通過知識點總結,我們可以將零散的知識點整理成有機的知識體系。閱讀這些知識點總結范文,相信能幫助大家在學習上取得更好的成績。
高三數學知識點全總結范文(22篇)篇一
1.集合的元素具有確定性、無序性和互異性.
2.對集合,時,必須注意到“極端”情況:或;求集合的子集時是否注意到是任何集合的子集、是任何非空集合的真子集.
3.對于含有個元素的有限集合,其子集、真子集、非空子集、非空真子集的個數依次為4.“交的補等于補的并,即”;“并的補等于補的交,即”.
5.判斷命題的真假關鍵是“抓住關聯字詞”;注意:“不‘或’即‘且’,不‘且’即‘或’”.
6.“或命題”的真假特點是“一真即真,要假全假”;“且命題”的真假特點是“一假即假,要真全真”;“非命題”的真假特點是“一真一假”.
7.四種命題中“‘逆’者‘交換’也”、“‘否’者‘否定’也”.原命題等價于逆否命題,但原命題與逆命題、否命題都不等價.反證法分為三步:假設、推矛、得果.注意:命題的否定是“命題的非命題,也就是‘條件不變,僅否定結論’所得命題”,但否命題是“既否定原命題的條件作為條件,又否定原命題的結論作為結論的所得命題”.
8.充要條件。
1.指數式、對數式。
2.(1)映射是“‘全部射出’加‘一箭一雕’”;映射中第一個集合中的元素必有像,但第二個集合中的元素不一定有原像(中元素的像有且僅有下一個,但中元素的原像可能沒有,也可任意個);函數是“非空數集上的映射”,其中“值域是映射中像集的子集”.
(2)函數圖像與軸垂線至多一個公共點,但與軸垂線的公共點可能沒有,也可任意個.
(3)函數圖像一定是坐標系中的曲線,但坐標系中的曲線不一定能成為函數圖像.
3.單調性和奇偶性。
(1)奇函數在關于原點對稱的區間上若有單調性,則其單調性完全相同.偶函數在關于原點對稱的區間上若有單調性,則其單調性恰恰相反.注意:(1)確定函數的奇偶性,務必先判定函數定義域是否關于原點對稱.確定函數奇偶性的常用方法有:定義法、圖像法等等.對于偶函數而言有:.
(2)若奇函數定義域中有0,則必有.即的定義域時,是為奇函數的必要非充分條件.
3)確定函數的單調性或單調區間,在解答題中常用:定義法(取值、作差、鑒定)、導數法;在選擇、填空題中還有:數形結合法(圖像法)、特殊值法等等.
(4)既奇又偶函數有無窮多個(,定義域是關于原點對稱的任意一個數集).
(7)復合函數的單調性特點是:“同性得增,增必同性;異性得減,減必異性”.復合函數的奇偶性特點是:“內偶則偶,內奇同外”.復合函數要考慮定義域的變化.(即復合有意義)。
4.對稱性與周期性(以下結論要消化吸收,不可強記)。
(1)函數與函數的圖像關于直線(軸)對稱.推廣一:如果函數對于一切,都有成立,那么的圖像關于直線(由“和的一半確定”)對稱.推廣二:函數,的圖像關于直線(由確定)對稱.
(2)函數與函數的圖像關于直線(軸)對稱.
(3)函數與函數的圖像關于坐標原點中心對稱.推廣:曲線關于直線的對稱曲線是;曲線關于直線的對稱曲線是.
(5)類比“三角函數圖像”得:若圖像有兩條對稱軸,則必是周期函數,且一周期為.如果是r上的周期函數,且一個周期為,那么.特別:若恒成立,則.若恒成立,則.若恒成立,則.三、數列1.數列的通項、數列項的項數,遞推公式與遞推數列,數列的通項與數列的前項和公式的關系:(必要時請分類討論).
注意:
2.等差數列中:
(1)等差數列公差的取值與等差數列的單調性.
(2)兩等差數列對應項和(差)組成的新數列仍成等差數列.
(5)有限等差數列中,奇數項和與偶數項和的'存在必然聯系,由數列的總項數是偶數還是奇數決定.若總項數為偶數,則“偶數項和”-“奇數項和”=總項數的一半與其公差的積;若總項數為奇數,則“奇數項和”-“偶數項和”=此數列的中項.
(6)兩數的等差中項惟一存在.在遇到三數或四數成等差數列時,??紤]選用“中項關系”轉化求解.
(7)判定數列是否是等差數列的主要方法有:定義法、中項法、通項法、和式法、圖像法(也就是說數列是等差數列的充要條件主要有這五種形式).
3.等比數列中:
(1)等比數列的符號特征(全正或全負或一正一負),等比數列的首項、公比與等比數列的單調性.
(2)成等比數列;成等比數列成等比數列.
(3)兩等比數列對應項積(商)組成的新數列仍成等比數列.
(4)成等比數列.
(6)有限等比數列中,奇數項和與偶數項和的存在必然聯系,由數列的總項數是偶數還是奇數決定.若總項數為偶數,則“偶數項和”=“奇數項和”與“公比”的積;若總項數為奇數,則“奇數項和”=“首項”加上“公比”與“偶數項和”積的和.
