫學知識有了更深刻的理解與認識,在文獻資料查閱、計算機編程、語言表達能力等諸多方面也都有了顯著的提高。通過這個過程的學習,為學生今后從事醫學科研工作打下了良好的基礎。
為了有效的培養學生綜合應用能力和深層次學習的習慣與意識,我們在教學方法上一改往日的“講透,講懂”的方法,忽略純理論的繁瑣推導,突出知識的應用思想和應用意識,讓學生帶著問題上課,嘗試在解決問題中與教師進行交流,下課帶著問題回去。
在課堂教學中,重點講解發現問題和解決問題的方法與技巧。通過課前作業,引導學生自我發現問題;通過課堂講解和研討,引導學生解決問題;通過課后作業,總結和鞏固所學知識,學習應用與拓展知識。這種完全以學生為主,教師為輔的做法,有利于培養學生樹立勇于探索求知的信心和探索新知識的能力與意識,提高學生的創新能力和敏銳的洞察力及想象力,從而提升學生的綜合應用素質。
在現實生活中的實際問題是比較復雜的,往往單一的方法是難以解決的,通常是需要多種方法的綜合應用方能解決。
因此,以實際問題驅動的教學模式,主要是引導學生如何將復雜的實際問題分解為一系列簡單的小問題,在解決每一個小問題的過程中,讓學生學習并掌握相關的數學知識與方法。這種在應用中學習的教學方法,在很大程度上解決了學生普遍存在的“學數學有什么用、學了數學不知怎么用”的困惑。
在整個教學過程中,貫穿以學生為主體,通過案例分析引導學生的思維方法,針對一個案例的解決過程和方法,要求實現舉一反三,促使學生對所掌握的知識進行重組再現和優化構建,讓學生在學習和問題的解決中學會不斷地總結與歸納,用成功的方法再去演繹解決新的問題,通過不斷地歸納演繹、對比分析、總結經驗、彌補不足,進一步學習相關知識和方法,再進行實踐,從而不斷增強自身的綜合應用能力和素質。
隨著醫學院校教育理念的轉變以及教育體制改革的深入,對培養適應科學技術迅速發展的創新型醫學人才提出了更高的要求。如何培養出具有創新能力、綜合素質高的專業人才已成為亟待解決的問題之一。本文探討了醫藥數學建模課程的開設對培養大學生實踐創新能力的幾點做法。教學實踐證明:數學建模課充分鍛煉了學生的各項能力,是提高醫學專業學生綜合應用素質行之有效的方法。