范文范本可以激發我們對于寫作的興趣和熱情,提高寫作的積極性和主動性。以下是一些經典總結范文,對于理解總結的寫作要求和結構有很大幫助。
數學建模論文大全(16篇)篇一
對于高職院校的學生來講,數學在其教學過程中起著基礎性的作用,對于學生后續的學習相當關鍵。但是從現階段高職院校數學教學的基本情況來看,數學教師的教學方法以及教學策略都相當落后,對于學生數學興趣的提升造成了不同程度的影響。在這樣的背景下,相關專家提出了數學建模的方式,希望以此提升高職院校高等數學的教學效率。本文結合數學建模在高職高專人才培養當中的意義和作用入手,對于其中的應用策略進行全面的分析,希望為相關單位提供一個全面的參考。
隨著我國社會的發展,經濟產業結構日益升級,因此高等院校的人才需求日益擴大,對于高職教育的發展提供了前所未有的契機。在這樣的背景下,從數學建模入手,將其思想融入到高等教育的數學教學當中,對于其中的策略和方法進行全面的研究應該是一項具有普遍現實意義的工作。
從近些年的發展來看,參加過數學競賽的學生在科研能力等方面都具有比其他同學更強的優勢,因此數學建模在提升學生創新能力、提高學生知識水平以及調動學生的.學習興趣都具有十分重要的意義。比如在解決實際問題的時候,數學建模通過利用各種技巧,可以使得學生分析問題、創造能力得以全面的提升,進而使得學生在摒棄原始思考問題方式的基礎上,敢于向傳統的知識發出挑戰,對于學生的綜合能力的全面提升相當關鍵。其次,數學知識本就源于生活,因此在建模的基礎上學生就可以帶著問題去思考,這對于數學知識整體性的發揮以及解決問題能力的提升都具有十分重要的意義。最后,面對傳統數學的解決方式,很多學生望而生畏,因此主動分析問題的欲望就會受到遏制。在這樣的背景下,通過數學建模方式,學生會發現數學方法的靈活性,進而使得他們解決問題的能力得以全面的提升。
3.1制定切實可行的教學大綱,從而使得教學進度得以保障。教學大綱在高職教學當中起著十分重要的作用,這對于教學內容的合理性以及提升學生學習的針對性都具有十分重要的意義[1]。比如在教學高等數學(一)的選修模塊時,教學大綱的制定應該結合學生的專業,從而使得學生的數學學習真正取得實效。比如可以為理工類的學生選擇無窮級數以及傅里葉變換的內容;機械類的學生選擇線性代數以及解析幾何作為教學內容,從而使得學生的綜合能力得以全面的提升。3.2開展“三段式”的教學模式。數學建模在以解決實際問題為核心的過程中,使得學生分析問題以及組織問題的能力得以全面的提升,這種方式的本質為素質教育,因此不能和現行的其他教學模式分割開來,這就需要相關部門開展“三段式”的教學模式,使得學生的數學興趣得以全面的提升。其中,第一段需要還原數學知識的原創過程,使得學生明確數學知識的產生過程,進而讓學生從生活案例當中發現數學的價值,比如知道極限是由人影的長度變化引起的,導數是由于駕車的速度引入的,使得學生發現知識的價值,進而就會大大提升自己的學習興趣和探究意識。第二段:講解數學知識。數學建模是在實際問題當中引入的,因此要通過具體數學知識的講解使得學生明確數學建模的真正價值,比如在講解微積分的過程中,可以以“極限-微分-積分”為主線,使得學生對于數學的分析能力真正得以提升[2]。然后在為學生積極引入大量數學圖表的基礎上,為增強學生的感性認識,進而提升學生的綜合能力奠定堅實的基礎。第三段:數學知識的運用。隨著社會的發展,數學的應用在各行各業都發揮出巨大的作用,因此對于高等數學在實際生活當中發揮出來的作用進行全面的探究是實現這種知識價值的真正途徑。在這樣的背景下,高等數學教師要將每個知識點的運用真正灌輸給學生,比如指數增長在銀行計息當中的應用、定積分在學習曲線當中的應用、再生資源在數學開發以及管理當中的應用等等。從而使得學生數學學習中的創新意識以及應用能力得以全面的提升。3.3開設數學實驗,提升學生的綜合素質。數學建模為學生提供了一種真正的“數學實驗”,在這種實驗的過程中,學生對于數學知識的發展以及由來過程都會得到進行全面的考慮,這對于他們數學探索意識的提升具有十分重要的意義。另外,在計算機輔助實驗的過程中,學生的動腦能力也會得到全面的提升,這對于學生主動的學習數學相當關鍵。因此在教學過程中,教師要積極利用這種方式對于學生進行全面的培養。
總之,隨著我國經濟水平的不斷提升,社會對于高職院校的重視力度日益提升,因此對于高職院校當中數學建模思想在高等數學教學當中的應用進行全面的分析是實現學生綜合素質得以全面提升的關鍵措施,這對于學生的長遠發展也相當關鍵,相關教育工作者要加大在這方面的研究力度,力求將高職院校的學生培養成為新時代所需要的人才。
[1]吳健輝,黃志堅,汪龍虎.對數學建模思想融入高等數學教學中的探討[j].景德鎮高專學報,20xx,(4).
[2]張卓飛.將數學建模思想融入大學數學教學的探討[j].湘潭師范學院學報(自然科學版),20xx,(1).
數學建模論文大全(16篇)篇二
高校學生社團是一種具有共同興趣愛好的學生自發組織的開展一些藝術、娛樂和學術型的活動的團體。學生社團以其鮮明的開放性、自主性以及多樣性等特點,為一些有特長的學生提供了廣闊的舞臺,讓這些學生可以更好的發揮自己的才能,促進其更好的成才。全國大學生數學建模競賽是最早由教育部工業與數學應用學會共同承辦的一個科技性的賽事,該比賽要通過數學和計算機的知識來解決實際生活中的問題,由于其特有的比賽形式,使得高職院校在全校范圍內直接選拔參賽隊員是件費神的事情,因此,為了更好的為數學建模競賽選拔人才,激發學生的學習興趣,學術性社團“數學建模協會”也就應運而生。數學建模協會的成立,可以更好的為學生提供一個展示自己的機會,可以增強學生對數學的學習興趣,培養學生應用數學解決實際問題的能力,激發學生的創新思維,為數學建模競賽選拔人才。本文主要以西安航空職業技術學院數學建模協會為例,探討高職數學建模社團活動開展的形式和意義。
(一)數學建模社團有利于數學建模競賽的開展。高職數學建模協會為數學建模競賽搭建了一個平臺,是數學建模競賽強有力的后盾,數學建模競賽成績的取得與這個平臺密不可分,只有充分發揮數學建模社團的作用,才能源源不斷的為數學建模提供人力和智力保障,才能更好的推動高職數學的學習氛圍。1、數學建模協會起著動員宣傳的作用從沒聽過,到知道,在到熟悉,只有通過大力宣傳和動員,才能讓更多的人了解數學建模,讓更多優秀學生參加到數學建模競賽中。大學校園中有許多數學愛好者,他們對數學建模也有一定的認識,只要有參加數學建模活動的愿望的,都可以利用數學建模協會招新的機會,加入數學建模創新協會。將成績優秀的學生邀請加入數學建模協會,對進一步擴大數學建模協會,夯實數學建模基礎,起著舉足輕重的作用。2、數學建模協會起著知識傳播的作用高職院校學生在校學習時間較短,學業較為繁重,課余時間較少,數學建模培訓的時間不足,無法讓學生在短時期內掌握較多的數學建模相關知識。因此,利用數學建模協會活動可以開展數學建模課程的培訓工作,普及數學建模相關知識。采用“老帶新”的模式進行數學建模知識的普及。通過制定系統的培訓方案,在每年秋季競賽后,參加過競賽的同學對新入協會的成員可以進行初級培訓,為今后的競賽奠定基礎。3、數學建模社團起著選拔學生的作用每年數學建模競賽的隊員需要通過校內賽等形式進行選拔,此時,數學建模協會就起著校內賽命題及選拔隊員的作用,當然這種選拔方式也有的弊端,就是所有隊員都是來自校內賽成績優秀的學生,而校內賽發揮不理想但建模能力突出或計算機技術水平優秀的學生就沒法參加數學建模競賽。為確保每一位有能力的學生都能夠加入到建模競賽隊伍中來,可以通過校內競賽與建模協會推薦兩者相結合的方式選拔建模競賽學生,以確保最優優秀的學生參加數學建模競賽。(二)數學建模社團有利于大學生綜合素質的培養。(1)數學建模社團屬于專業的學術性社團,成立的目的是為了參加全國大學生數學建模競賽,數學建模社團活動的趣味性和實踐性可以提高學生的學習興趣,培養學生自主學習的能力,增加學生參與競賽的熱情。社團活動中的培訓使學生可以更好的應對競賽,取得更好的成績。另外,競賽之余還可以進行其他領域的學術交流,比如計算機,經濟,工程等領域,良好的交流氛圍激發學生的創新思維和意識,從而培養他們的創新能力。(2)數學建模社團是學生自發組織的服務學生的群體,除了學術研究之外,還可以進行一些創新創業的活動,具有更多的實踐的機會。比如,可以利用平時社團所學的知識,以團體的形式進行一些數據處理的校企合作;也可以以微信平臺和微信群等發布一些數學建模相關的微課等,進行一些微信群講座等等。這樣可以讓學生真正體會到數學的用處,達到學以致用的效果。(3)數學建模社團是學生自發組織的學術性社團,社團的組織機構都是學生在擔任,社團的活動也都是學生在協調策劃,甚至很多時候社團的老成員都可以輔助老師進行社團的一些學術性的講座。因此,在學習的同時還鍛煉了他們的處事應變能力團隊合作的能力,可以說提高了學生的綜合素質。
