教學工作計劃是對教師在一個學期或一學年內的教學目標、教學內容、教學方法等進行規劃和安排的重要文件。小編特意為大家整理了一些教學工作計劃的樣本,供大家參考借鑒。
優秀八年級數學教案人教版(案例19篇)篇一
平行四邊形定義:有兩組對邊分別平行的四邊形叫做平行四邊形。
平行四邊形的性質:平行四邊形的對邊相等;
平行四邊形的對角相等。
平行四邊形的對角線互相平分。
平行四邊形的判定。
1.兩組對邊分別相等的四邊形是平行四邊形。
2.對角線互相平分的四邊形是平行四邊形;
3.兩組對角分別相等的四邊形是平行四邊形;
4.一組對邊平行且相等的四邊形是平行四邊形。
三角形的中位線平行于三角形的第三邊,且等于第三邊的一半。
直角三角形斜邊上的中線等于斜邊的一半。
矩形的定義:有一個角是直角的平行四邊形。
矩形的性質:矩形的四個角都是直角;
矩形的對角線平分且相等。
優秀八年級數學教案人教版(案例19篇)篇二
教材p144例4,從所給的數據可以看到并沒有按照從小到大(或從大到小)的順序排列。因此,首先應將數據重新排列,通過觀察會發現共有12個數據,偶數個可以取中間的兩個數據146、148,求其平均值,便可得這組數據的中位數。
教材p145例5,由表中第二行可以查到23.5號鞋的頻數,因此這組數據的眾數可以得到,所提的建議應圍繞利于商家獲得較大利潤提出。
優秀八年級數學教案人教版(案例19篇)篇三
一、教學目的:
1.掌握菱形概念,知道菱形與平行四邊形的關系.
2.理解并掌握菱形的定義及性質1、2;會用這些性質進行有關的論證和計算,會計算菱形的面積.
3.通過運用菱形知識解決具體問題,提高分析能力和觀察能力.
4.根據平行四邊形與矩形、菱形的從屬關系,通過畫圖向學生滲透集合思想.
二、重點、難點。
1.教學重點:菱形的性質1、2.
2.教學難點:菱形的性質及菱形知識的綜合應用.
三、例題的意圖分析。
本節課安排了兩個例題,例1是一道補充題,是為了鞏固菱形的性質;例2是教材p108中的例2,這是一道用菱形知識與直角三角形知識來求菱形面積的實際應用問題.此題目,除用以鞏固菱形性質外,還可以引導學生用不同的方法來計算菱形的面積,以促進學生熟練、靈活地運用知識.
四、課堂引入。
1.(復習)什么叫做平行四邊形?什么叫矩形?平行四邊形和矩形之間的關系是什么?
2.(引入)我們已經學習了一種特殊的平行四邊形——矩形,其實還有另外的特殊平行四邊形,請看演示:(可將事先按如圖做成的一組對邊可以活動的教具進行演示)如圖,改變平行四邊形的邊,使之一組鄰邊相等,從而引出菱形概念.
優秀八年級數學教案人教版(案例19篇)篇四
三角形高線、中線及角平分線的概念、幾何語言表達及它們的畫法.
2.內容解析。
本節內容概念較多,有三角形的高、中線、角平分線和重心等有關概念;需要學生動手的頻率也較高,要掌握任意三角形的高、中線、角平分線的畫法,培養學生動手操作及解決問題的能力;鼓勵學生主動參與,體驗幾何知識在現實生活中的真實性,激發學生熱愛生活、勇于探索的思想感情。
理解三角形高、角平分線及中線概念到用幾何語言精確表述,這是學生在幾何學習上的一個深入.學習了這一課,對于學生增長幾何知識,運用幾何知識解決生活中的有關問題,起著十分重要的作用.它也是學習三角形的角、邊的延續以及三角形全等、相似等后繼知識一個準備.