(7)并非任何兩數總有等比中項.僅當實數同號時,實數存在等比中項.對同號兩實數的等比中項不僅存在,而且有一對.也就是說,兩實數要么沒有等比中項(非同號時),如果有,必有一對(同號時).在遇到三數或四數成等差數列時,常優先考慮選用“中項關系”轉化求解.
(8)判定數列是否是等比數列的方法主要有:定義法、中項法、通項法、和式法(也就是說數列是等比數列的充要條件主要有這四種形式).
4.等差數列與等比數列的聯系。
(1)如果數列成等差數列,那么數列(總有意義)必成等比數列.
(2)如果數列成等比數列,那么數列必成等差數列.
(3)如果數列既成等差數列又成等比數列,那么數列是非零常數數列;但數列是常數數列僅是數列既成等差數列又成等比數列的必要非充分條件.
(4)如果兩等差數列有公共項,那么由他們的公共項順次組成的新數列也是等差數列,且新等差數列的公差是原兩等差數列公差的最小公倍數.如果一個等差數列與一個等比數列有公共項順次組成新數列,那么常選用“由特殊到一般的方法”進行研討,且以其等比數列的項為主,探求等比數列中那些項是他們的公共項,并構成新的數列.
注意:(1)公共項僅是公共的項,其項數不一定相同,即研究.但也有少數問題中研究,這時既要求項相同,也要求項數相同.(2)三(四)個數成等差(比)的中項轉化和通項轉化法.
高三數學知識點全總結范文(22篇)篇二
高考復習的過程中,很多同學都把主要的精力放在學的相對好的科目上,而對于學的不好的科目就有中忽視的態度。這樣的情況很不利于總體成績的提高,因為學的好的科目提升空間沒有弱勢科目的空間大,而且成績越好越難提高,花費的精力也更多。所以文科生們在復習的時候,要把重點放在弱勢、提升空間大的科目上。
雖說高三復習的主要目的是高考,但是同學們還是要以實際為出發點,穩扎穩打,不要急功近利。
有一部分同學,在做題的時候專挑一些高考真題進行練習,有些真題難度比較大,不僅花費時間還難掌握,這時候就會出現焦躁不安的情緒,負能量爆棚,時間長了學習成績越來越差。
其實高考百分之六十左右的內容考的都是課本上的內容,也就是基礎的知識,按照高考總分的百分之六十來算,如果說基礎題全都做對,那么分數就是450分,這對于很多地區的同學來說已經過了二本線了,所以平時復習的時候,以課本為主,把課本上的東西都掌握了,學習更難的內容也就相對輕松了,同時高考也成功了一大半。
文科的知識記憶的內容比較多,很多同學都花大量的時間去背書,雖然都記住了,但是考試成績依然上不去。這就是因為學習沒有效率,太注重記憶反而忽略了學習的本質(主要針對高考)。高三的文科生在復習的`時候,不僅要背知識點,還要注重“實戰”,畢竟高考需要答題,而不是背書。
數學要在第一輪復習的時候打牢基礎。多做點真題,尤其是你們當地的3年的高考題。文科100分的數學就說明你還有很大的漏洞。多做題,必須要穩到選填不錯,送分的幾道大題全部拿下,難題有得一拼你才能上高考。
語文你得把基礎分都給拿下,多做基礎。詩歌鑒賞,每次你得看答案,然后揣摩,多了感覺就上來了。作文,最好建議你多積累些素材,自己弄幾個段子全部是實例排比的,辭藻弄優美點,每次運用的時候稍微改下就行了。
穩住語數外你就成功了百分之80.
文綜歷史你要每天當小說看一樣,每天看一章。5本書輪的看。
政治多找些題做,尤其是大題,不用寫詳細,把自己想到得點寫出來再看思維有沒有漏洞就行,這個花一個星期就差不多了。
地理多做些真題,不懂得問老師,地理最近小題出的越來越活了,圖形很多都有可能看不懂,多做題有利于配用你的多向思維方式。
文綜最重要還是小題,細心,查漏補缺,增加基礎知識的學習是必要的。
背書,做題,文綜大題有模板的,數學多做多練題型做多了會有手感,到最后一百天各科老師都會給模板給卷子,跟著節奏來,最后是最重要的,上課不要開小差不要熬夜打游戲白天補覺不要傳紙條早晚自習記得背書不要聽歌唱歌!
時間篇:
二:制定合理的學習時間,每天劃出一定的時間給每門科目,鞏固你對知識點的記憶。
高三數學知識點全總結范文(22篇)篇三
對于數列4,5,6,7,8,9,10每一項的序號與這一項有下面的對應關系:
這就是說,上面可以看成是一個序號集合到另一個數的集合的映射.因此,從映射、函數的觀點看,數列可以看作是一個定義域為正整集n_(或它的有限子集{1,2,3,…,n})的函數,當自變量從小到大依次取值時,對應的一列函數值.這里的函數是一種特殊的函數,它的自變量只能取正整數.
由于數列的項是函數值,序號是自變量,數列的通項公式也就是相應函數和解析式.