(一)數學建模社團的管理形式。數學建模協會作為一個學生群體組織,需要好的制度和管理模式。以筆者所在學校為例,數學建模創新協會具有自己的一套規章管理制度;在管理形式方面是以“三個管理面”來進行社團管理和學術交流的,具體如下:1、學術交流面這個主要是通過“社團內部進行學術交流活動”和“老帶新培訓”兩部分組成,內部的交流活動主要是學生之間的相互溝通和交流,以及不定期的邀請指導教師和外校專家做一些數學建模報告。老帶新培訓是指社團主席團成員(一般是參加過前一年全國大學生數學建模競賽的學生)為新入社團的學生進行培訓,培訓的內容基本上都是之前指導教師對他們集訓時的內容,這種培訓方式可以提升社團成員的授課和理解問題的能力,對于在校大學生來說是一次很好的鍛煉。2、網絡交流面采用qq群,網絡空間和微信公眾平臺等開展社團成員之間的交流互動,社團宣傳。筆者所在學校的數學建模創新協會每一屆社團都有相應的qq群,另外,在20xx年也積極申請了微信平臺,目前的'關注量也在800余人,微信平臺的建立可以更方面使大學生關注數學建模相關信息,尤其是對大一新生可以更多的取了解數學建模,擴大數學建模的受益面和影響力。力求在大學生中營造一種“人人知數模,人人愛數模,人人參與數模”的良好的教育環境,使建模活動廣泛化、群眾化。3、交流互訪面開展研討會,專家報告會,社團聯誼會等交流活動,既可以豐富數學建模社團學生的知識面,又能促進數學知識的理解和吸收,通過與其他社團的聯誼,豐富了社團學生的業余生活,又能學習其他社團好的管理經驗,促進社團管理的制度化、規范化、專業化,也只有通過不斷的學習,不斷的交流,才能真正“走出去”,建立一個管理完善,富有成效的學生社團。(二)數學建模社團的特色活動。數學建模社團在開展學術活動和輔助教師進行競賽培訓的同時,還不定期的舉行一些活動,在提高學生學習興趣的同時也以擴大了數學建模的影響力。以筆者坐在學校為例,每年可以開展一系列的數學建模活動。比如,數學建模創新協會納新,數學建模創新協會趣味運動會,數學科技節,趣味數學知識競賽,數學建模經驗交流會,數學建模校內賽,數學輔導周,數學建模專題講座。這些社團活動貫穿整個學年,不僅可以“由點及面、由淺入深”的對全國大學生數學建模競賽進行宣傳,在最大的范圍內,提升數學建模大賽的影響力及參與度,成效較好。而且讓枯燥的學術型社團變得豐富多彩,成為學生課后獲取知識的一種平臺,同時也是社團蓬勃發展的利器。
總之,數學建模社團活動的開展,有利于培養學生的創新意識和思維,有利于激發了學生的學習興趣,有利于豐富學生的課后生活,有利于調動了學生參加學術型社團的積極性,同時也是高職院校組織參加數學建模競賽的強有力的后盾。
[1]胡建茹,王搖娟.加強專業社團建設推進大學生創新實踐能力培養[j].中國石油大學學報:社會科學版,20xx(12)。
[2]王珍娥,宋維,孫潔.數學社團建設的探索與實踐[j].機械職業教育,20xx(7)。
[3]李湘玲,王泳興.大學生社團發展與創新型人才培養互動機制研究:以吉首大學為例[j].黑龍江教育,20xx(11)。
[4]孫浩,葉正麟.西北工業大學數學建模創新教育之探索[j].高等數學研究,20xx(4)。
作者:張蘭單位:西安航空職業技術學院通識教育學院。
數學建模論文大全(16篇)篇三
摘要:運籌學與數學建模2門課程聯系密切,在運籌學教學中,適當融入數學建模思想,能大幅度提高學生應用數學解決實際問題的能力.從運籌學教學中教學大綱的改革、教學環節的設計等方面進行了探索與實踐.教學實踐表明,將數學建模思想融入到運籌學教學中能提高課堂教學的效果,鍛煉學生的動手實踐能力.
1運籌學教學中融入數學建模思想的必要性。
2數學建模思想融入運籌學的教學改革。
3運籌學教學中融入數學建模思想的教學改革成效。
4結束語。
數學建模論文大全(16篇)篇四
第一條,論文用白色a4紙打印(單面、雙面均可);上下左右各留出至少2.5厘米的頁邊距;從左側裝訂。
第二條,論文第一頁為承諾書,第二頁為編號專用頁,具體內容見本規范第3、4頁。
第三條,論文第三頁為摘要專用頁(含標題和關鍵詞,但不需要翻譯成英文),從此頁開始編寫頁碼;頁碼必須位于每頁頁腳中部,用阿拉伯數字從“1”開始連續編號。摘要專用頁必須單獨一頁,且篇幅不能超過一頁。
第四條,從第四頁開始是論文正文(不要目錄,盡量控制在20頁以內);正文之后是論文附錄(頁數不限)。
第五條,論文附錄至少應包括參賽論文的所有源程序代碼,如實際使用的軟件名稱、命令和編寫的全部可運行的源程序(含excel、spss等軟件的交互命令);通常還應包括自主查閱使用的數據等資料。賽題中提供的數據不要放在附錄。如果缺少必要的源程序或程序不能運行,可能會被取消評獎資格。論文附錄必須打印裝訂在論文紙質版中。如果確實沒有需要以附錄形式提供的信息,論文可以沒有附錄。
第六條,論文正文和附錄不能有任何可能顯示答題人身份和所在學校及賽區的信息。
第七條,引用別人的成果或其他公開的資料(包括網上資料)必須按照科技論文寫作的規范格式列出參考文獻,并在正文引用處予以標注。
第八條,本規范中未作規定的,如排版格式(字號、字體、行距、顏色等)不做統一要求,可由賽區自行決定。在不違反本規范的前提下,各賽區可以對論文增加其他要求。
第九條,參賽隊應按照《全國大學生數學建模競賽報名和參賽須知》的要求命名和提交以下兩個電子文件,分別對應于參賽論文和相關的支撐材料。
第十條,參賽論文的電子版不能包含承諾書和編號專用頁(即電子版論文第一頁為摘要頁)。除此之外,其內容及格式必須與紙質版完全一致(包括正文及附錄),且必須是一個單獨的文件,文件格式只能為pdf或者word格式之一(建議使用pdf格式),不要壓縮,文件大小不要超過20mb。
第十一條,支撐材料(不超過20mb)包括用于支撐論文模型、結果、結論的所有必要文件,至少應包含參賽論文的所有源程序,通常還應包含參賽論文使用的`數據(賽題中提供的原始數據除外)、較大篇幅的中間結果的圖形或表格、難以從公開渠道找到的相關資料等。所有支撐材料使用winrar軟件壓縮在一個文件中(后綴為rar);如果支撐材料與論文內容不相符,該論文可能會被取消評獎資格。支撐材料中不能包含承諾書和編號專用頁,不能有任何可能顯示答題人身份和所在學校及賽區的信息。如果確實沒有需要提供的支撐材料,可以不提供支撐材料。
第十二條,不符合本格式規范的論文將被視為違反競賽規則,可能被取消評獎資格。
第十三條,本規范的解釋權屬于全國大學生數學建模競賽組委會。
說明:
(1)本科組參賽隊從a、b題中任選一題,專科組參賽隊從c、d題中任選一題。
(2)賽區可自行決定是否在競賽結束時收集參賽論文的紙質版,但對于送全國評閱的論文,賽區必須提供符合本規范要求的紙質版論文(承諾書由賽區組委會保存,不必提交給全國組委會)。
(3)賽區評閱前將紙質版論文第一頁(承諾書)取下保存,同時在第一頁和第二頁建立“賽區評閱編號”(由各賽區規定編號方式),“賽區評閱紀錄”表格可供賽區評閱時使用(由各賽區自行決定是否使用)。評閱后,賽區對送全國評閱的論文在第二頁建立“送全國評閱統一編號”(編號方式由全國組委會規定),然后送全國評閱。
數學建模論文大全(16篇)篇五
大量的應用型技能型人才,有效滿足了社會各行各業的用工需求。隨著國家對高職教育的重視和不斷投入,提高教育的教學質量勢在必行[1]。數學建模的核心是以數學模型為基礎的實際運用,鑒于數學建模的這種特點,國內高職數學教育逐步把數學建模理念融入到課題教學中,提高學生的應用能力。以數學建模理念的告知書明確教學改革要求學生結合計算機技術,靈活運用數學的思想和方法獨立地分析和解決問題,不僅能培養學生的探索精神和創新意識,而且能培養學生團結協作、不怕困難、求實嚴謹的作風[2]。筆者結合自身的教學工作經驗,對基于數學建模理念的高職數學教學改革進行了探索,對教學實踐中出現的問題進行了分析梳理,以期為高職數學教學改革提供新思路,推動高職數學教學水平的不斷提高,培養出具有良好數學素養和專業技能的新型高職人才。
近年來,隨著國內產業結構的不斷調整,對于高等職業技術人才需求不斷增大,社會對高等職業技術教育寄予厚望。但是傳統的高職教育由于專業設置不合理,使用教材落后,實訓實踐場地不足,培養出的學生動手能力差、專業能力不足,面對社會發展的新形勢,高職教育必須進行教學改革,提高學生的職業能力和就業競爭力。高職教育不同于普通本科教育,它有以下幾方面的特點。
1人才培養目標不同。
高職教育和本科教育人才培養目標不同,高職教育是以技術應用型高技能人才為培養目標,所有的教學課程設計和人才培養體系設計都是基于此目標展開的,高職教育主要是為了向產業發展提供生產、服務、管理等一線工作的高級技術應用型人才,專業能力培養和目標職業匹配度高,所以高職教育教學成果最直接的評價就是畢業生的就業競爭力和上崗后的適應能力。
2兩者的教學內容不同。