本節的重點是了解三角形的高、中線及角平分線概念的同時還要掌握它們的畫法,難點是鈍角三角形的高的畫法及不同類型的三角形高線的位置關系.
優秀八年級數學教案人教版(案例19篇)篇五
教學目標:
1.認識“左、右”的位置關系,體會其相對性。
2.能夠初步運用左右描述物體的位置,解決實際問題。
3.通過生動有趣的數學活動,使學生體會到學習數學的樂趣。
教學重點:
認識“左、右”的位置關系,體會其相對性。
教學難點:
運用左右描述物體的位置,解決實際問題。
教學過程:
一、創設情境,導入新課。
1.同學對你的同桌說一說,哪只是右手,哪只是左手。
2.我們要來認識“左右”。(板書課題:左右)。
二、聯系自身,體驗左右。
1.摸一摸。
(2)哪只是左腳?哪只是右腳?
(4)還有左耳和右耳。
(5)還有左眼和右眼。
(6)還有左肩和右肩。……。
(7)生每說一種,教師都引導全體學生用手摸一摸。
三、實際操作,探索新知。
1.擺一擺。
游戲做完了,現在我們要開始擺文具了。同桌的同學互相合作,聽清楚老師說的話。
請你在桌上放一塊橡皮;。
在橡皮的左邊擺一枝鉛筆;。
在橡皮的右邊擺一個鉛筆盒;。
在鉛筆盒的左邊,橡皮的右邊擺一把尺子;。
在鉛筆盒的右邊擺一把小刀。
生擺好后,師用出示正確的排列順序,生檢查自己的排列。
2.數一數。
從左數橡皮是第幾個?從右數橡皮是第幾個?
從左數橡皮是第二個,從右數橡皮是第四個。
為什么橡皮一會兒排第二?一會兒又排第四?
什么東西反了?能講得更清楚一些嗎?
(數的順序反了,開始是從左數,后來是從右數。)。
師小結:也就是說,同樣一個物體,從左數和從右數,結果就可能不一樣。
3.爬樓梯。上樓梯時我們要靠哪邊走?
下樓梯時我們又要靠哪邊走?
請你們兩位示范一下,把教室中間過道當樓梯,一個從前往后走是下樓梯,另一個從后往前走是上樓梯。
(生觀察時師提醒:下樓梯的同學是靠哪邊走?)。
(生還是有的說左邊,有的說右邊。)。
師:教學樓中間有一個樓梯,同學們想不想去走一走?
(全體學生進行室外活動:走上樓梯,又走下樓梯。下樓梯時,師又提醒:下樓梯時你靠哪邊走?)。
回到教室。
現在同學們明白下樓梯時靠哪邊走嗎?
為什么上、下樓梯都靠右邊走?
(如果不這樣走,上、下樓梯的人就會相撞。)。
對!特別是要做課間操時樓梯比較擁擠,如果相撞就會發生危險。
4.練一練。
(出示課本第61頁第3題圖)他們都是靠右走的嗎?
五、運用新知,解決問題。
1.轉彎判斷。同學們想不想去公園玩?
那我們就坐這輛大客車去吧!(師拿出玩具客車。)。
準備好,要出發了,請同學們判斷客車是往左轉還是往右轉?
(師在“十字路口圖”上演示轉彎。)。
小組討論一下,客車到底是往哪邊轉。
(生組內討論交流意見。)。
師生共同小結:站的方向不同,左右也不同。在日常生活中,汽車轉彎的方向常常以司機為準。
2.小游戲:我是小司機。
同桌的同學互相配合,左邊的同學說命令,右邊的同學用玩具小汽車在“十字路口圖”上轉彎,然后交換角色。
六、課堂總結。
通過這節課,你有哪些收獲?你印象最深的是什么?你有什么感想嗎?
文檔為doc格式。
優秀八年級數學教案人教版(案例19篇)篇六
1.重點:勾股定理逆定理的應用.