數列是一種特殊的函數,數列是可以用圖象直觀地表示的.
數列用圖象來表示,可以以序號為橫坐標,相應的項為縱坐標,描點畫圖來表示一個數列,在畫圖時,為方便起見,在平面直角坐標系兩條坐標軸上取的單位長度可以不同,從數列的圖象表示可以直觀地看出數列的變化情況,但不精確.
把數列與函數比較,數列是特殊的函數,特殊在定義域是正整數集或由以1為首的有限連續正整數組成的集合,其圖象是無限個或有限個孤立的點.
(二)。
考點一:集合與簡易邏輯。
集合部分一般以選擇題出現,屬容易題。重點考查集合間關系的理解和認識。近年的試題加強了對集合計算化簡能力的考查,并向無限集發展,考查抽象思維能力。在解決這些問題時,要注意利用幾何的直觀性,并注重集合表示方法的轉換與化簡。簡易邏輯考查有兩種形式:一是在選擇題和填空題中直接考查命題及其關系、邏輯聯結詞、“充要關系”、命題真偽的判斷、全稱命題和特稱命題的否定等,二是在解答題中深層次考查常用邏輯用語表達數學解題過程和邏輯推理。
考點二:函數與導數。
函數是高考的重點內容,以選擇題和填空題的為載體針對性考查函數的定義域與值域、函數的性質、函數與方程、基本初等函數(一次和二次函數、指數、對數、冪函數)的應用等,分值約為10分,解答題與導數交匯在一起考查函數的性質。導數部分一方面考查導數的運算與導數的幾何意義,另一方面考查導數的簡單應用,如求函數的單調區間、極值與最值等,通常以客觀題的形式出現,屬于容易題和中檔題,三是導數的綜合應用,主要是和函數、不等式、方程等聯系在一起以解答題的形式出現,如一些不等式恒成立問題、參數的取值范圍問題、方程根的個數問題、不等式的證明等問題。
考點三:三角函數與平面向量。
一般是2道小題,1道綜合解答題。小題一道考查平面向量有關概念及運算等,另一道對三角知識點的補充。大題中如果沒有涉及正弦定理、余弦定理的應用,可能就是一道和解答題相互補充的三角函數的圖像、性質或三角恒等變換的題目,也可能是考查平面向量為主的試題,要注意數形結合思想在解題中的應用。向量重點考查平面向量數量積的概念及應用,向量與直線、圓錐曲線、數列、不等式、三角函數等結合,解決角度、垂直、共線等問題是“新熱點”題型.
考點四:數列與不等式。
不等式主要考查一元二次不等式的解法、一元二次不等式組和簡單線性規劃問題、基本不等式的應用等,通常會在小題中設置1到2道題。對不等式的工具性穿插在數列、解析幾何、函數導數等解答題中進行考查.在選擇、填空題中考查等差或等比數列的概念、性質、通項公式、求和公式等的靈活應用,一道解答題大多凸顯以數列知識為工具,綜合運用函數、方程、不等式等解決問題的能力,它們都屬于中、高檔題目.
考點五:立體幾何與空間向量。
一是考查空間幾何體的結構特征、直觀圖與三視圖;二是考查空間點、線、面之間的位置關系;三是考查利用空間向量解決立體幾何問題:利用空間向量證明線面平行與垂直、求空間角等(文科不要求).在高考試卷中,一般有1~2個客觀題和一個解答題,多為中檔題。
考點六:解析幾何。
一般有1~2個客觀題和1個解答題,其中客觀題主要考查直線斜率、直線方程、圓的方程、直線與圓的位置關系、圓錐曲線的定義應用、標準方程的求解、離心率的計算等,解答題則主要考查直線與橢圓、拋物線等的位置關系問題,經常與平面向量、函數與不等式交匯,考查一些存在性問題、證明問題、定點與定值、最值與范圍問題等。
考點七:算法復數推理與證明。
高考對算法的考查以選擇題或填空題的形式出現,或給解答題披層“外衣”.考查的熱點是流程圖的識別與算法語言的閱讀理解.算法與數列知識的網絡交匯命題是考查的主流.復數考查的重點是復數的有關概念、復數的代數形式、運算及運算的幾何意義,一般是選擇題、填空題,難度不大.推理證明部分命題的方向主要會在函數、三角、數列、立體幾何、解析幾何等方面,單獨出題的可能性較小。對于理科,數學歸納法可能作為解答題的一小問.