高職教育的教學重點是學生要掌握與實踐工作關系較為密切的業務處理能力、動手能力與交流能力,把學生的職業能力建設列為教學重點,課程設計專業性強,一旦就業能為企業創造明顯的效益,高職教育各專業課程差別較大。
3生源情況不同。
在當前的教育教學體系下,高職教育的生源普遍較差,大多是沒有希望考上大學,轉而進入高職學習,希望通過掌握一定的技術來實現就業,所以高職學生的基礎知識普遍較差,學習興趣不高。數學建模給高職數學教學改革開辟了新思路,數學建模為數學理論學習和工程實踐應用搭建了橋梁,在工學結合的基本原則下,采取數學建模教學理念,培養學生的數學素養及動手應用能力是一個非常有效的手段[3]。
1數學建模的概念數學建模是將數學理論和現實問題相結合的一門科學,它將實際問題抽象、歸納成為相應的數學模型,在此基礎上應用數學概念、數學定理、數學方法等手段研究處理實際問題,從定性或者定理的角度給出科學的結果[4]。數學建模的發展為數學知識的應用提供了途徑,對于現實中的特點問題,可以用數學語言來描述其內在規律和問題,運用數學研究的成果,結合計算機專業軟件,通過抽象、簡化、假設、引進變量等處理過程后,將實際問題用數學方式表達,轉化成為數學問題,借助數學思想建立起數學模型,從而解決實際問題。2基于數學建模思想的教學理念基于數學建模的這種學科特點,可以把數學知識應用化,因此,基于數學建模思想的教學理念可以概括為三個層次:首先,確立提高學生數學應用能力為目標,以提高學生數學學習興趣為手段,以學習數學建模為途徑;其次,結合教學內容,開發相應的數學建模案例,因地制宜、因生制宜,根據專業不同編寫相應的校本教材;最后,改進教學方法,創新課堂教學模式,建立課外數學建模學習興趣小組,帶領學生進行數學應用實踐活動,鼓勵學生參加各種數學建模競賽[5]。
傳統的數學教學模式以教師課堂講授為中心,學生只能被動的接受,由于學生的基礎知識水平不同,掌握新知識的能力也不同,這種沒有區分的教學模式教學效果差,往往帶來的結果是造成基礎差的學生跟不上,對數學感興趣的學生失去興趣。基于數學建模理念的高職數學教學改革,是以學生數學應用能力提高為目標,以數學學習興趣培養為出發點,以數學建模為途徑,以教學方式改革為保障,打造高職數學教學改革新模式,全面提高高職教育應用型人才培養水平。
1結合專業特色,突出數學教育的應用性。
數學作為高職教育的基礎性學科,理論性強,體系性強,對于基礎知識薄弱、學習興趣差的高職生來說感覺難學、枯燥,這是因為高職數學教育沒有教會學生如何在專業學習中和以后的工作中如何去用學到的數學知識,學生感覺知識無用自然也就不會主動去學,之所以引入數學建模的思想就是為了讓學生利用學到的數學知識去解決實際問題,讓學生認識到數學不只是紙面上的寫寫算算,數學可以把實際問題抽象化,變成數學問題,利用數學的研究方法給實際問題進行科學的指導,這樣高職數學教育就不再是課堂上的照本宣科,課下的演算作業,將基礎數學教育和學生的專業教育相結合,帶來學生用數學解決專業問題是大幅度提高學生專業能力的有效途徑。
2結合學生能力,因材施教、因地制宜。
高職學校的生源不如普通高校,一般學習基礎較差,對于專業實訓課并不明顯,但是在基礎學科教學過程特別突出,很多基礎知識掌握不牢,甚至一點印象都沒有,教師在上課時要充分考慮到這種情況,在課堂授課時給予實時的補充,以助于知識的過渡。因材施教是我國傳統的教育思想,在掌握學生知識水平的基礎上,教師要根據不同學習層次學生的具體情況,安排教學內容和設置教學目標,對于基礎知識水平不高、學習興趣較差、學習能力較弱的學生要進行課外輔導。高職基礎課教育是專業課學習的基礎,授課教師要根據學生的專業學習情況和專業特點,把遷移知識運用能力在課堂上結合學生的專業背景進行輔導,高職數學教育不僅僅是為了學習數學,更多的是發揮數學知識在其專業能力培養中的作用。
3培養學生學習興趣,促進整體教學質量提高。
高職學校的學生學習興趣普遍不高,尤其是對于學了十幾年都感覺頭痛的數學,要想提高數學的教學質量,首先必須要培養學生的學習興趣,長期以來學生在數學學習上已經有了根深蒂固的認識,培養數學學習興趣很難,但是如果學生沒有學習興趣,教師授課內容、授課方式改革都起不了太大的作用,學生對于數學學習興趣低由于低年級學習時受到的挫敗感,因此要讓學生建立學習數學的自信心,讓他們體驗學會數學的成就感,這樣才能逐步培養他們的學習興趣。教師可以采取以點帶面的方式,先選擇有一定基礎的學生,再從全部課程學習中發現表現優秀的個體,組織參加建模競賽,進行單獨賽前加強指導,用這些榜樣的力量提高全體同學的學習積極性。數學建模作為提高高職數學教育教學水平的“點”,能夠以其趣味性強,帶動學生的學習興趣,促進高職數學教育教學水平的全面提高。
4改革教學及評價方式,建立面向應用的數學教育體系。
由于基于數學建模思想的高職數學教學改革打破了以往的課堂教學方式和考核方式,學生面對的不再是期末的一張試卷,而是一個個數學建模案例,需要學生運用本學期學到的數學知識解決實際問題,教師根據學生對案例的理解程度,數學模型運用能力,實際過程分析和解題技巧等多方面給出評價,同時積極評價、鼓勵學生的創新思維,并將其納入到考核體系當中。通過以上各個方面評價的加權作為最后的評價指標。這種以數學知識應用為基礎,直接面向應用的高職數學教育模式能極大的激發學生的學習積極性和知識應用能力,符合高職應用型人才培養理念,對提高高職學生的專業能力也打下了堅實的基礎。基于數學建模理念的高職數學教學改革是推動高職應用型人才培養體系建設的新舉措,也是推動高職基礎課教學水平的重要內容,能有效解決學生學習興趣低,基礎知識掌握不牢,數學知識應用能力低等問題,通過“案例驅動法+討論法”,引導學生再次對課本知識進行思考和應用,有利于培養學生的創新思維和應用能力。引入數學建模理念教學,把課堂學習的主動權交回給學生,既保證了高等數學原有的知識體系的完整,也可以提高教學效率。通過教學方式和評價方式改革,學生的學習主動性增強,也改變了以往對于數學學習的學習態度。高等數學作為高職教育學生必修的基礎課,在培養學生基本數學素養上具有重要作用,是理工類專業課程體系的重要組成部分,基于數學建模理念的高職數學教學改革也為同類基礎理論課改革提供了新思路和范例。
[1]孫麗.在高職數學教學改革中應注重數學建模思想的滲透[j].科技資訊,20xx(22):188.
數學建模論文大全(16篇)篇六
2.1、建立引導機制,激發學習動力。
2.2、建立轉化機制,促進知識向能力的轉化。
2.3、建立協作機制,增強團隊意識。
高校學生在平時的學習過程中,絕大多數情況下,基本上都是獨自學習,與他人合作研究和解決問題機會很少.而在各種層次級別的數學建模競賽中,參賽學生要3人一組,以團隊而不是個人身份參賽.在正式比賽之前,要按照學科、特長等因素尋找隊友,組成隊伍.在比賽期間,由于隊友經常是來自不同專業,知識能力水平各有所長,脾氣秉性各有特點,需要在比賽時認真溝通,相互協調,合理分工,團結協作共同完成整個比賽.為了比賽,在發生矛盾時,要學會忍耐和妥協,而不能意氣用事.在整個比賽期間,求同存異,取長補短,優勢互補,最終合作完成任務.這個過程,無形中就培養了學生的合作意識和團隊精神,使學生親身感受到現代社會與人合作是大多數人成功的必要選擇.依托數學建模競賽,培養創新型人才的團隊協作意識,建立培養人才的.合作交流機制,這是適應社會和時代需要的人才培養過程中的重要環節之一。
2.4、建立溝通表達機制,提高學生的語言及文字表達能力。
2.5、建立問題導向機制,培養學生主動式學習的自主學習能力。
3.1、促進了學生全面發展。
3.2、提高了學生的就業質量。
數學建模論文大全(16篇)篇七
走美杯”是“走進美妙的數學花園”的簡稱。
“走進美妙的數學花園”中國青少年數學論壇是中國少年科學院創新素質教育的品牌活動。20xx年,由國際數學家大會組委會、中國數學會、中國教育學會、中國少年科學院成功舉辦了首屆“走進美妙的數學花園”中國少年數學論壇,至今已連續舉辦七屆,全國三十多個城市近三十萬人參與了此項活動,在全國青少年中產生了巨大的影響。“走進美妙的數學花園”中國青少年數學論壇活動是一項面對小學三年級至初中二年級學生的綜合性數學活動。通過“趣味數學解題技能展示”、“數學建模小論文答辯”、“數學益智游戲”、“團體對抗賽”等一系列內容豐富的活動提高廣大中小學生的數學建模意識和數學應用能力,培養他們一種正確的思想方法。著名數學家陳省身先生兩次為同學們親筆題詞“數學好玩”和“走進美妙的數學花園”,大大鼓舞了廣大青少年攀登數學高峰的熱情和信心,使同學們自覺地成為學習的主人,實現從“學數學”到“用數學”過程的轉變,從而進一步推動我國數學文化的傳播與普及。
“走美”活動已連續舉辦七屆,近30萬青少年踴躍參與,已取得良好社會效果,并被寫入全國少工委《少先隊輔導員工作綱要(試行)》,向全國少年兒童推廣。
“走美”作為數學競賽中的后起之秀,憑借其新穎的考試形式以及較高的競賽難度取得了非常迅速的發展,近年來在重點中學選拔中引起了廣泛的關注。客觀地說“走美”一、二等獎對小升初作用非常大,三等獎作用不大。