2.難點:勾股定理逆定理的證明.
3.疑點及分析和解決方法:勾股定理逆定理的證明方法,又是學生前所未見的,是運用代數計算方法證明幾何問題,是解析幾何中研究問題的方法,以后會逐步見到,這一點要讓學生有所認識.
優秀八年級數學教案人教版(案例19篇)篇七
分式的分子和分母同時乘以(或除以)一個不等于零的整式,分式的只不變。
2、分式的運算。
(1)分式的乘除。
乘法法則:分式乘以分式,用分子的'積作為積的分子,分母的積作為積的分母。
除法法則:分式除以分式,把除式的分子、分母顛倒位置后,與被除式相乘。
(2)分式的加減。
加減法法則:同分母分式相加減,分母不變,把分子相加減;。
異分母分式相加減,先通分,變為同分母的分式,再加減。
3、整數指數冪的加減乘除法。
4、分式方程及其解法。
第二章反比例函數。
1、反比例函數的表達式、圖像、性質。
圖像:雙曲線。
表達式:y=k/x(k不為0)。
性質:兩支的增減性相同;
2、反比例函數在實際問題中的應用。
第三章勾股定理。
1、勾股定理:直角三角形的兩個直角邊的平方和等于斜邊的平方。
2、勾股定理的逆定理:如果一個三角形中,有兩個邊的平方和等于第三條邊的平方,那么這個三角形是直角三角形。
第四章四邊形。
1、平行四邊形。
性質:對邊相等;對角相等;對角線互相平分。
判定:兩組對邊分別相等的四邊形是平行四邊形;
兩組對角分別相等的四邊形是平行四邊形;
對角線互相平分的四邊形是平行四邊形;
一組對邊平行而且相等的四邊形是平行四邊形。
推論:三角形的中位線平行第三邊,并且等于第三邊的一半。
2、特殊的平行四邊形:矩形、菱形、正方形。
(1)矩形。
性質:矩形的四個角都是直角;
矩形的對角線相等;
矩形具有平行四邊形的所有性質。
判定:有一個角是直角的平行四邊形是矩形;
對角線相等的平行四邊形是矩形;
推論:直角三角形斜邊的中線等于斜邊的一半。
(2)菱形。
性質:菱形的四條邊都相等;
菱形的對角線互相垂直,并且每一條對角線平分一組對角;
菱形具有平行四邊形的一切性質。
判定:有一組鄰邊相等的平行四邊形是菱形;
對角線互相垂直的平行四邊形是菱形;
四邊相等的四邊形是菱形。
(3)正方形:既是一種特殊的矩形,又是一種特殊的菱形,所以它具有矩形和菱形的所有性質。
3、梯形:直角梯形和等腰梯形。
等腰梯形:等腰梯形同一底邊上的兩個角相等;
等腰梯形的兩條對角線相等;
同一個底上的兩個角相等的梯形是等腰梯形。
第五章數據的分析。
加權平均數、中位數、眾數、極差、方差。
優秀八年級數學教案人教版(案例19篇)篇八
(2)會用工具畫三角形的高、中線與角平分線;。
2.教學目標解析。
(1)經歷畫圖實踐過程,理解三角形的高、中線與角平分線等概念.
(2)能夠熟練用幾何語言表達三角形的高、中線與角平分線的性質.
(3)掌握三角形的高、中線與角平分線的畫法.
(4)了解三角形的三條高、三條中線與三條角平分線分別相交于一點.
三、教學問題診斷分析。
三角形的高線的理解:三角形的高是線段,不是直線,它的一個端點是三角形的頂點,另一個端點在這個頂點的對邊或對邊所在的直線上.
三角形的中線的理解:三角形的中線也是線段,它是一個頂點和對邊中點的連線,它的一個端點是三角形的頂點,另一個端點是這個頂點的對邊中點.