高三數學知識點全總結范文(22篇)篇四
集合部分一般以選擇題出現,屬容易題。重點考查集合間關系的理解和認識。近年的試題加強了對集合計算化簡能力的考查,并向無限集發展,考查抽象思維能力。在解決這些問題時,要注意利用幾何的直觀性,并注重集合表示方法的轉換與化簡。簡易邏輯考查有兩種形式:一是在選擇題和填空題中直接考查命題及其關系、邏輯聯結詞、“充要關系”、命題真偽的判斷、全稱命題和特稱命題的否定等,二是在解答題中深層次考查常用邏輯用語表達數學解題過程和邏輯推理。
函數是高考的重點內容,以選擇題和填空題的為載體針對性考查函數的定義域與值域、函數的性質、函數與方程、基本初等函數(一次和二次函數、指數、對數、冪函數)的應用等,分值約為10分,解答題與導數交匯在一起考查函數的性質。導數部分一方面考查導數的運算與導數的幾何意義,另一方面考查導數的簡單應用,如求函數的單調區間、極值與最值等,通常以客觀題的形式出現,屬于容易題和中檔題,三是導數的綜合應用,主要是和函數、不等式、方程等聯系在一起以解答題的形式出現,如一些不等式恒成立問題、參數的取值范圍問題、方程根的個數問題、不等式的證明等問題。
一是考查空間幾何體的結構特征、直觀圖與三視圖;二是考查空間點、線、面之間的位置關系;三是考查利用空間向量解決立體幾何問題:利用空間向量證明線面平行與垂直、求空間角等(文科不要求)、在高考試卷中,一般有1~2個客觀題和一個解答題,多為中檔題。
一般有1~2個客觀題和1個解答題,其中客觀題主要考查直線斜率、直線方程、圓的方程、直線與圓的位置關系、圓錐曲線的定義應用、標準方程的求解、離心率的計算等,解答題則主要考查直線與橢圓、拋物線等的位置關系問題,經常與平面向量、函數與不等式交匯,考查一些存在性問題、證明問題、定點與定值、最值與范圍問題等。
高三數學知識點全總結范文(22篇)篇五
分層抽樣主要特征分層按比例抽樣,主要使用于總體中的個體有明顯差異。共同點:每個個體被抽到的概率都相等n/m。
定義。
一般地,在抽樣時,將總體分成互不交叉的層,然后按照一定的比例,從各層獨立地抽取一定數量的個體,將各層取出的個體合在一起作為樣本,這種抽樣方法是一種分層抽樣。
高三數學知識點全總結范文(22篇)篇六
1.向量運算的幾何形式和坐標形式,請注意:向量運算中向量起點、終點及其坐標的特征.
2.幾個概念:零向量、單位向量(與共線的單位向量是,平行(共線)向量(無傳遞性,是因為有)、相等向量(有傳遞性)、相反向量、向量垂直、以及一個向量在另一向量方向上的投影(在上的投影是).
3.兩非零向量平行(共線)的充要條件。
4.平面向量的基本定理:如果e1和e2是同一平面內的兩個不共線向量,那么對該平面內的任一向量a,有且只有一對實數,使a=e1+e2.
5.三點共線;。
6.向量的數量積:
高三數學知識點全總結范文(22篇)篇七
2.知直線縱截距,常設其方程為或;知直線橫截距,常設其方程為(直線斜率k存在時,為k的倒數)或知直線過點,常設其方程為.
(2)直線在坐標軸上的截距可正、可負、也可為0.直線兩截距相等直線的斜率為-1或直線過原點;直線兩截距互為相反數直線的斜率為1或直線過原點;直線兩截距絕對值相等直線的斜率為或直線過原點.
(3)在解析幾何中,研究兩條直線的位置關系時,有可能這兩條直線重合,而在立體幾何中一般提到的兩條直線可以理解為它們不重合.
4.線性規劃中幾個概念:約束條件、可行解、可行域、目標函數、最優解.
5.圓的方程:最簡方程;標準方程;。
6.解決直線與圓的關系問題有“函數方程思想”和“數形結合思想”兩種思路,等價轉化求解,重要的是發揮“圓的平面幾何性質(如半徑、半弦長、弦心距構成直角三角形,切線長定理、割線定理、弦切角定理等等)的作用!”
(1)過圓上一點圓的切線方程。
過圓上一點圓的切線方程。
過圓上一點圓的切線方程。
如果點在圓外,那么上述直線方程表示過點兩切線上兩切點的“切點弦”方程.
如果點在圓內,那么上述直線方程表示與圓相離且垂直于(為圓心)的直線方程,(為圓心到直線的距離).
7.曲線與的交點坐標方程組的解;。
過兩圓交點的圓(公共弦)系為,當且僅當無平方項時,為兩圓公共弦所在直線方程.