1、活動對象。
全國各地小學三年級至初中二年級學生。
2、總成績計算。
筆試獲獎率:
一等獎5%,二等獎10%,三等獎15%。
3、筆試時間。
每年3月上、中旬。
報名截止時間:每年12月底。
走美杯比賽流程。
1、全國組委會下發通知,各地組委會開始組織工作。
2、學生到當地組委會報名,填寫《報名表》。
3、各地組委會將報名學生名單全部匯總至全國組委會。
4、全國“走進美妙的數學花園”趣味數學解題技能展示初賽(全國統一筆試)。
6、全國組委會公布初賽獲獎名單并頒發獲獎證書。
7、獲得初賽一、二、三等獎選手有資格報名參加暑期赴英國劍橋大學數學交流活動。
8、各地按照組委會要求提交數學建模小論文。
9、前各地組委會上報參加全國總論壇學生名單。
10、全國總論壇和表彰活動。
數學建模論文大全(16篇)篇八
數學建模隨著人類的進步,科技的發展和社會的日趨數字化,應用領域越來越廣泛,人們身邊的數學內容越來越豐富。強調數學應用及培養應用數學意識對推動素質教育的實施意義十分巨大。數學建模在數學教育中的地位被提到了新的高度,通過數學建模解數學應用題,提高學生的綜合素質。本文將結合數學應用題的特點,把怎樣利用數學建模解好數學應用問題進行剖析,希望得到同仁的幫助和指正。
一、數學應用題的特點。
我們常把來源于客觀世界的實際,具有實際意義或實際背景,要通過數學建模的方法將問題轉化為數學形式表示,從而獲得解決的.一類數學問題叫做數學應用題。數學應用題具有如下特點:
第一、數學應用題的本身具有實際意義或實際背景。這里的實際是指生產實際、社會實際、生活實際等現實世界的各個方面的實際。如與課本知識密切聯系的源于實際生活的應用題;與模向學科知識網絡交匯點有聯系的應用題;與現代科技發展、社會市場經濟、環境保護、實事政治等有關的應用題等。
第二、數學應用題的求解需要采用數學建模的方法,使所求問題數學化,即將問題轉化成數學形式來表示后再求解。
第三、數學應用題涉及的知識點多。是對綜合運用數學知識和方法解決實際問題能力的檢驗,考查的是學生的綜合能力,涉及的知識點一般在三個以上,如果某一知識點掌握的不過關,很難將問題正確解答。
第一層次:直接建模。
根據題設條件,套用現成的數學公式、定理等數學模型,注解圖為:
第二層次:直接建模。可利用現成的數學模型,但必須概括這個數學模型,對應用題進行分析,然后確定解題所需要的具體數學模型或數學模型中所需數學量需進一步求出,然后才能使用現有數學模型。
第三層次:多重建模。對復雜的關系進行提煉加工,忽略次要因素,建立若干個數學模型方能解決問題。
第四層次:假設建模。要進行分析、加工和作出假設,然后才能建立數學模型。如研究十字路口車流量問題,假設車流平穩,沒有突發事件等才能建模。
三、建立數學模型應具備的能力。
從實際問題中建立數學模型,解決數學問題從而解決實際問題,這一數學全過程的教學關鍵是建立數學模型,數學建模能力的強弱,直接關系到數學應用題的解題質量,同時也體現一個學生的綜合能力。
1提高分析、理解、閱讀能力。
2強化將文字語言敘述轉譯成數學符號語言的能力。
3增強選擇數學模型的能力。
4加強數學運算能力。
數學應用題一般運算量較大、較復雜,且有近似計算。有的盡管思路正確、建模合理,但計算能力欠缺,就會前功盡棄。所以加強數學運算推理能力是使數學建模正確求解的關鍵所在,忽視運算能力,特別是計算能力的培養,只重視推理過程,不重視計算過程的做法是不可取的。
數學建模論文大全(16篇)篇九
高校數學教育是高等教育的基礎學科,占據重要的一席之地。如何改變學生對數學枯燥乏味的學習狀態,讓學生輕松愉快地參與到數學學習中,是當前高校數學教學者面臨的一個重要課題。在高校數學教學中開展數學建模競賽,不僅能培養學生的創新思維,還能有效提高提高學生的創新能力、綜合素質和對數學的應用能力。本文對高校開展數學建模競賽與創新思維培養進行了分析闡述,并對此進行了一定的思考。
數學建模是一種融合數學邏輯思想的思考方法,通過運用抽象性的數學語言和數學邏輯思考方法,創造性的解決數學問題。當前很多高校中開始引入數學建模思想來加強學生創新能力的培養,可以使學生的邏輯思維能力和運用數學邏輯創新解決問題的能力得到提升。數學建模競賽起源于1985年的美國,幾年后國內幾所高校數學建模教師組織學生開始參與美國的數學建模大賽,促進了數學建模思維的快速發展。直到1992中國首屆數學建模大賽召開,而后一發不可收拾,至今仍以每年20%左右的速度增長,呈現一派繁榮景象。
2.1數學建模競賽自主性較強。自主性首先體現在在數學建模過程中學生可以根據自己的建模需要通過一切可以利用的資源、工具來進行資料查閱和收集,建模比賽隊員可以根據自己的意見和思維進行靈活自由解答,形式不拘一格。其次體現在數學建模競賽的組織形式呈現多元化特點,組織制度上也較為靈活多樣,數學建模主要側重于分析思想,沒有標準答案可以參考分享。2.2建模隊伍呈日益燎原之勢。1992年首屆中國數學建模大賽開展以來,其影響力與日俱增,高校和社會各界對數學建模頗為重視,參賽隊伍、參賽學生的質量一直處于上升狀態,數學模型也日漸合理科學,學生團隊在國際數學建模大賽中屢創驕人戰績。2.3組織培訓日益加強。數學建模競賽對學生數學知識的掌握及靈活運用、口套表達、語言邏輯思維、綜合素質都有著非常高的要求,因此高校遴選參賽選手都投入了很大的精力,組織培訓的時間很長,培訓內容也很豐富,為數學建模競賽取得好成績奠定了堅實的基礎。
3.1學生的團隊協作能力和意識得到增強。數學建模競賽的團隊組織形式活潑自由,通常采用學生組隊模式開展,數學建模競賽隊伍形成一個團結戰斗的整體,代表著不僅僅是學校的聲譽,還一定程度上展示著國家的形象。經過長時間的培訓,對數學模型的研究和分析,根據學生訓練中的優勢和特長,進行合理科學的小組分工,讓學生快速高效地完成整個數學建模,在建模過程中學生統籌協作、密切配合,發揮各自的優勢和長處,確保數學建模取得最大效用,學生的團隊協作能力和意識得到鍛煉,責任感和榮譽感進一步增強,通過建模競賽彰顯團隊的合作能力和中國數學建模方面的發展。
3.2高校學生參賽積極性高漲。近年來大學生數學建模競賽的參與性高漲,參賽人數保持著20%左右的上漲幅度,參賽成績也較為理想,創新能力得到了較好的鍛煉和培養,綜合素質得到提高,數學的應用能力提升。
3.3高校學生數學邏輯思維能力和靈活運用知識的能力得到提升。數學建模競賽充滿著刺激性和挑戰性,是學生各方面綜合能力的一個展示。在數學建模競賽中,學生不僅要需要扎實豐厚的數學知識儲備,還需要具備清晰的數學邏輯思維和語言表達能力。同時要有機智的臨場發揮能力和應變能力,不怯場、不驚慌,有充分的思想準備,能輕松應對其他參賽選手和評委的提問,能組織條理性、邏輯性的語言進行表述,將參賽小組數學模型的含義和設計清晰完整的傳達給評委和其他參賽選手。在這個過程中,無疑會使學生的數學邏輯思維和語言表達能力及靈活運用數學知識的能力有一個較大的提升。
3.4學生的自學能力和意志力得到鍛。數學建模競賽對參賽學生的綜合知識和能力要求非常高,難度也非常大,需要與眾不同的智慧和能力。可以說數學建模過程中,有許多高深的知識難于理解,有的日常學習過程中根本接觸不到,需要數學建模參賽小組成員的互助合作,充分發揮各自優勢和平時培訓中的知識積淀,通過借助大量的工具書及參考資料,加上團隊的`理解分析去摸索,探尋數學建模所需要的基礎知識,無疑這對學生的自學能力培養是一個很好的鍛煉。另外,搜尋資料、學習數學建模知識的過程是枯燥乏味的,需要長久的耐力和信心,無疑這對學生的堅毅不畏難的品質是一個很好的培養和磨煉。
3.5創新思維與能力得到有效提升。經過艱苦復雜的數學建模訓練,高校學生信息收集與處理復雜問題的能力得到培養鍛煉,學生數量觀念得到增強,能夠養成敏銳觀察事物數量變化的能力,數學的嚴謹推導也使學生養成認真細心、一絲不茍的習慣,邏輯思維能力得到提高,思路變得更加富有條理性,能靈活地處理各種復雜問題,有效解決數學疑難,數學理論能更好第應用于實踐,數學素養進一步得到提升。
綜上所述,高校學生數學建模競賽的開展,能較高地提升學生的創新能力和綜合素養,團隊合作能力、競爭能力、表達交流能力、邏輯思維能力、意志品質能力等都能得到良好的塑造。高校要積極組織和開展數學建模競賽,使學生的綜合素質得到發展和鍛煉。學校用重視和鼓勵全體學生參與數學建模競賽,通過競賽實現學生各方面能力尤其是創新能力的培養。
[1]趙剛.高校數學建模競賽與創新思維培養探究[j].才智,20xx(06).
[2]陳羽,徐小紅,房少梅.數學建模實踐及其對培養學生創新思維的影響分析[j].科技創業月刊,20xx(08).
[3]趙建英.數學建模競賽對高校創新人才培養的促進作用分析[j].科技展望,20xx(08)5.
[4]畢波,杜輝.關于高校開展數學建模競賽與創新思維培養的思考[j].中國校外教育,20xx(12).