三角形的角平分線的理解:三角形的角平分線也是一條線段,角的頂點是一個端點,另一個端點在對邊上.而角的平分線是一條射線,即就是說三角形的角平分線與通常的角平線有一定的聯系又有本質的區別.
優秀八年級數學教案人教版(案例19篇)篇九
1.理解分式的基本性質.
2.會用分式的基本性質將分式變形.
二、重點、難點。
1.重點:理解分式的基本性質.
2.難點:靈活應用分式的基本性質將分式變形.
3.認知難點與突破方法。
教學難點是靈活應用分式的基本性質將分式變形.突破的方法是通過復習分數的通分、約分總結出分數的基本性質,再用類比的方法得出分式的基本性質.應用分式的基本性質導出通分、約分的概念,使學生在理解的基礎上靈活地將分式變形.
三、例、習題的意圖分析。
1.p7的例2是使學生觀察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后應用分式的基本性質,相應地把分子(或分母)乘以或除以了這個整式,填到括號里作為答案,使分式的值不變.
2.p9的例3、例4地目的是進一步運用分式的基本性質進行約分、通分.值得注意的是:約分是要找準分子和分母的公因式,最后的結果要是最簡分式;通分是要正確地確定各個分母的最簡公分母,一般的取系數的最小公倍數,以及所有因式的次冪的積,作為最簡公分母.
教師要講清方法,還要及時地糾正學生做題時出現的錯誤,使學生在做提示加深對相應概念及方法的理解.
3.p11習題16.1的第5題是:不改變分式的值,使下列分式的分子和分母都不含“-”號.這一類題教材里沒有例題,但它也是由分式的基本性質得出分子、分母和分式本身的符號,改變其中任何兩個,分式的值不變.
“不改變分式的值,使分式的分子和分母都不含‘-’號”是分式的基本性質的應用之一,所以補充例5.
四、課堂引入。
1.請同學們考慮:與相等嗎?與相等嗎?為什么?
2.說出與之間變形的過程,與之間變形的過程,并說出變形依據?
3.提問分數的基本性質,讓學生類比猜想出分式的基本性質.
五、例題講解。
p7例2.填空:
[分析]應用分式的基本性質把已知的分子、分母同乘以或除以同一個整式,使分式的值不變.
p11例3.約分:
[分析]約分是應用分式的基本性質把分式的分子、分母同除以同一個整式,使分式的值不變.所以要找準分子和分母的公因式,約分的結果要是最簡分式.
p11例4.通分:
[分析]通分要想確定各分式的公分母,一般的取系數的最小公倍數,以及所有因式的次冪的積,作為最簡公分母.
優秀八年級數學教案人教版(案例19篇)篇十
1.(跨學科綜合題)若把x克食鹽溶入b克水中,從其中取出m克食鹽溶液,其中含純鹽________.
2.(數學與生活)李麗從家到學校的路程為s,無風時她以平均a米/秒的速度騎車,便能按時到達,當風速為b米/秒時,她若頂風按時到校,請用代數式表示她必須提前_______出發.
3.(數學與生產)永信瓶蓋廠加工一批瓶蓋,甲組與乙組合作需要a天完成,若甲組單獨完成需要b天,乙組單獨完成需_______天.