高三數學知識點全總結范文(22篇)篇八
整群抽樣又稱聚類抽樣。是將總體中各單位歸并成若干個互不交叉、互不重復的集合,稱之為群;然后以群為抽樣單位抽取樣本的一種抽樣方式。
應用整群抽樣時,要求各群有較好的代表性,即群內各單位的差異要大,群間差異要小。
優缺點。
整群抽樣的優點是實施方便、節省經費;。
整群抽樣的缺點是往往由于不同群之間的差異較大,由此而引起的抽樣誤差往往大于簡單隨機抽樣。
實施步驟。
先將總體分為i個群,然后從i個群鐘隨即抽取若干個群,對這些群內所有個體或單元均進行調查。抽樣過程可分為以下幾個步驟:
一、確定分群的標注。
二、總體(n)分成若干個互不重疊的部分,每個部分為一群。
三、據各樣本量,確定應該抽取的群數。
四、采用簡單隨機抽樣或系統抽樣方法,從i群中抽取確定的群數。
例如,調查中學生患近視眼的情況,抽某一個班做統計;進行產品檢驗;每隔8h抽1h生產的全部產品進行檢驗等。
與分層抽樣的區別。
整群抽樣與分層抽樣在形式上有相似之處,但實際上差別很大。
分層抽樣的樣本是從每個層內抽取若干單元或個體構成,而整群抽樣則是要么整群抽取,要么整群不被抽取。
高三數學知識點全總結范文(22篇)篇九
3.證明不等式時,有時構造函數,利用函數單調性很簡單。
1.證明線面位置關系,一般不需要去建系,更簡單;。
3.注意向量所成的角的余弦值(范圍)與所求角的余弦值(范圍)的關系。
1.搞清隨機試驗包含的所有基本事件和所求事件包含的基本事件的個數;。
2.搞清是什么概率模型,套用哪個公式;。
3.記準均值、方差、標準差公式;。
高三數學知識點全總結范文(22篇)篇十
優點:操作簡便易行。
缺點:總體過大不易實行。
方法。
(1)抽簽法。
一般地,抽簽法就是把總體中的n個個體編號,把號碼寫在號簽上,將號簽放在一個容器中,攪拌均勻后,每次從中抽取一個號簽,連續抽取n次,就得到一個容量為n的樣本。
(抽簽法簡單易行,適用于總體中的個數不多時。當總體中的個體數較多時,將總體“攪拌均勻”就比較困難,用抽簽法產生的樣本代表性差的可能性很大)。
(2)隨機數法。
隨機抽樣中,另一個經常被采用的方法是隨機數法,即利用隨機數表、隨機數骰子或計算機產生的隨機數進行抽樣。
高三數學知識點全總結范文(22篇)篇十一
1.向量運算的幾何形式和坐標形式,請注意:向量運算中向量起點、終點及其坐標的特征.
2.幾個概念:零向量、單位向量(與共線的單位向量是,平行(共線)向量(無傳遞性,是因為有)、相等向量(有傳遞性)、相反向量、向量垂直、以及一個向量在另一向量方向上的投影(在上的投影是).
3.兩非零向量平行(共線)的充要條件。
4.平面向量的基本定理:如果e1和e2是同一平面內的兩個不共線向量,那么對該平面內的任一向量a,有且只有一對實數,使a=e1+e2.
5.三點共線;。
6.向量的數量積:
將本文的word文檔下載到電腦,方便收藏和打印。
高三數學知識點全總結范文(22篇)篇十二
1、基本事件特點:任何兩個基本事件是互斥的;任何事件(除不可能事件)都可以表示成基本事件的和。
2、古典概率:具有下列兩個特征的隨機試驗的數學模型稱為古典概型:
(1)試驗中所有可能出現的基本事件只有有限個;。
(2)每個基本事件出現的可能性相等.
p(a)a中所含樣本點的個數na中所含樣本點的個數n.
3、幾何概率:如果隨機試驗的樣本空間是一個區域(可以是直線上的區間、平面或空間中的區域),且樣本空間中每個試驗結果的出現具有等可能性,那么規定事件a的概率為幾何概率.幾何概率具有無限性和等可能性。
4、古典概率和幾何概率的基本事件都是等可能的;但古典概率基本事件的個數是有限的,幾何概率的是無限個的.
計數與概率問題在近幾年的高考中都加大了考查的力度,每年都以解答題的形式出現。在復習過程中,由于知識抽象性強,學習中要注重基礎知識和基本方法,不可過深,過難。復習時可從最基本的公式,定理,題型入手,恰當選取典型例題,構建思維模式,造成思維依托和思維的合理定勢。
另外,要加強數學思想方法的訓練,這部分所涉及的數學思想主要有:分類討論思想、等價轉化思想、整體思想、數形結合思想,在概率和概率與統計中又體現了概率思想、統計思想、數學建模的思想等。在復習中應有意識用數學思想方法指導解題,不可就題論題,將問題孤立,片面強調單一知識和題型。
能力方面主要考查:運算能力、邏輯思維能力、抽象思維能力、分析問題和解決實際問題的.能力。在高考中本部分以考查實際問題為主,解決它不能機械地套用模式,而要認真分析,抽象出其中的數量關系,轉化為數學問題,再利用有關的數學知識加以解決。
高三數學知識點全總結范文(22篇)篇十三
中考很重要,數學不簡單。下面是中考數學知識點總結完整版,考前過一遍記憶更深刻!