數學建模論文大全(16篇)篇十
數學是在實際應用的需求中產生的,要描述一個實際現象可以有很多種方式,為了實際問題描述的更具邏輯性、科學性、客觀性和可重復性,人們采用一種普遍認為比較嚴格的語言來描述各種現象,這種語言就是數學。數學建模則是架于數學理論和實際問題之間的橋梁,數學模型是對于現實生活中的特定對象,根據其內在的規律,做出一些必要的假設,為了一個特定目的,運用數學工具,得到的一個數學結構,用來解釋現實現象,預測未來狀況。因此,數學建模就是用數學語言描述實際現象的過程。
大部分的獨立院校的數學建模工作純在一定的問題,主要體現在以下幾個方面:(一)學生方面的問題。獨立院校的大部分學生的數學功底差,對數學的學習興趣不大,普遍認為數學的學習對自身的專業的幫助不大。從而更不愿意接觸與數學有關的數學建模,對數學建模競賽的興趣不大。在獨立院校中,參加數學建模競賽的大都是低年級的學生,而這些學生的數學知識結構還不完整,他們往往參加了一屆數學競賽并未獲得獎項后就不愿意再次參加。而高年級的同學忙于其他的就業、考研等壓力,無暇參加數學建模競賽的培訓。(二)教資方面的問題。首先。傳統的教學是知識為中心、以教師的講解為中心。數學建模的教學要求教師以學生為中心,培養學生學會學習的能力,發展學生的創新能力和創造能力。獨立院校外聘的老師常常對獨立院校的學生不夠了解,這直接影響到教學成果。其次,數學建模涉及的知識面廣,不但包括數學的各個分支,還包含了其他背景的專業知識。獨立院校的教師一部分是才從大學畢業不久的研究生,他們對于數學建模教學和競賽的培訓經驗不足,科研能力不是很強,對數學的各個分支的把控能力不強,對其他專業的了解不夠全面。(三)教學實施方面的問題。大學生數學建模競賽的目的決不僅僅是獲獎,更重要的是通過參加大學生數學建模競賽活動,促進高校數學教學改革,起到培養全體學生能力、提高全體學生素質的作用。獨立院校數學建模教學存在很多的問題。首先,大學數學建模教育在獨立院校中的普及性不夠。數學建模的宣傳力度不大,課程大多開在大一和大二的跨選課,這個時候學生的數學知識結構還不完整。其次就是教材的選取,數學建模的相關教材大都是為了數學建模競賽而編寫的,對于獨立院校的學生來說,這些教材的難度系數大,涉及的知識面廣,遠遠超過了學生的接受能力。
(一)讓學生了解數學建模,培養學習數學建模的興趣。數學建模課程的開設有利于培養學生運用數學具體解決實際問題的能力,讓學生發現學習數學的用處,改變學生學習數學的態度,提高學習數學的能力,認識到數學的意義和價值。獨立院校學生的數學基礎雖然比較差,但是學生的動手能力強。學校可以在多開展數學建模的講座和課程,讓學生了解數學建模。同時多向學生宣傳數學建模的成果。(二)在教學內容中滲透數學建模思想和方法。1.在日常數學教學中滲透數學建模的思想方法。傳統的數學教學重視的是知識的培養和傳輸,而忽視的是實際應用能力。教師的教學目標是使學生掌握數學理論知識。一般的教學方法是:教師引入相關的的基本概念,證明定理,推導公式,列舉例題,學生記住公式,套用公式,掌握解題方法與技巧。學生往往學習了不少的純粹的數學理論知識,卻不知道如何應用到實際問題中。數學建模課程與傳統數學課程相比差別較大,學校開設的數學建模跨選課及數學建模培訓班,對培養學生觀察能力、分析能力、想象力、邏輯能力、解決實際問題的能力起到了很好的作用。由于學校開設的數學建模課程大多是選修課程,課時較少,參選的學生也有限,數學建模的作用不能很好的向學生傳輸。高等數學中的很多內容都與數學建模的思想有關,因此,在大學數學課程的教學過程中,教師應有意識地結合傳統的數學課程的特點,將數學建模的思想和內容融入到數學課堂教學中。這樣既可以激發學生的學習興趣,又能很好的將突出數學建模的思想。2.數學建模與專業緊密聯系,發揮數學對專業知識的服務作用。數學建模與專業知識的結合,不僅可以讓學生認識到數學的重要作用,在專業知識學習中的地位,還可以培養學習數學知識的興趣,增強數學學習的凝聚力,同時加深對專業知識的理解。通過專業知識作為背景,學生更愿意嘗試問題的研究。在學習中遇到的專業問題也可以嘗試用數學建模的思想進行解決。這有利于提高學生的綜合能力的培養。3.分層次進行數學建模教育。大體說來獨立院校的數學建模課程的開設應該分成兩個階段:(1)第一階段:大學一年級,在這個階段,大部分學生對數學建模沒有了解,這時候適合開設一些數學建模的講座和活動,讓學生了解數學建模。同時,在日常的數學教學中選擇簡單的應用問題和改變后的數學建模題目,結合自身的專業知識進行講解,讓學生了解數學建模的一般含義。基本方法和步驟,讓學生具備初步的建模能力。(2)中級層次:大學二、三年級。在這個階段,學生基本具備了完整的數學結構,具有了基本的建模能力。這個時候應該開設數學建模專業課程,讓學生處理比較復雜的數學建模問題,讓學生自己去采集有用的信息,學會提出模型的假設,對數據和信息需進行整理、分析和判斷,并模型進行分析和評價,最終完成科技論文。
(一)提高數學教師自身水平。在數學建模教學過程中,教師扮演著重要的角色。教師水平的高低決定著數學建模教學能否達到預期的目的。數學建模的教學,不僅要求教師具備較高的專業水平,還要求教師具備解決實際問題的能力和豐富的數學建模實踐經驗。而獨立院校的教師部分教師是才畢業不久的研究生,缺乏實踐經驗。這就對獨立院校的的數學建模教學工作產生了很大的障礙。為了提高教師的水平,可以多派青年教師進行專業培訓學習和學術交流,參加各種學術會議、到名校去做訪問學者等等。同時可以多請著名的數學專家教授來到校園做建模學術報告,使師生拓寬視野,增長知識,了解建模的新趨勢、新動態。青年教師還需要依據特定的教學內容、教學對象和教學環境對自己的教學工作作出計劃、實施和調整以及反思和總結。青年數學教師還必須更新教育理念,改變傳統的教學理念。只有不斷創新,努力提高自身素質,才能適應新的形勢,符合建模發展的要求。(二)選取合適的教材。數學建模教材使用也存在諸多不足之處。絕大部分高校教學建模課程采用的是理工類專業數學建模教材。這些教材主要涵蓋的數學模型的難度系數大。而獨立院校的學生的基礎薄弱,無法接收這些模型。在教學過程中,教師可以將具體的案例或是歷年的數學建模題目做為教學內容。通過具體的建模實例,講解建模的思想和方法。一邊講解,一邊讓學生分組討論,提出對問題的新的理解和對魔性的認識,嘗試提出新的模型。(三)豐富建模活動。全面開展數學建模活動是數學建模思想的最重要的形式,它既使課內和課外知識相互結合,又可以普及建模知識與提高建模能力結合,可以培養學生利用數學知識分析和解決實際問題的能力,可以有效地提升了學生的數學綜合素質。學校可以定期的開展數學建模宣傳活動,擴大數學建模的知名度。學校還可以邀請有經驗的專家和獲獎學生開展建模講座,提高對數學建模的重視,積極的組織建模活動。實踐證明,只有根據獨立院校的自身特點和培養目標,對數學建模課程的教學不斷進行改革,才能解決獨立院校數學建模課程教學的問題,才能真正的讓學生喜歡上數學,喜歡上數學建模。
[1]李大潛.將數學建模思想融入數學主干課程[j].中國大學教育.20xx.
[2]賈曉峰等.大學生數學建模競賽與高等學校數學改革[j].工科數學.20xx:162.
[3]融入數學建模思想的高等數學教學研究[j].科技創新導報.20xx:162.