優秀八年級數學教案人教版(案例19篇)篇十一
嚴格的講教材本節課沒有引入的問題,而是在復習和延伸中位數的定義過程中拉開序幕的,本人很同意這種處理方式,教師可以一句話引入新課:前面已經和同學們研究過了平均數的這個數據代表。它在分析數據過程中擔當了重要的角色,今天我們來共同研究和認識數據代表中的新成員——中位數和眾數,看看它們在分析數據過程中又起到怎樣的作用。
優秀八年級數學教案人教版(案例19篇)篇十二
1.理解分式的基本性質。
2.會用分式的基本性質將分式變形。
二、重點、難點。
1.重點:理解分式的基本性質。
2.難點:靈活應用分式的基本性質將分式變形。
3.認知難點與突破方法。
教學難點是靈活應用分式的基本性質將分式變形。突破的方法是通過復習分數的通分、約分總結出分數的基本性質,再用類比的方法得出分式的基本性質。應用分式的基本性質導出通分、約分的概念,使學生在理解的基礎上靈活地將分式變形。
三、練習題的意圖分析。
1.p7的例2是使學生觀察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后應用分式的基本性質,相應地把分子(或分母)乘以或除以了這個整式,填到括號里作為答案,使分式的值不變。
2.p9的例3、例4地目的是進一步運用分式的基本性質進行約分、通分。值得注意的是:約分是要找準分子和分母的公因式,最后的結果要是最簡分式;通分是要正確地確定各個分母的最簡公分母,一般的取系數的最小公倍數,以及所有因式的次冪的積,作為最簡公分母。
教師要講清方法,還要及時地糾正學生做題時出現的錯誤,使學生在做提示加深對相應概念及方法的理解。
3.p11習題16.1的`第5題是:不改變分式的值,使下列分式的分子和分母都不含“-”號。這一類題教材里沒有例題,但它也是由分式的基本性質得出分子、分母和分式本身的符號,改變其中任何兩個,分式的值不變。
“不改變分式的值,使分式的分子和分母都不含‘-’號”是分式的基本性質的應用之一,所以補充例5。
四、課堂引入。
1.請同學們考慮:與相等嗎?與相等嗎?為什么?
2.說出與之間變形的過程,與之間變形的過程,并說出變形依據?
3.提問分數的基本性質,讓學生類比猜想出分式的基本性質。
五、例題講解。
p7例2.填空:
[分析]應用分式的基本性質把已知的分子、分母同乘以或除以同一個整式,使分式的值不變。
p11例3.約分:
[分析]約分是應用分式的基本性質把分式的分子、分母同除以同一個整式,使分式的值不變。所以要找準分子和分母的公因式,約分的結果要是最簡分式。
p11例4.通分:
[分析]通分要想確定各分式的公分母,一般的取系數的最小公倍數,以及所有因式的次冪的積,作為最簡公分母。
優秀八年級數學教案人教版(案例19篇)篇十三
2.將以上的性質定理,分別用命題形式敘述出來。
平行四邊形的判定方法:
證明:兩組對邊分別相等的四邊形是平行四邊形。
已知:
求證:
學生交流:把你做的四邊形和其他同學做的進行比較,看看是否都是平行四邊形。
觀察發現:盡管每個人取的邊長不一樣,但只要對邊分別相等,所作的都是平行四邊形。
優秀八年級數學教案人教版(案例19篇)篇十四
1.掌握平行四邊形的判定定理1、2、3、4,并能與性質定理、定義綜合應用。
2.使學生理解判定定理與性質定理的`區別與聯系。
3.會根據簡單的條件畫出平行四邊形,并說明畫圖的依據是哪幾個定理。
1.通過“探索式試明法”開拓學生思路,發展學生思維能力。
2.通過教學,使學生逐步學會分別從題設或結論出發尋求論證思路的分析方法,進一步提高學生分析問題,解決問題的能力。
通過一題多解激發學生的學習興趣。
通過學習,體會幾何證明的方法美。
構造逆命題,分析探索證明,啟發講解。
1.教學重點:平行四邊形的判定定理1、2、3的應用。
2.教學難點:綜合應用判定定理和性質定理。
(強調在求證平行四邊形時用判定定理在已知平行四邊形時用性質定理).
優秀八年級數學教案人教版(案例19篇)篇十五
1.了解算術平方根的概念,會用根號表示正數的算術平方根,并了解算術平方根的非負性。
2.了解開方與乘方互為逆運算,會用平方運算求某些非負數的算術平方根。
算術平方根的概念。
根據算術平方根的概念正確求出非負數的算術平方根。
這就要用到平方根的概念,也就是本章的主要學習內容.這節課我們先學習有關算術平方根的概念.
