知識點總結可以幫助我們建立起自己的知識體系,形成系統化的學習能力。小編為大家整理了一些經典的知識點總結范文,希望能對大家的學習有所幫助。
云南省數學知識點總結(優秀18篇)篇一
直角三角形的判定方法:
判定1:定義,有一個角為90°的三角形是直角三角形。
判定2:判定定理:以a、b、c為邊的三角形是以c為斜邊的直角三角形。如果三角形的三邊a,b,c滿足a2+b2=c2,那么這個三角形就是直角三角形。(勾股定理的逆定理)。
判定3:若一個三角形30°內角所對的邊是某一邊的一半,則這個三角形是以這條長邊為斜邊的直角三角形。
判定4:兩個銳角互為余角(兩角相加等于90°)的三角形是直角三角形。
判定5:若兩直線相交且它們的斜率之積互為負倒數,則兩直線互相垂直。那么。
判定6:若在一個三角形中一邊上的中線等于其所在邊的一半,那么這個三角形為直角三角形。
判定7:一個三角形30°角所對的邊等于這個三角形斜邊的一半,則這個三角形為直角三角形。(與判定3不同,此定理用于已知斜邊的三角形。)。
云南省數學知識點總結(優秀18篇)篇二
把一個圖形繞某一點o轉動一個角度的圖形變換叫做旋轉,其中o叫做旋轉中心,轉動的角叫做旋轉角。
2、性質
(1)對應點到旋轉中心的距離相等。
(2)對應點與旋轉中心所連線段的夾角等于旋轉角。
把一個圖形繞著某一個點旋轉180°,如果旋轉后的圖形能夠和原來的圖形互相重合,那么這個圖形叫做中心對稱圖形,這個點就是它的對稱中心。
2、性質
(1)關于中心對稱的兩個圖形是全等形。
(2)關于中心對稱的兩個圖形,對稱點連線都經過對稱中心,并且被對稱中心平分。
(3)關于中心對稱的兩個圖形,對應線段平行(或在同一直線上)且相等。
3、判定
如果兩個圖形的對應點連線都經過某一點,并且被這一點平分,那么這兩個圖形關于這一點對稱。
4、中心對稱圖形
把一個圖形繞某一個點旋轉180°,如果旋轉后的圖形能夠和原來的圖形互相重合,那么這個圖形叫做中心對稱圖形,這個店就是它的對稱中心。
考點五、坐標系中對稱點的特征(3分)
1、關于原點對稱的點的特征
兩個點關于原點對稱時,它們的坐標的符號相反,即點p(x,y)關于原點的對稱點為p’(―x,―y)
2、關于x軸對稱的點的特征
兩個點關于x軸對稱時,它們的坐標中,x相等,y的符號相反,即點p(x,y)關于x軸的對稱點為p’(x,―y)
3、關于y軸對稱的點的特征
兩個點關于y軸對稱時,它們的坐標中,y相等,x的符號相反,即點p(x,y)關于y軸的對稱點為p’(―x,y)
大部分學生在學習中或多或少的都會積累一些問題,這些問題平時我們可能不是很在意,那么到了初二后就會突顯出來。首先新生在學習數學的時候常遇到的就是對于知識點的理解不到位,還停留在一知半解的層次上面。有的學生在解答數學題的時候始終不能把握解題技巧,也就是說學生缺乏對待數學的舉一反三能力。
還有的學生在解答數學題時效率太低,無法再規定的時間內完成解題,對于初中的考試節奏還沒辦法適應。一些學生還沒有養成一個總結歸納的習慣,不會歸納知識點,不會歸納錯題。這些都是導致學生學不好數學的原因。
1、一個圖形的面積等于它的各部分面積的和;
2、兩個全等圖形的面積相等;
5、相似三角形的面積比等于相似比的平方;
7、任何一條曲線都可以用一個函數y=f(x)來表示,那么,這條曲線所圍成的面積就是對x求積分。
云南省數學知識點總結(優秀18篇)篇三
:正、負數的概念:我們把像3、2、+0.5、0.03%這樣的數叫做正數,它們都是比0大的數;像-3、-2、-0.5、-0.03%這樣數叫做負數。它們都是比0小的數。0既不是正數也不是負數。我們可以用正數與負數表示具有相反意義的量。
:有理數的概念和分類:整數和分數統稱有理數。有理數的分類主要有兩種:
注:有限小數和無限循環小數都可看作分數。
:數軸的概念:像下面這樣規定了原點、正方向和單位長度的直線叫做數軸。
:絕對值的概念:
(1)幾何意義:數軸上表示a的點與原點的距離叫做數a的絕對值,記作|a|;
(2)代數意義:一個正數的絕對值是它的本身;一個負數的絕對值是它的相反數;零的絕對值是零。
注:任何一個數的絕對值均大于或等于0(即非負數).