知識點1:一元二次方程的基本概念。
1、一元二次方程3x2+5x-2=0的常數項是-2。
2、一元二次方程3x2+4x-2=0的一次項系數為4,常數項是-2。
3、一元二次方程3x2-5x-7=0的二次項系數為3,常數項是-7。
4、把方程3x(x-1)-2=-4x化為一般式為3x2-x-2=0。
知識點2:直角坐標系與點的位置。
1、直角坐標系中,點a(3,0)在y軸上。
2、直角坐標系中,x軸上的任意點的橫坐標為0。
3、直角坐標系中,點a(1,1)在第一象限。
4、直角坐標系中,點a(-2,3)在第四象限。
5、直角坐標系中,點a(-2,1)在第二象限。
知識點3:已知自變量的值求函數值。
1、當x=2時,函數y=的值為1。
2、當x=3時,函數y=的值為1。
3、當x=-1時,函數y=的值為1。
知識點4:基本函數的概念及性質。
1、函數y=-8x是一次函數。
2、函數y=4x+1是正比例函數。
3、函數是反比例函數。
4、拋物線y=-3(x-2)2-5的開口向下。
5、拋物線y=4(x-3)2-10的對稱軸是x=3。
6、拋物線的頂點坐標是(1,2)。
7、反比例函數的圖象在第一、三象限。
知識點5:數據的平均數中位數與眾數。
1、數據13,10,12,8,7的平均數是10。
2、數據3,4,2,4,4的眾數是4。
3、數據1,2,3,4,5的中位數是3。
知識點6:特殊三角函數值。
1、cos30°=。
2、sin260°+cos260°=1。
3、2sin30°+tan45°=2。
4、tan45°=1。
5、cos60°+sin30°=1。
知識點7:圓的基本性質。
1、半圓或直徑所對的`圓周角是直角。
2、任意一個三角形一定有一個外接圓。
3、在同一平面內,到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓。
4、在同圓或等圓中,相等的圓心角所對的弧相等。
5、同弧所對的圓周角等于圓心角的一半。
6、同圓或等圓的半徑相等。
7、過三個點一定可以作一個圓。
8、長度相等的兩條弧是等弧。
9、在同圓或等圓中,相等的圓心角所對的弧相等。
10、經過圓心平分弦的直徑垂直于弦。
知識點8:直線與圓的位置關系。
1、直線與圓有唯一公共點時,叫做直線與圓相切。
2、三角形的外接圓的圓心叫做三角形的外心。
3、弦切角等于所夾的弧所對的圓心角。
4、三角形的內切圓的圓心叫做三角形的內心。
5、垂直于半徑的直線必為圓的切線。
6、過半徑的外端點并且垂直于半徑的直線是圓的切線。
7、垂直于半徑的直線是圓的切線。
8、圓的切線垂直于過切點的半徑。
高三數學知識點全總結范文(22篇)篇十四
(1)先看“充分條件和必要條件”
當命題“若p則q”為真時,可表示為p=q,則我們稱p為q的充分條件,q是p的必要條件。這里由p=q,得出p為q的充分條件是容易理解的。
但為什么說q是p的必要條件呢?
事實上,與“p=q”等價的逆否命題是“非q=非p”。它的意思是:若q不成立,則p一定不成立。這就是說,q對于p是必不可少的,因而是必要的。
(2)再看“充要條件”
(3)定義與充要條件。
數學中,只有a是b的充要條件時,才用a去定義b,因此每個定義中都包含一個充要條件。如“兩組對邊分別平行的四邊形叫做平行四邊形”這一定義就是說,一個四邊形為平行四邊形的充要條件是它的兩組對邊分別平行。
顯然,一個定理如果有逆定理,那么定理、逆定理合在一起,可以用一個含有充要條件的語句來表示。
“充要條件”有時還可以改用“當且僅當”來表示,其中“當”表示“充分”?!皟H當”表示“必要”。
(4)一般地,定義中的條件都是充要條件,判定定理中的條件都是充分條件,性質定理中的“結論”都可作為必要條件。
高三數學知識點全總結范文(22篇)篇十五
(1)先看“充分條件和必要條件”
當命題“若p則q”為真時,可表示為p=q,則我們稱p為q的充分條件,q是p的必要條件。這里由p=q,得出p為q的充分條件是容易理解的。
但為什么說q是p的必要條件呢?
事實上,與“p=q”等價的逆否命題是“非q=非p”。它的意思是:若q不成立,則p一定不成立。這就是說,q對于p是必不可少的,因而是必要的。
(2)再看“充要條件”
回憶一下初中學過的“等價于”這一概念;如果從命題a成立可以推出命題b成立,反過來,從命題b成立也可以推出命題a成立,那么稱a等價于b,記作a=b。“充要條件”的含義,實際上與“等價于”的含義完全相同。也就是說,如果命題a等價于命題b,那么我們說命題a成立的充要條件是命題b成立;同時有命題b成立的充要條件是命題a成立。
(3)定義與充要條件。
數學中,只有a是b的充要條件時,才用a去定義b,因此每個定義中都包含一個充要條件。如“兩組對邊分別平行的四邊形叫做平行四邊形”這一定義就是說,一個四邊形為平行四邊形的充要條件是它的兩組對邊分別平行。
顯然,一個定理如果有逆定理,那么定理、逆定理合在一起,可以用一個含有充要條件的語句來表示。
“充要條件”有時還可以改用“當且僅當”來表示,其中“當”表示“充分”?!皟H當”表示“必要”。
(4)一般地,定義中的條件都是充要條件,判定定理中的條件都是充分條件,性質定理中的“結論”都可作為必要條件。
高三數學知識點全總結范文(22篇)篇十六
高考主要是考函數和導數,這是我們整個高中階段里最核心的板塊,在這個板塊里,重點考察兩個方面:第一個函數的性質,包括函數的單調性、奇偶性;第二是函數的解答題,重點考察的是二次函數和高次函數,分函數和它的一些分布問題,但是這個分布重點還包含兩個分析就是二次方程的分布的問題,這是第一個板塊。
平面向量和三角函數。
高考數學重點考察三個方面:一個是劃減與求值,第一,重點掌握公式,重點掌握五組基本公式。第二,是三角函數的圖像和性質,這里重點掌握正弦函數和余弦函數的性質,第三,正弦定理和余弦定理來解三角形。難度比較小。
數列。
數列這個板塊,在高考中重點考兩個方面:一個通項;一個是求和。
空間向量和立體幾何。
在高考數學考試里面重點考察兩個方面:一個是證明;一個是計算。
高三數學知識點全總結范文(22篇)篇十七
學數學要有階段目標,階段化小目標就是你在當前的一個階段內想達到的程度,例如在月考時要考到班級多少名,這周要看什么科目書籍,什么時候看等。下面是小編為大家整理的高三數學知識點總結拋物線,希望對您有所幫助!