作者:李雙單位:湖北文理學院理工學院
數學建模論文大全(16篇)篇十一
摘要:在新課改以后,要求教師要在教學中重視學生的主體地位,提升學生學習興趣,培養他們的自主學習能力。本文從初中數學教學過程中數學建模入手,對如何將數學建模運用到學生解題過程中進行了分析。
數學建模是指利用數學模型的形式去解決實際中遇到的問題,換句話說,就是利用數學思維、數學方法解決各種數學問題。數學建模是在新課程改革后出現的新概念,經過一段時間的觀察我們可以發現,數學建模的方法能夠有效的提高學生的學習興趣,培養學生的數學能力。這種方式能夠將復雜的數學問題利用簡單的方式找到解決方案,是提高初中數學課堂效率及課堂質量的有效手段。初中數學是初中學習中的重要課程之一,也是培養學生數學思維的重要階段。可以說,初中數學的學習是學生學習數學的關鍵,對今后的學習起到極大的影響。因此,對于初中數學教師來說,不斷的完善教學手段,提高數學課堂質量是教學工作中的重中之重。而數學建模就是為了解決數學在生活中的實際問題,能夠讓學生感受到數學本身的魅力,培養他們的數學思維,提高數學學習能力,從而讓初中數學教學質量也得到大幅度的提升。初中數學與數學建模之間有著密不可分的作用,兩者相互聯系、相互促進,如何有效的.將數學建模運用在初中數學教學過程中,是每個初中數學教師都值得思考的問題。
數學建模是為了解決數學中遇到的問題,數學本身特別是初中數學也是一門較貼近學生生活的學科。因此在數學學習中,教師要首先培養學生的數學學習意識,讓他們感受到數學與生活的緊密聯系,然后再引導學生用數學建模去解決遇到的問題。在這一過程中,數學教師要注意以下兩個問題:(一)在教學中一定要貼近學生的生活,課堂中所提出的問題也必須要符合生活實際,讓學生對所學內容感到親切。積極引導學生利用多種方式解決同一問題,尤其是利用數學建模的方式,以達到培養他們的數學思維以及想象能力的目的。(二)在學生進行數學建模的過程中要利用多鼓勵的方式調動他們對數學學習的積極性,讓他們在數學建模中獲得成就感,增加自信心,以此來提高學生在今后學習中使用數學建模方法的熱情。
二、提高學生想象力,用數學建模簡化問題。
對于初中生來說,他們的思維與其他年齡段相比極其活躍,擁有了豐富的想象力。在數學學習中,如果能將想象力與數學學習結合在一起,一定會得到意想不到的效果。教師可以根據初中生這一特點,提高他們的想象力,然后再引導他們利用數學建模解決問題,讓題目簡單化。具體來說,就是在面對復雜的數學問題時,教師可以先為學生創建教學情境,以這樣的方式提高學生的學習興趣,讓他們愿意主動去深入的研究遇到的題目。之后教師再去對他們進行引導,讓他們能夠理解題目中所提問題的含義,并能夠運用他們的想象能力思考解決問題的方式。最后再引導他們進行數學建模,解決問題。這樣的方式充分的利用了學生的想象能力,將所需解決的問題簡單化。
三、選擇合適的題目作為建模案例。
在數學建模過程中,教師也要時刻牢記題目應該貼近學生的生活,符合實際,并且具有一定的趣味性,讓他們有興趣投入到數學建模的過程中去,然后再反復練習之后達到提高他們建模能力的目的。在選擇數學建模案例時教師主要應該注意以下兩點:首先,教師在選擇建模案例時要盡量選擇比較典型的問題,能夠讓學生在學習了該題目以后掌握這一類的解題方法,達到初中數學教學的目的。所以,這就需要教師對題目進行深入的分析,看是否在擁有趣味性、真實性的同時符合教學要求。其次,題目最好能夠擁有可變性,教師能夠通過對題目中已知條件的改變讓學生進行不同方面的建模練習,以此提高他們數學建模的能力。
四、引導學生主動進行數學建模。
在教師經過反復的教學后,學生都已經擁有了基本的數學建模知識,了解了數學建模過程,并且能夠在解題過程中簡單的使用數學建模。此時,教師在教學中就可以引導學生利用數學建模解決數學題目了。引導學生用數學建模方法解決數學問題,就要在解題過程中多對學生進行這一方面的鼓勵,讓他們提高建模信心。在這一過程中,教師還可以嘗試讓學生之間利用合作的方式讓他們進行數學建模方法的探討,并在探討的過程中吸取他人的經驗,提高自己數學建模水平,同時這樣的方式能夠讓數學建模深入到每一個學生的心中,逐漸影響每一個學生的解題思路,讓他們能夠在解題過程中熟練運用建模的方式,提高解題能力。數學建模的方法能夠有效的改變過去的傳統教學思路,增加學生對數學的學習興趣,提高數學解題能力。這種教學方法對于初中數學教師來說,值得不斷的探討研究,并應用在教學中,以此提高數學課堂的教學效率和教學質量。
數學建模論文大全(16篇)篇十二
隨著我國高等教育的發展,高校招生規模越來越大,而生源質量較低,特別是獨立學院院校。就我校而言,絕大多數專業都開設了數學類課程。但在教學中,普遍認為理論性太強,與實際脫節嚴重,不能引起學生的學習興趣。并且,傳統教學忽視了學生用數學解決實際問題的能力,所以,進行數學教學改革勢在必行。數學建模可培養學生利用數學知識解決實際問題的能力,通過數模方法對實際問題進行巧妙處理,讓學生體會到數學不僅能傳播理論知識和求解一些數學問題,還可將其應用到實際問題中,讓學生看到一些實際模型的來龍去脈,提高學生的學習積極性。數學建模是培養學生綜合科學素質和創新能力的一個極好載體,而且能充分考驗學生的洞察能力、創新能力、聯想能力、使用當代科技最新成果的能力等。學生們同舟共濟的團隊合作精神和協調組織能力,以及誠信意識和自律精神的塑造,都能得到很好的培養。技能技術的掌握和團隊合作精神對于獨立學院學生將來進入社會十分重要,這也是衡量獨立學院辦學成功與否的一個方面。因此,獨立學院的人才培養目標定位,既要達到本科生應具備的理論基礎,又要有相對突出的專業技能,應培養“應用型本科”人才。因而,獨立學院的數學課堂上應該多方面滲透數學模型的思想。
(一)人才培養創新的需要。
根據獨立學院人才培養目標和實際情況,有針對性的加大基礎課和實踐環節教學的'比重,側重于實踐能力的培養,在專業課程體系中適當增加實驗、實踐教學內容,加強與社會實體的聯系。力求培養出具有實際操作能力的高素質大學生。數學建模是將一個實際問題,對其作出一些必要的簡化與假設,將其轉化成一個數學問題,借助數學工具和數學方法精確或近似地解決該問題,并用數學結果解釋客觀現象、回答實際問題并接受客觀實際的檢驗。數學建模能彌補傳統數學教學在實際應用方面的不足,促進數學教師在現代化教學手段、教學模式方面的更新。數學建模有助于調動學生的學習興趣,在計算機應用能力、實踐能力和創新意識的培養方面都有著非常大的作用,以便學生將來能更好地適應工作崗位。
(二)高校教學改革的需要。
當今社會信息高度發達,競爭日益激烈,必須具備一定的創新意識和創新能力,否則很難適應社會信息時代的要求。傳統的教學模式是以課堂理論講授為主,學生絕大部分時間都集中學習書本知識,很少有機會接觸社會,也難做到學以致用。絕大多數課程都是教師的一言堂,考試也是以教師講課內容為主。學生忙于記錄和背誦而閑置其聰慧的頭腦。長期的灌輸式教學導致學生明顯缺乏學習的主動性,會聽從而不會質疑,更不會形成開創性的觀點,很難適應企事業單位動態的工作環境。數學作為一門傳統基礎學科,對獨立學院的學生來說,學習上有一定的難度。我們的教學應以“必需,夠用”為度。數學建模從形式到內容,都與畢業后工作時的條件非常相近,是一次非常好的鍛煉,學生通過自主的學習,把實際的問題轉化為數學理論解決,有助于學生創新能力的培養動手能力的提高,這也正是獨立學院院校應用型本科人才培養的方向。
(三)學生參加數學建模競賽的需要。
獨立學院學生思維活躍,且比較注重個人能力素質的提高。很多學生愿意在學校參加一些競賽來提高自己。全國大學生數學建模競賽尤其受學生重視,但仍有很多大學生不了解這類競賽,因此,在數學課堂上引入數學建模思想,學生既了解了數學建模,又對數學公式提起了興趣,還有助于獨立學院學生在全國大學生數學建模競賽中取得優異成績。
高等數學的作用表現在為各專業后續課程的學習提供必要的數學知識,培養各專業學生的數學思想與數學修養,全面提高大學生創新思維和應用能力。只有把數學建模思想融入數學教學中,才能調動學生學習數學的積極性,培養學生的創新能力,實現提高學生綜合分析問題能力的最終目標。
作者:崔瑋王文麗單位:中國地質大學長城學院信息工程系。
數學建模論文大全(16篇)篇十三
為了培養小學生良好的數學學習興趣,激發他們的數學潛能,教師需要采取必要的措施注重數學建模思想的有效培養,促進學生的全面發展。在制定相關培養策略的過程中,教師應充分考慮小學生的性格特點,提高數學建模思想培養的有效性。基于此,文章將從不同的方面對小學生數學建模思想的培養策略進行初步的探討。
作為小學數學教學中的重要組成部分,數學建模思想的滲透及相關教學活動的順利開展,有利于提高復雜數學問題的處理效率,保持數學課堂教學的高效性。要實現這樣的發展目標,增強小學生數學建模思想的實際培養效果,需要加強對學生動手實踐能力的培養,激發學生的更高興趣。建模的過程涉及問題表述、求解、必要解釋及有效驗證,在這四個環節中,可能會存在一定的問題,影響著數學教學計劃的實施。因此,教師需要利用學生動手實踐能力的作用,實現數學建模思想的有效培養,促使小學生能夠在數學建模過程中享受到更多的快樂。比如,在講解“認識角”知識的過程中,某些學生認為邊越長角度也越大。為了使學生能夠對其中的知識點有更加正確而全面的認識,教師可以通過在黑板上設置一些能夠活動的三角板,讓學生親自動手操作,以此得出角與邊長的正確關系,為后續教學計劃的實施打下堅實的基礎。通過這種教學方法的合理運用,可以激發出學生們在數學建模學習中的更高興趣,豐富他們的想象力,從而使他們對數學建模思想有一定的了解,在未來學習過程中能夠保持良好的`數學建模能力。
通過對小學階段各種數學實踐教學活動實際概況的深入分析,可知構建良好的數學模型有利于加深學生對各知識(福建省莆田市秀嶼區東嶠前江小學,福建莆田351164)點的深入理解,增強其主動參與數學建模教學活動的積極性。因此,為了使小學生數學建模思想培養能夠達到預期的效果,教師需要結合實際的教學內容,建立必要的數學參考模型,提升學生對數學建模思想的整體認知水平。比如,在講授“異分母分數加減法”這部分知識的過程中,可以設置“0.8千克+300克”“1.6千克-400克”等問題,向學生提問是否可以直接計算,并說出原因。當學生通過對問題的深入思考,總結出“單位不同不能直接計算”的結論后,繼續向學生提問小數計算中為什么每一位都要對齊,實現“計數單位統一后才能計算”這一數學模型的構建。在這樣的教學過程中,學生可以加深對知識點的理解,實現數學建模思想的有效培養。
加強小學生數學建模思想的有效培養,需要在具體的教學活動開展中注重對數學思想的靈活運用,增強相關模型構建的可靠性,促使學生在長期的數學學習中能夠不斷提高自身的數學能力,運用各種數學知識處理實際問題。比如,在“角的度量”這部分內容講解的過程中,為了提高學生對角的分類及畫角相關知識點的深入理解,教師可以將所有的學生分為不同的小組,讓學生們通過小組討論的方式,對角的正確分類及如何畫角有一定的了解,并讓每個小組代表在講臺上演示畫角的過程。此時,教師可以通過對多媒體教學設備的合理運用,利用動態化的文字與圖片對其中的知識要點進行展示,確保學生們能夠在良好的教學模式中提升自身的認知水平,并在不斷的思考過程中逐漸形成良好的創造性思維,強化自身的創新意識。比如,在講解“圖形變換”中的軸對稱、旋轉知識點的過程中,教師應通過對學生的正確引導,運用三角板、圓柱等教學輔助工具,讓學生從不同的角度對各種軸對稱圖形、旋轉后得到的圖形進行深入思考,提高自身數學建模過程中的創新能力,從不同的角度深入理解圖像變換過程,對這部分內容有更多的了解。因此,教師應注重小學生數學建模思想培養中多方位思考方式的針對性培養,提高學生的創新能力,優化學生的思維方式,全面提升小學數學建模教學水平。
總之,加強小學生數學建模思想培養策略的制定與實施,有利于滿足素質教育的更高要求,實現對小學生數學能力的有效鍛煉,確保相關的教學計劃能夠在規定的時間內順利地完成。與此同時,結合當前小學數學教育教學的實際發展概況,可知靈活運用各種科學的數學建模思想培養策略,有利于滿足學生數學建模學習中的多樣化需求,為相關教學目標的順利實現提供可靠的保障。
[1]童小艷.小學數學教學中培養學生建模思想的策略[j].學子(教育新理念),20xx(6).