:相反數的概念:
(2)代數意義:符號不同但絕對值相等的兩個數叫做互為相反數。0的相反數是0。
:有理數大小的比較:
有理數大小比較的基本法則:正數都大于零,負數都小于零,正數大于負數。
數軸上有理數大小的比較:在數軸上表示的兩個數,右邊的數總比左邊的大。
用絕對值進行有理數大小的比較:兩個正數,絕對值大的正數大;兩個負數,絕對值大的負數反而小。
:有理數加法法則:
(1)同號兩數相加,取相同的符號,并把絕對值相加;
(3)一個數與0相加,仍得這個數.
:有理數加法運算律:
加法交換律:兩個數相加,交換加數的位置,和不變。
加法結合律:三個數相加,先把前兩個數相加,或者先把后兩個數相加,和不變。
:有理數減法法則:減去一個數,等于加上這個數的相反數。
:有理數加減混合運算:根據有理數減法的法則,一切加法和減法的運算,都可以統一成加法運算,然后省略括號和加號,并運用加法法則、加法運算律進行計算。
云南省數學知識點總結(優秀18篇)篇四
3、一個數與0相加,仍得這個數。
有理數加法的運算律
1、加法的交換律:a+b=b+a;
2、加法的結合律:(a+b)+c=a+(b+c)
有理數減法法則
減去一個數,等于加上這個數的相反數;即a—b=a+(—b)
有理數乘法法則
1、兩數相乘,同號為正,異號為負,并把絕對值相乘;
2、任何數同零相乘都得零;
3、幾個數相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負因式的個數決定。
云南省數學知識點總結(優秀18篇)篇五
平分弦的直徑垂直弦,并且平分弦所對的兩條弧。
在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦也相等。
在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半;
半圓(或直徑)所對的圓周角是直角,90度的圓周角所對的弦是直徑。
點在圓外。
點在圓上d=r。
點在圓內d。
定理:不在同一條直線上的三個點確定一個圓。
三角形的外接圓:經過三角形的三個頂點的圓,外接圓的圓心是三角形的三條邊的垂直平分線的交點,叫做三角形的外心。
相交d。
相切d=r。
相離dr。
切線的性質定理:圓的切線垂直于過切點的半徑;
切線的判定定理:經過圓的外端并且垂直于這條半徑的直線是圓的切線;
切線長定理:從圓外一點引圓的兩條切線,它們的切線長相等,這一點和圓心的連線平分兩條切線的夾角。
三角形的內切圓:和三角形各邊都相切的圓為它的內切圓,圓心是三角形的三條角平分線的交點,為三角形的內心。
外離dr+r。
外切d=r+r。
相交r—r。
內切d=r—r。
內含d。
正多邊形的中心:外接圓的圓心。
正多邊形的半徑:外接圓的半徑。
正多邊形的中心角:沒邊所對的圓心角。
正多邊形的邊心距:中心到一邊的距離。
弧長。
扇形面積:
側面積:
全面積。
第五章概率初步。
1、概率意義:在大量重復試驗中,事件a發生的頻率穩定在某個常數p附近,則常數p叫做事件a的概率。
2、用列舉法求概率。
3、用頻率去估計概率。
云南省數學知識點總結(優秀18篇)篇六
相似比:相似多邊形對應邊的比值。
判定:
平行于三角形一邊的直線和其它兩邊相交,所構成的三角形和原三角形相似;
如果兩個三角形的三組對應邊的比相等,那么這兩個三角形相似;
如果兩個三角形的兩組對應邊的比相等,并且相應的夾角相等,那么兩個三角形相似;
如果一個三角形的兩個角與另一個三角形的兩個角對應相等,那么兩個三角形相似。
相似三角形(多邊形)的周長的比等于相似比;
相似三角形(多邊形)的面積的比等于相似比的平方。