1、提出問題:(書p68頁的問題)
你是怎樣算出畫框的邊長等于5dm的呢?(學生思考并交流解法)
這個問題相當于在等式擴=25中求出正數x的值.
一般地,如果一個正數x的平方等于a,即=a,那么這個正數x叫做a的算術平方根.a的算術平方根記為,讀作根號a,a叫做被開方數.規定:0的算術平方根是0.
也就是,在等式=a (x0)中,規定x = .
2、試一試:你能根據等式:=144說出144的算術平方根是多少嗎?并用等式表示出來.
3、想一想:下列式子表示什么意思?你能求出它們的值嗎?
建議:求值時,要按照算術平方根的意義,寫出應該滿足的關系式,然后按照算術平方根的記法寫出對應的值.例如表示25的算術平方根。
4、例1求下列各數的算術平方根:
(1)100;(2)1;(3) ;(4)0.0001
p69練習1、2
怎樣用兩個面積為1的小正方形拼成一個面積為2的大正方形?
方法1:課本中的方法,略;
方法2:
可還有其他方法,鼓勵學生探究。
問題:這個大正方形的邊長應該是多少呢?
大正方形的邊長是,表示2的算術平方根,它到底是個多大的數?你能求出它的值嗎?
建議學生觀察圖形感受的大小.小正方形的對角線的長是多少呢?(用刻度尺測量它與大正方形的邊長的大小)它的近似值我們將在下節課探究.
1、這節課學習了什么呢?
2、算術平方根的具體意義是怎么樣的?
3、怎樣求一個正數的算術平方根
p75習題13.1活動第1、2、3題
優秀八年級數學教案人教版(案例19篇)篇十六
1、了解方差的定義和計算公式。
2、理解方差概念的產生和形成的過程。
3、會用方差計算公式來比較兩組數據的波動大小。
重點:方差產生的必要性和應用方差公式解決實際問題。
難點:理解方差公式。
(一)知識我先懂:
方差:設有n個數據,各數據與它們的平均數的差的平方分別是。
我們用它們的平均數,表示這組數據的`方差:即用。
來表示。
給力小貼士:方差越小說明這組數據越。波動性越。
(二)自主檢測小練習:
1、已知一組數據為2、0、-1、3、-4,則這組數據的方差為。
2、甲、乙兩組數據如下:
甲組:1091181213107;。
乙組:7891011121112.
分別計算出這兩組數據的極差和方差,并說明哪一組數據波動較小.
引例:問題:從甲、乙兩種農作物中各抽取10株苗,分別測得它的苗高如下:(單位:cm)。
甲:9、10、10、13、7、13、10、8、11、8;。
乙:8、13、12、11、10、12、7、7、10、10;。
問:(1)哪種農作物的苗長的比較高(我們可以計算它們的平均數:=)。
(2)哪種農作物的苗長得比較整齊?(我們可以計算它們的極差,你發現了)。
歸納:方差:設有n個數據,各數據與它們的平均數的差的平方分別是。
我們用它們的平均數,表示這組數據的方差:即用來表示。
(一)例題講解:
測試次數第1次第2次第3次第4次第5次。
段巍1314131213。
金志強1013161412。
給力提示:先求平均數,在利用公式求解方差。
(二)小試身手。
1、.甲、乙兩名學生在相同的條件下各射靶10次,命中的環數如下:
經過計算,兩人射擊環數的平均數是,但s=,s=,則ss,所以確定。
去參加比賽。
1、求下列數據的眾數:
(1)3,2,5,3,1,2,3(2)5,2,1,5,3,5,2,2。
方差公式:
給力提示:方差越小說明這組數據越。波動性越。
每課一首詩:求方差,有公式;先平均,再求差;。
求平方,再平均;所得數,是方差。
1、小爽和小兵在10次百米跑步練習中成績如表所示:(單位:秒)。
如果根據這幾次成績選拔一人參加比賽,你會選誰呢?