1、已知切點q(x0,y0),若y?=2px,則切線y0y=p(x0+x);若x?=2py,則切線x0x=p(y0+y)等。
2、已知切點q(x0,y0)。
若y?=2px,則切線y0y=p(x0+x)。
若x?=2py,則切線x0x=p(y0+y)。
3、已知切線斜率k。
若y?=2px,則切線y=kx+p/(2k)。
若x?=2py,則切線x=y/k+pk/2(y=kx-pk?/2)。
1、過拋物線焦弦兩端的切線的交點在拋物線的準線上。
2、過拋物線焦弦兩端的切線互相垂直。
3、以拋物線焦弦為直徑的圓與拋物線的準線相切。
4、過拋物線焦弦兩端的切線的交點與拋物線的焦點的連線和焦點弦互相垂直。
5、過焦弦兩端的切線的交點與焦弦中點的連線,被拋物線所平分。
1、做題后加強反思。
高三學生一定要明確一點,就是現在正在做的題,一定不是考試的題。所以高三學生做題不是目的,學會運用數學題目的解題思路和方法才是正道。因此,高三學生對于每道題都要加以反思。
2、主動復習總結。
高三學生想要學好數學,進行章節總結是非常重要的。在初中的時候,都是教師替學生做總結;但是到了高中之后,就需要學生自己來做了。所以高三學生需要自己常總結,主動復習。
1.先看筆記后做作業。
有的高一學生感到,老師講過的,自己已經聽得明明白白了。但是,為什么自己一做題就困難重重了呢?其原因在于,學生對教師所講的內容的理解,還沒能達到教師所要求的層次。
因此,每天在做作業之前,一定要把課本的有關內容和當天的課堂筆記先看一看。能否堅持如此,常常是好學生與差學生的最大區別。尤其練習題不太配套時,作業中往往沒有老師剛剛講過的題目類型,因此不能對比消化。如果自己又不注意對此落實,天長日久,就會造成極大損失。
2.做題之后加強反思。
學生一定要明確,現在正做著的題,一定不是考試的題目。而是要運用現在正做著的題目的解題思路與方法。因此,要把自己做過的每道題加以反思,總結一下自己的收獲。
要總結出:這是一道什么內容的題,用的是什么方法。做到知識成片,問題成串。日久天長,構建起一個內容與方法的科學的網絡系統。俗話說:“有錢難買回頭看”。做完作業,回頭細看,價值極大。這個回頭看,是學習過程中很重要的一個環節。
第一:函數和導數。這是我們整個高中階段里最核心的板塊,在這個板塊里,重點考察兩個方面:第一個函數的性質,包括函數的單調性、奇偶性;第二是函數的解答題,重點考察的是二次函數和高次函數,分函數和它的一些分布問題,但是這個分布重點還包含兩個分析就是二次方程的分布的問題,這是第一個板塊。
第二:平面向量和三角函數。重點考察三個方面:第一是化簡與求值,重點掌握五組基本公式。第二是三角函數的圖像和性質,這里重點掌握正弦函數和余弦函數的性質。第三是正弦定理和余弦定理來解三角形,難度比較小。
第三:數列。數列這個板塊,重點考兩個方面:一個通項;一個是求和。
第四:空間向量和立體幾何。在里面重點考察兩個方面:一個是證明;一個是計算。
第五:概率和統計。這一板塊主要是屬于數學應用問題的范疇,當然應該掌握下面幾個方面,第一是等可能的概率,第二是事件,第三是獨立事件,還有獨立重復事件發生的概率。
高三數學知識點全總結范文(22篇)篇十八
牛頓運動定律(牛頓第一、第二、第三定律);。
力學的基本規律之:萬有引力定律;。
動量守恒定律(四類守恒條件、方程、應用過程);。
功能基本關系(功是能量轉化的量度)。
功能原理(非重力做功與物體機械能變化之間的關系);。
力學的基本規律之:機械能守恒定律(守恒條件、方程、應用步驟);。
簡諧波的傳播特點;波長、波速、周期的關系;簡諧波的圖像應用。
文檔為doc格式。
高三數學知識點全總結范文(22篇)篇十九
一、內環境:(由細胞外液構成的液體環境)。
二、穩態。
(1)概念:正常機體通過調節作用,使各個器官、系統協調活動,共同維持內環境的相對穩定狀態叫做穩態。
(2)意義:維持內環境在一定范圍內的穩態是生命活動正常進行的必要條件。
(3)調節機制:神經——體液——免疫調節網絡。
高三數學知識點全總結范文(22篇)篇二十
由公式寫出的后續項就不一樣了,因此,通項公式的歸納不僅要看它的前幾項,更要依據數列的構成規律,多觀察分析,真正找到數列的內在規律,由數列前幾項寫出其通項公式,沒有通用的方法可循.