[2]白寧.先學而后教——小學生數學建模思想培養的捷徑[j].數學學習與研究,20xx(16).
數學建模論文大全(16篇)篇十四
摘要:在新課改以后,要求教師要在教學中重視學生的主體地位,提升學生學習興趣,培養他們的自主學習能力。本文從小學數學教學過程中數學建模入手,對如何將數學建模運用到學生解題過程中進行了分析。
數學建模是指利用數學模型的形式去解決實際中遇到的問題,換句話說,就是利用數學思維、數學方法解決各種數學問題。數學建模是在新課程改革后出現的新概念,經過一段時間的觀察我們可以發現,數學建模的方法能夠有效的提高學生的學習興趣,培養學生的數學能力。這種方式能夠將復雜的數學問題利用簡單的方式找到解決方案,是提高小學數學課堂效率及課堂質量的有效手段。小學數學是小學學習中的重要課程之一,也是培養學生數學思維的重要階段。可以說,小學數學的學習是學生學習數學的關鍵,對今后的學習起到極大的影響。因此,對于小學數學教師來說,不斷的完善教學手段,提高數學課堂質量是教學工作中的重中之重。而數學建模就是為了解決數學在生活中的實際問題,能夠讓學生感受到數學本身的魅力,培養他們的數學思維,提高數學學習能力,從而讓小學數學教學質量也得到大幅度的提升。小學數學與數學建模之間有著密不可分的作用,兩者相互聯系、相互促進,如何有效的將數學建模運用在小學數學教學過程中,是每個小學數學教師都值得思考的問題。
數學建模是為了解決數學中遇到的問題,數學本身特別是小學數學也是一門較貼近學生生活的學科。因此在數學學習中,教師要首先培養學生的數學學習意識,讓他們感受到數學與生活的緊密聯系,然后再引導學生用數學建模去解決遇到的問題。在這一過程中,數學教師要注意以下兩個問題:(一)在教學中一定要貼近學生的生活,課堂中所提出的問題也必須要符合生活實際,讓學生對所學內容感到親切。積極引導學生利用多種方式解決同一問題,尤其是利用數學建模的方式,以達到培養他們的數學思維以及想象能力的目的。(二)在學生進行數學建模的過程中要利用多鼓勵的方式調動他們對數學學習的積極性,讓他們在數學建模中獲得成就感,增加自信心,以此來提高學生在今后學習中使用數學建模方法的熱情。
二、提高學生想象力,用數學建模簡化問題。
對于小學生來說,他們的思維與其他年齡段相比極其活躍,擁有了豐富的想象力。在數學學習中,如果能將想象力與數學學習結合在一起,一定會得到意想不到的效果。教師可以根據小學生這一特點,提高他們的想象力,然后再引導他們利用數學建模解決問題,讓題目簡單化。具體來說,就是在面對復雜的'數學問題時,教師可以先為學生創建教學情境,以這樣的方式提高學生的學習興趣,讓他們愿意主動去深入的研究遇到的題目。之后教師再去對他們進行引導,讓他們能夠理解題目中所提問題的含義,并能夠運用他們的想象能力思考解決問題的方式。最后再引導他們進行數學建模,解決問題。這樣的方式充分的利用了學生的想象能力,將所需解決的問題簡單化。
三、選擇合適的題目作為建模案例。
在數學建模過程中,教師也要時刻牢記題目應該貼近學生的生活,符合實際,并且具有一定的趣味性,讓他們有興趣投入到數學建模的過程中去,然后再反復練習之后達到提高他們建模能力的目的。在選擇數學建模案例時教師主要應該注意以下兩點:首先,教師在選擇建模案例時要盡量選擇比較典型的問題,能夠讓學生在學習了該題目以后掌握這一類的解題方法,達到小學數學教學的目的。所以,這就需要教師對題目進行深入的分析,看是否在擁有趣味性、真實性的同時符合教學要求。其次,題目最好能夠擁有可變性,教師能夠通過對題目中已知條件的改變讓學生進行不同方面的建模練習,以此提高他們數學建模的能力。
四、引導學生主動進行數學建模。
在教師經過反復的教學后,學生都已經擁有了基本的數學建模知識,了解了數學建模過程,并且能夠在解題過程中簡單的使用數學建模。此時,教師在教學中就可以引導學生利用數學建模解決數學題目了。引導學生用數學建模方法解決數學問題,就要在解題過程中多對學生進行這一方面的鼓勵,讓他們提高建模信心。在這一過程中,教師還可以嘗試讓學生之間利用合作的方式讓他們進行數學建模方法的探討,并在探討的過程中吸取他人的經驗,提高自己數學建模水平,同時這樣的方式能夠讓數學建模深入到每一個學生的心中,逐漸影響每一個學生的解題思路,讓他們能夠在解題過程中熟練運用建模的方式,提高解題能力。數學建模的方法能夠有效的改變過去的傳統教學思路,增加學生對數學的學習興趣,提高數學解題能力。這種教學方法對于小學數學教師來說,值得不斷的探討研究,并應用在教學中,以此提高數學課堂的教學效率和教學質量。
數學建模論文大全(16篇)篇十五
培養應用型人才是我國高等教育從精英教育向大眾教育發展的必然產物,也是知識經濟飛速發展和市場對人才多元化需求的必然要求。隨著科學技術的不斷發展,各學科各領域對實際問題的研究日益精確化與定量化,數學在科學研究與工程技術中的作用不斷增強,其應用的范圍幾乎覆蓋了所有學科分支,滲透到社會生活中的各個領域。前蘇聯數學家亞歷山大洛夫曾說過,“數學在其它科學中,在技術中,在全部生活實踐中都有廣泛的應用”。1993年,王梓坤院士發表的著名報告《今日數學及其應用》中也深刻指出:“現代世界國家間的競爭本質上是高技術的競爭,而高技術本質上是一種數學技術。”數學是一門技術已經成為人們的共識。數學技術離不開數學建模,數學建模是把數學作為工具,并應用它解決實際問題的一種活動,它是一個跨學科、跨專業、綜合性和應用性都非常強的過程,是數學應用的必由之路,是聯系數學與實際問題的橋梁,是數學在各個領域廣泛應用的媒介。因此,數學建模的過程是一個全而培養學生綜合素質、提高學生各種能力的過程,數學建模是培養生產一線應用型人才的一條重要途徑。
應用型人才是將專業知識和專業技能應用于社會實踐的專門人才是熟練掌握社會生產或社會活動一線的基礎知識和基本技能,主要從事一線生產的技術或專門人才社會對應用型人才的基本要求是具有基礎扎實,知識而寬,應用能力強,素質高,有較強的創新精神和團隊合作精神。他們的突出特點是既具有寬廣的知識而和深厚的基礎理論,又能將所學知識應用于本行業相關技術領域,適應產業發展對應用型人才市場需求的不斷變化,還有接受繼續教育的基礎條件和進一步獲取新知識的基本能力和擴展與職業相關的學科知識能力。
隨著高等教育的不斷擴招,高等教育的大眾化趨勢已越來越明顯,在這種背景下,傳統的“研究型”、“學術型”人才培養模式受到了嚴峻的挑戰,因此,一些發達國家率先提出了“發展應用型大學”,“培養應用型人才”的口號。德國早在20世紀70年代就成立了應用科技大學,其應用型人才的培養特色鮮明,深受歡迎。美國的工程教育,英國的技術學院,日本的短期大學都以培養應用型人才而著稱。近年來,我國高等院校對應用型人才的培養取得了一定的進展,但仍然存在認識上的不足,培養方案和措施仍有許多不盡如人意的地方,應用型人才的培養模式還有待于進一步探索。通過多年的實踐和探索,根據應用型人才的特點和社會日益數字化,對應用型人才的要求以及數學在各行各業中的廣泛應用、數學建模在應用型人才培養中具有不可替代的重要作用。
數學建模就是用數學語言、方法近似地刻畫要解決的實際問題,對于已建立的模型采用推理、證明、數值計算等技術手段及相應的數學軟件求解,并利用所得的結果擬合實際問題。數學建模在應用型人才培養中的作用主要體現在以下幾個方面:
由于實際問題的'復雜性,在數學建模過程中要涉及到大量的數據收集和對數據的分析與處理,一個完整的建模過程一般要經歷模型的假設、模型的建立與求解、算法的設計和計算機實現、對結果的分析與檢驗并將所得的結果模擬實際問題等幾個階段。這些過程只靠個人的力量在有限時間內是很難完成的,這就注定了數學建模是一個團隊的集體行為,需要有師生之間、學生之間以及學生與社會之間的交流與合作。因此數學建模有利于提高學生的團隊合作精神,而團隊合作精神又是社會對應用型人才的基本要求。
數學建模所面臨的數據是雜亂無章的,這就要求學生對這些數據進行去粗取精,去偽存真,歸納、提煉、整理、加工和總結,還需要對一些已知條件進行符號化和量化,然后從中抽象出恰當的數學關系,從而組建一定的數學模型,再用所學的數學理論和方法去求解數學模型。在對實際問題中的數據進行加工和整理過程中,為使問題簡化,有些因素是可以忽略的,但有些因素不能忽略,究竟哪些因素可以忽略、哪些因素不能忽略并沒有一定的范式,這要根據建模者對實際問題的理解、研究問題的目的以及數學背景來完成這個過程,應該說這是一個創造性的過程。另外,數學模型是對實際問題的近似刻畫,為了使建立的數學模型盡可能完美地表達實際問題,又使模型易于求解,需要對模型進行不斷的改進和不斷的完善,這就要求學生不斷對問題進行深入的了解,深入到知識的更深層面,這樣又會產生新的疑問,這個過程多次循環們復,學生的創新能力將不斷得到加強。創新能力也是社會對應用型人才的基本要求。