寫下你的收獲,交流你的經驗,分享你的成果,你會感到無比的快樂!
優秀八年級數學教案人教版(案例19篇)篇十七
1.經歷分式方程的概念,能將實際問題中的等量關系用分式方程表示,體會分式方程的模型作用.
2.經歷實際問題-分式方程方程模型的過程,發展學生分析問題、解決問題的能力,滲透數學的轉化思想人體,培養學生的應用意識。
3.在活動中培養學生樂于探究、合作學習的習慣,培養學生努力尋找解決問題的進取心,體會數學的應用價值.
將實際問題中的等量關系用分式方程表示。
找實際問題中的等量關系。
有兩塊面積相同的小麥試驗田,第一塊使用原品種,第二塊使用新品種,分別收獲小麥9000kg和15000kg。已知第一塊試驗田每公頃的.產量比第二塊少3000kg,分別求這兩塊試驗田每公頃的產量。你能找出這一問題中的所有等量關系嗎?(分組交流)。
如果設第一塊試驗田每公頃的產量為kg,那么第二塊試驗田每公頃的產量是________kg。
根據題意,可得方程___________________。
從甲地到乙地有兩條公路:一條是全長600km的普通公路,另一條是全長480km的高速公路。某客車在高速公路上行駛的平均速度比在普通公路上快45km/h,由高速公路從甲地到乙地所需的時間是由普通公路從甲地到乙地所需時間的一半。求該客車由高速公路從甲地到乙地所需的時間。
這一問題中有哪些等量關系?
如果設客車由高速公路從甲地到乙地所需的時間為h,那么它由普通公路從甲地到乙地所需的時間為_________h。
根據題意,可得方程______________________。
學生分組探討、交流,列出方程.
上面所得到的方程有什么共同特點?
分母中含有未知數的方程叫做分式方程。
分式方程與整式方程有什么區別?
(3)根據分式方程編一道應用題,然后同組交流,看誰編得好。
本節課你學到了哪些知識?有什么感想?
優秀八年級數學教案人教版(案例19篇)篇十八
1、理解分式的基本性質。
2、會用分式的.基本性質將分式變形。
1、重點:理解分式的基本性質。
2、難點:靈活應用分式的基本性質將分式變形。
3、認知難點與突破方法。
教學難點是靈活應用分式的基本性質將分式變形。突破的方法是通過復習分數的通分、約分總結出分數的基本性質,再用類比的方法得出分式的基本性質。應用分式的基本性質導出通分、約分的概念,使學生在理解的基礎上靈活地將分式變形。
1.p7的例2是使學生觀察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后應用分式的基本性質,相應地把分子(或分母)乘以或除以了這個整式,填到括號里作為答案,使分式的值不變。
2.p9的例3、例4地目的是進一步運用分式的基本性質進行約分、通分。值得注意的是:約分是要找準分子和分母的公因式,最后的結果要是最簡分式;通分是要正確地確定各個分母的最簡公分母,一般的取系數的最小公倍數,以及所有因式的次冪的積,作為最簡公分母。
教師要講清方法,還要及時地糾正學生做題時出現的錯誤,使學生在做提示加深對相應概念及方法的理解。
3.p11習題16.1的第5題是:不改變分式的值,使下列分式的分子和分母都不含“-”號。這一類題教材里沒有例題,但它也是由分式的基本性質得出分子、分母和分式本身的符號,改變其中任何兩個,分式的值不變。
“不改變分式的值,使分式的分子和分母都不含‘-’號”是分式的基本性質的應用之一,所以補充例5。
1、請同學們考慮:與相等嗎?與相等嗎?為什么?
2、說出與之間變形的過程,與之間變形的過程,并說出變形依據?