再強調對于數列通項公式的理解注意以下幾點:
(1)數列的通項公式實際上是一個以正整數集n_或它的有限子集{1,2,…,n}為定義域的函數的表達式.
(2)如果知道了數列的通項公式,那么依次用1,2,3,…去替代公式中的n就可以求出這個數列的各項;同時,用數列的通項公式也可判斷某數是否是某數列中的一項,如果是的話,是第幾項.
(3)如所有的函數關系不一定都有解析式一樣,并不是所有的數列都有通項公式.
如2的不足近似值,精確到1,0.1,0.01,0.001,0.0001,…所構成的數列1,1.4,1.41,1.414,1.4142,…就沒有通項公式.
(4)有的數列的通項公式,形式上不一定是的,正如舉例中的:
(5)有些數列,只給出它的前幾項,并沒有給出它的構成規律,那么僅由前面幾項歸納出的數列通項公式并不.
高三數學知識點全總結范文(22篇)篇二十一
技巧一提前進入“角色”
考前晚上要睡足八個小時,早晨最好吃些清淡的早餐,帶齊一切高考用具,如筆、橡皮、作圖工具、身分證、準考證等。
提前半小時到達高考考區,一方面可以消除新異刺激,穩定情緒,從容進場,另一方面也留有時間提前進入“角色”讓大腦開始簡單的數學活動。回憶一下高考數學常用公式,有助于高考數學超常發揮。
技巧二情緒要自控。
轉移注意法:把注意力轉移到對你感興趣的事情上或滑稽事情的回憶中。
自我安慰法:如“我經過的考試多了,沒什么了不起”等。
抑制思維法:閉目而坐,氣貫丹田,四肢放松,深呼吸,慢吐氣,如此進行到高考發卷時。
技巧三摸透“題情”
剛拿到高考數學試卷,不要匆匆作答,可先從頭到尾通覽全卷,通覽全卷是克服“前面難題做不出,后面易題沒時間做”的有效措施,也從根本上防止了“漏做題”。
從高考數學卷面上獲取最多的信息,為實施正確的解題策略作準備,順利解答那些一眼看得出結論的簡單選擇或填空題,這樣可以使緊張的情緒立即穩定,使高考數學能夠超常發揮。
技巧四信心要充足,暗示靠自己。
高考數學答卷中,見到簡單題,要細心,莫忘乎所以,謹防“大意失荊州”。面對偏難的題,要耐心,不能急。
技巧五數學答題有先有后。
1、答題應先易后難,先做簡單的數學題,再做復雜的數學題;根據自己的實際情況,跳過實在沒有思路的高考數學題,從易到難。
2、先高分后低分,在高考數學考試的后半段時要特別注重時間,如兩道題都會做,先做高分題,后做低分題,對那些拿不下來的數學難題也就是高分題應“分段得分”,以增加在時間不足前提下的得到更多的分,這樣在高考中就會增加數學超常發揮的幾率。
高三數學知識點全總結范文(22篇)篇二十二
數列是高中數學的重要內容,又是學習高等數學的基礎。高考對本章的考查比較全面,等差數列,等比數列的考查每年都不會遺漏。有關數列的試題經常是綜合題,經常把數列知識和指數函數、對數函數和不等式的知識綜合起來,試題也常把等差數列、等比數列,求極限和數學歸納法綜合在一起。探索性問題是高考的熱點,常在數列解答題中出現。本章中還蘊含著豐富的數學思想,在主觀題中著重考查函數與方程、轉化與化歸、分類討論等重要思想,以及配方法、換元法、待定系數法等基本數學方法。
近幾年來,高考關于數列方面的命題主要有以下三個方面;(1)數列本身的有關知識,其中有等差數列與等比數列的概念、性質、通項公式及求和公式。(2)數列與其它知識的結合,其中有數列與函數、方程、不等式、三角、幾何的結合。(3)數列的應用問題,其中主要是以增長率問題為主。試題的難度有三個層次,小題大都以基礎題為主,解答題大都以基礎題和中檔題為主,只有個別地方用數列與幾何的綜合與函數、不等式的綜合作為最后一題難度較大。
知識整合。
進一步培養學生閱讀理解和創新能力,綜合運用數學思想方法分析問題與解決問題的能力。
3、培養學生善于分析題意,富于聯想,以適應新的背景,新的設問方式,提高學生用函數的思想、方程的思想研究數列問題的自覺性、培養學生主動探索的精神和科學理性的思維方法。