位似圖形:兩個多邊形相似,而且對應頂點的連線相交于一點,對應邊互相平行,這樣的兩個圖形叫位似圖形,相交的點叫位似中心。
云南省數學知識點總結(優秀18篇)篇七
完成作業前一定要再閱讀一遍教材,認真回顧老師在課堂上所講的內容,然后再去寫作業。作業一定要養成獨立思考的好習慣,針對一道問題要學會多從不同的方法,不同的角度入手,多從典型題目中探索多種解題方法,從中得到聯想和啟發。
在較短的時間里進行知識的鞏固,對知識的理解及運用的效果是最佳的,反之則效果不會明顯,要做到學而時習之。
2、反思。
學生在完成學習任務的基礎上還要進行知識的梳理,多樹立數學解題的思想,比如分類的思想,整體的思想,方程的思想,數形結合的思想,方程的思想函數的思想等常用的解題思想。同時還要對重點習題多問幾個為什么,如果把這些題目中所示的已知條件改變、添加一些條件,結論與條件互換,原來的結論還存在嗎?只有多多練習才會做到游刃有余。
3、整理。
對于數學學習中,如試卷、作業中出現的錯誤,一定要及時弄懂,分析好自己做錯題目的原因,最好在錯題本中及時記錄下來,每隔一段時間就鞏固一下。在學習中絕對不能讓同樣的錯誤出現第二次。
數學是人類文化的重要組成部分,良好的數學素養是當代社會每個公民應該具備的基本素養。作為促進學生全面發展教育的重要組成部分,數學教學既要是學生掌握現代生活和學習中所需要的數學知識與技能,更要發揮數學在培養人的思維能力和創造能力。學習數學要做到有方法、有計劃與合理的安排,只有做到循序漸進,才會獲得最終的勝利。
云南省數學知識點總結(優秀18篇)篇八
2.性質:(1)軸對稱圖形的對稱軸,是任何一對對應點所連線段的垂直平分線。
(2)角平分線上的點到角兩邊距離相等。
(3)線段垂直平分線上的任意一點到線段兩個端點的距離相等。
(4)與一條線段兩個端點距離相等的點,在這條線段的垂直平分線上。
(5)軸對稱圖形上對應線段相等、對應角相等。
3.等腰三角形的性質:等腰三角形的兩個底角相等,(等邊對等角)。
4.等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合,簡稱為“三線合一”。
5.等腰三角形的判定:等角對等邊。
6.等邊三角形角的特點:三個內角相等,等于60°,
7.等邊三角形的判定:三個角都相等的三角形是等腰三角形。
有一個角是60°的等腰三角形是等邊三角形。
有兩個角是60°的三角形是等邊三角形。
8.直角三角形中,30°角所對的直角邊等于斜邊的'一半。
9.直角三角形斜邊上的中線等于斜邊的一半。
本章內容要求學生在建立在軸對稱概念的基礎上,能夠對生活中的圖形進行分析鑒賞,親身經歷數學美,正確理解等腰三角形、等邊三角形等的性質和判定,并利用這些性質來解決一些數學問題。
云南省數學知識點總結(優秀18篇)篇九
1、定義:頂點在圓上,角的兩邊都與圓相交的角。(兩條件缺一不可)
2、定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半。
3、推論:1)在同圓或等圓中,相等的圓周角所對的弧相等。
2)直徑(半圓)所對的圓周角是直角;900的圓周角所對的弦為直徑
4、圓內接四邊形的性質定理:圓內接四邊形的對角互補。(任意一個外角等于它的內對角)
補充:1、兩條平行弦所夾的弧相等。
2、圓的兩條弦1)在圓外相交時,所夾角等于它所對的兩條弧度數差的一半。2)在圓內相交時,所夾的角等于它所夾兩條弧度數和的一半。
3、同弧所對的(在弧的同側)圓內部角其次是圓周角,最小的是圓外角。
1.數據13,10,12,8,7的平均數是10.
2.數據3,4,2,4,4的眾數是4.
3.數據1,2,3,4,5的中位數是3.