3、提問分數的基本性質,讓學生類比猜想出分式的基本性質。
p7例2.填空:
[分析]應用分式的基本性質把已知的分子、分母同乘以或除以同一個整式,使分式的值不變。
p11例3.約分:
[分析]約分是應用分式的基本性質把分式的分子、分母同除以同一個整式,使分式的值不變。所以要找準分子和分母的公因式,約分的結果要是最簡分式。
p11例4.通分:
[分析]通分要想確定各分式的公分母,一般的取系數的最小公倍數,以及所有因式的次冪的積,作為最簡公分母。
優秀八年級數學教案人教版(案例19篇)篇十九
2.弄清三角形按角的'分類,會按角的大小對三角形進行分類;。
3.通過對三角形分類的學習,使學生了解數學分類的基本思想,并會用方程思想去解決一些圖形中求角的問題。
4.通過三角形內角和定理的證明,提高學生的邏輯思維能力,同時培養學生嚴謹的科學態。
5.通過對定理及推論的分析與討論,發展學生的求同和求異的思維能力,培養學生聯系與轉化的辯證思想。
三角形內角和定理及其推論。
三角形內角和定理的證明。
直尺、微機。
互動式,談話法。
1、創設情境,自然引入。
把問題作為教學的出發點,創設問題情境,激發學生學習興趣和求知欲,為發現新知識創造一個最佳的心理和認知環境。
問題2你能用幾何推理來論證得到的關系嗎?
對于問題1絕大多數學生都能回答出來(小學學過的),問題2學生會感到困難,因為這個證明需添加輔助線,這是同學們第一次接觸的新知識―――“輔助線”。教師可以趁機告訴學生這節課將要學習的一個重要內容(板書課題)。
新課引入的好壞在某種程度上關系到課堂教學的成敗,本節課從舊知識切入,特別是從知識體系考慮引入,“學習了三角形邊的關系,自然想到三角形角的關系怎樣呢?”使學生感覺本節課學習的內容自然合理。
2、設問質疑,探究嘗試。
(1)求證:三角形三個內角的和等于。
讓學生剪一個三角形,并把它的三個內角分別剪下來,再拼成一個平面圖形。這里教師設計了電腦動畫顯示具體情景。然后,圍繞問題設計以下幾個問題讓學生思考,教師進行學法指導。
問題1觀察:三個內角拼成了一個。
什么角?問題2此實驗給我們一個什么啟示?
(把三角形的三個內角之和轉化為一個平角)。
問題3由圖中ab與cd的關系,啟發我們畫一條什么樣的線,作為解決問題的橋梁?
其中問題2是解決本題的關鍵,教師可引導學生分析。對于問題3學生經過思考會畫出此線的。這里教師要重點講解“輔助線”的有關知識。比如:為什么要畫這條線?畫這條線有什么作用?要讓學生知道“輔助線”是以后解決幾何問題有力的工具。它的作用在于充分利用條件;恰當轉化條件;恰當轉化結論;充分提示題目中各元素間的一些不明顯的關系,達到化難為易解決問題的目的。
(2)通過類比“三角形按邊分類”,三角形按角怎樣分類呢?
學生回答后,電腦顯示圖表。
(3)三角形中三個內角之和為定值。
問題2三角形一個外角與它不相鄰的兩個內角有何關系?
問題3三角形一個外角與其中的一個不相鄰內角有何關系?
其中問題1學生很容易得出,提出問題2之后,先給出三角形外角的定義,然后讓學生經過分析討論,得出結論并書寫證明過程。
這樣安排的目的有三點:第一,理解定理之后的延伸――推論,培養學生良好的學習習慣。第二,模仿定理的證明書寫格式,加強學生書寫能力。第三,提高學生靈活運用所學知識的能力。
3、三角形三個內角關系的定理及推論。
引導學生分析并嚴格書寫解題過程。