一個完整的數學建模過程是綜合運用知識和能力,解決實際問題的過程。這不僅需要學生有較好的數學基礎和嚴密的邏輯推理能力,還要求學生對問題的實際背景有一定的了解,要求學生有廣博的知識和深厚的專業基礎,并能對這些知識進行融會貫通。數學建模面臨的數據}i-.}i是龐大而復雜的,對數據的處理過程是一個分析與綜合,抽象與概括,比較與類比,系統化與具體化的過程。在這個過程中,學生的應變能力和多角度分析,多方位思考能力不斷得到提高,綜合素質不斷得到加強。綜合素質和能力是應用型人才的基本特征和社會對應用型人才的起碼要求。
從實際問題中抽象出來的數學模型一般很復雜,因此模型的求解一般很困難,甚至無法求出模型的解析解,即使能求出模型的解析解,由于其復雜性而無多大的應用價值。所以數學模型的求解通常需要編寫算法,運用某些數學軟件利用計算機求其數值解,這就要求學生有較強的數學軟件應用能力和對計算機的實際操作能力。在操作的過程中,學生的動手能力和實踐能力自然而然得到提高。另外在數學建模中,需要進行調查研究,需要對有關的數據進行廣泛的采集和補充,這就是應用型人才培養中所強調的實踐性。
數學建模本身就是綜合運用知識,解決實際問題的過程。數學建模中的很多典型案例,如“最優捕魚策略”,“投資的收入和風險”,“車燈線光源的優化設計”等就較好地突現了知識的應用性。數學建模是數學應用的必由之路,是聯系數學與實際問題的橋梁。一方面數學建模需要用數學語言、方法近似地刻畫要解決的實際問題,另一方面數學建模需要利用所得的結果擬合實際問題,所有這些都與應用型人才的突出特點和社會對應用型人才的要求是一致的。
數學建模需要學生親自參與問題的研究與探索,數據的收集和補充需要學生的積極參與,數據的處理和模型的建立需要學生的主動參與,模型的求解需要學生獨立完成。數學建模一般需要綜合運用多方面的知識,需要了解相關問題的背景材料,需要對相關的數據進行合理的取舍和有效的篩選,有些知識和相關的資料需要學生自己去查詢,所有這些都為學生的自主學習提供了一個良好的“下臺。另外,數學建模需要用自己的語言描述問題的解決過程,需要廣泛的交流與合作,還需要進行論文的寫作等等,這些都對學生語言表達能力的提高具有重要的作用。應用型人才的一個突出特點就是具有接受繼續教育的基礎條件和進一步獲取新知識的基本能力和擴展與職業相關的學科知識能力,而自學能力和語言表達能力為進一步獲取新知識等能力提供了良好的基礎。
應該說,數學建模的作用是多方面的,通過數學建模的訓練,學生獲得了參與研究探索的體驗,培養了收集、分析和利用信息的能力,學會了分享與合作,鍛煉了學生的意志力、洞察力、想象力、自學能力、語言的翻譯和表達能力以及綜合應用專業知識解決實際問題的能力與分析問題、解決問題的能力,所有這一切都是應用型人才培養所要達到的目標,也是與應用型人才培養模式的四個基本點是一致的。因此數學建模能將應用型人才的突出特征和社會對應用型人才的要求體現得淋漓盡致,它在應用型人才的培養中具有不可替代的重要作用。
1.馬克思有一句名言,“一門科學只有成功地應用了數學時,才算真正達到了完善的地步”。不論是自然科學還是社會科學都需要數學,都蘊含數學。一門科學要成功地應用數學,必須對這門學科中的問題建立數學模型。因此,建議高等院校的各個專業都要不同程度地開設數學建模課程,并根據專業的不同要求選擇合適的數學建模內容,真正做到“人人學有用的數學,人人做有用的數學,人人用有用的數學”。
2.數學建模課程應增加實訓內容,數學建模的學習應以實訓內容為主。教師應根據學生的具體情況,女排布置具有綜合性、開放性、靈活性和趣味性的實訓題目,讓學生自己進行調查研究,自己收集數據、分析數據和處理數據,模型的建立和求解要以學生為主體,并以論文的形式提交給教師,教師提供實時指導和幫助,對建模的結果進行有的放矢的點評,并將實訓內容作為學生期末考評的主要內容和重要依據。
3.舉辦多種形式的數學建模競賽,豐富數學建模的教學內容和教學方式,引進案例教學和專題講座,通過對典型案例的深入剖析,激發學生的學習興趣和積極性,培養學生的數學建模思想和堅忍不拔的毅力,聘請專家對一些典型問題進行專題講座。
數學建模論文大全(16篇)篇十六
使學生的綜合應用能力、實踐創新能力和綜合應用素質等多方面均能得到提升和發展。
對于醫學專業的學生來說,在校所學的數學基礎理論課程比較有限,并且學生對純粹的數學知識與復雜的理論推導已經極為厭倦,如果數學建模還是以傳統的“灌輸式”和教師“主導型”為主、簡單的應用案例為主要教學內容的話,其結果勢必會使學生有一種再講數學課和做應用題的感覺,既不能很好地激發學生的學習興趣,也不能體現數學建模的思想方法和本質特色。
因此,如何使學生擺脫這種尷尬的現狀已成為我們教學的一大難點。針對這種情況,在教學模式上,我們大膽嘗試研究型教學模式,即采用“從實踐中來,到實踐中去”的教學理念。一方面,從最現實、最熱門的醫學話題出發,從學生最感興趣的.問題入手,激發學生的學習興趣和進一步學習的主動性,使他們從一開始就能進入到學習的角色中去;另一方面,通過開展多種方式的實踐教學活動,使學生在實踐中掌握數學建模的常用方法和基本技能,忽略繁瑣的數學推導過程,讓學生體會發現問題和思考問題的過程,培養學生解決問題的創新能力。
近些年來,我們開設的醫藥數學建模課受到了學生的一致好評,其關鍵之處在于我們一改傳統的教學模式,通過組織數學建模興趣研討班,讓每位同學都能充分地參與到研究中去并且使每位學生都有發言的機會。這些舉措旨在進一步激發學生的創新意識,提高學生的數學建模實踐能力。研討班面向全校各類醫學專業的學生,并以三人為單位,劃分成若干個組,通過專題研討的形式開展活動。實踐證明:通過這種研討過程,學生不僅對所學的醫學知識有了更深刻的理解與認識,在文獻資料查閱、計算機編程、語言表達能力等諸多方面也都有了顯著的提高。通過這個過程的學習,為學生今后從事醫學科研工作打下了良好的基礎。
為了有效的培養學生綜合應用能力和深層次學習的習慣與意識,我們在教學方法上一改往日的“講透,講懂”的方法,忽略純理論的繁瑣推導,突出知識的應用思想和應用意識,讓學生帶著問題上課,嘗試在解決問題中與教師進行交流,下課帶著問題回去。
在課堂教學中,重點講解發現問題和解決問題的方法與技巧。通過課前作業,引導學生自我發現問題;通過課堂講解和研討,引導學生解決問題;通過課后作業,總結和鞏固所學知識,學習應用與拓展知識。這種完全以學生為主,教師為輔的做法,有利于培養學生樹立勇于探索求知的信心和探索新知識的能力與意識,提高學生的創新能力和敏銳的洞察力及想象力,從而提升學生的綜合應用素質。
在現實生活中的實際問題是比較復雜的,往往單一的方法是難以解決的,通常是需要多種方法的綜合應用方能解決。
因此,以實際問題驅動的教學模式,主要是引導學生如何將復雜的實際問題分解為一系列簡單的小問題,在解決每一個小問題的過程中,讓學生學習并掌握相關的數學知識與方法。這種在應用中學習的教學方法,在很大程度上解決了學生普遍存在的“學數學有什么用、學了數學不知怎么用”的困惑。
在整個教學過程中,貫穿以學生為主體,通過案例分析引導學生的思維方法,針對一個案例的解決過程和方法,要求實現舉一反三,促使學生對所掌握的知識進行重組再現和優化構建,讓學生在學習和問題的解決中學會不斷地總結與歸納,用成功的方法再去演繹解決新的問題,通過不斷地歸納演繹、對比分析、總結經驗、彌補不足,進一步學習相關知識和方法,再進行實踐,從而不斷增強自身的綜合應用能力和素質。
隨著醫學院校教育理念的轉變以及教育體制改革的深入,對培養適應科學技術迅速發展的創新型醫學人才提出了更高的要求。如何培養出具有創新能力、綜合素質高的專業人才已成為亟待解決的問題之一。本文探討了醫藥數學建模課程的開設對培養大學生實踐創新能力的幾點做法。教學實踐證明:數學建模課充分鍛煉了學生的各項能力,是提高醫學專業學生綜合應用素質行之有效的方法。