1.大于0的數叫做正數。
2.在正數前面加上負號“-”的數叫做負數。
3.整數和分數統稱為有理數。
4.人們通常用一條直線上的點表示數,這條直線叫做數軸。
5.在直線上任取一個點表示數0,這個點叫做原點。
6.一般的,數軸上表示數a的點與原點的距離叫做數a的絕對值。
7.由絕對值的定義可知:
一個正數的絕對值是它本身;
一個負數的絕對值是它的相反數;
0的絕對值是0。
8.正數大于0,0大于負數,正數大于負數。
9.兩個負數,絕對值大的反而小。
10.有理數加法法則:
(1)同號兩數相加,取相同的符號,并把絕對值相加。
(2)絕對值不相等的異號兩數相加,取絕對值較大的加數的負號,并用較大的絕對值減去較小的絕對值,互為相反數的兩個數相加得0。
(3)一個數同0相加,仍得這個數。
11.有理數的加法中,兩個數相加,交換交換加數的位置,和不變。
12.有理數的加法中,三個數相加,先把前兩個數相加,或者先把后兩個數相加,和不變。
13.有理數減法法則:減去一個數,等于加上這個數的相反數。
14.有理數乘法法則:兩數相乘,同號得正,異號得負,并把絕對值向乘。任何數同0相乘,都得0。
15.有理數中仍然有:乘積是1的兩個數互為倒數。
16.一般的,有理數乘法中,兩個數相乘,交換因數的位置,積相等。
17.三個數相乘,先把前兩個數相乘,或者先把后兩個數相乘,積相等。
18.一般地,一個數同兩個數的和相乘,等于把這個數分別同這兩個數相乘,再把積相加。
19.有理數除法法則:除以一個不等于0的數,等于乘這個數的倒數。
20.兩數相除,同號得正,異號得負,并把絕對值相除。0除以任何一個不等于0的數,都得0。
云南省數學知識點總結(優秀18篇)篇十
1、課前預習:首先上課前要做預習,課前預習能提前了解將要學習的知識。
2、記筆記:指的是課堂筆記,每節課時間有限,老師一般講的都是精華部分。
3、課后復習:通預習一樣,也是行之有效的方法。
4、涉獵課外習題:多涉獵一些課外習題,學習它們的解題思路和方法。
5、學會歸類總結:學習數學記得東西很多,如果單純的記憶每個公式,不但增加記憶量而且容易忘。
6、建立糾錯本:把經常出錯的.題目集中在一起。
7、寫考試總結:考試總結可以幫助找出學習之中不足之處,以及知識的薄弱環節。
8、培養學習興趣:興趣是最好的老師,只有有了興趣才會自主自發的進行學習,學習效率才會提高。
云南省數學知識點總結(優秀18篇)篇十一
1.概率與統計:包括概率、統計、概率的意義、一維和二維正態分布、樣本和抽樣分布、參數估計、假設檢驗、方差分析、回歸分析等。
2.微積分:包括極限、導數、微分、不定積分、定積分、常微分方程、偏微分方程、差分方程等。
3.線性代數:包括矩陣、向量、線性方程組、矩陣的相似對角化、二次型、線性空間、線性變換、矩陣的行列式、矩陣的逆矩陣、矩陣的秩、向量組的相關性、向量組的極大線性無關組等。
4.概率論與數理統計:包括隨機事件與概率、概率的基本性質與運算法則、古典概型、條件概率、獨立性、隨機變量與分布函數、正態分布、二維隨機變量與分布函數、條件概率與相互獨立性、期望、方差、協方差與相關系數、矩、中心極限定理等。
5.平面幾何:包括點和距離、平行和垂直、三角形、四邊形、圓和扇形、平面圖形和空間圖形等。
6.平面解析幾何:包括點與線的坐標、直線的方程與性質、圓的標準方程與性質、橢圓的標準方程與性質、雙曲線的標準方程與性質、拋物線的標準方程與性質、參數方程與極坐標方程等。
7.集合與函數:包括集合與集合運算、函數與映射、函數圖像與性質、指數與指數冪、對數與對數運算、函數圖像變換等。
8.三角函數:包括三角函數的概念與圖像、同角三角函數基本關系式、正弦函數和余弦函數的圖像與性質、正切函數的圖像與性質、兩角和與差的正弦、余弦和正切函數、二倍角公式等。
9.數列:包括數列的概念與表示、等差數列與等比數列的概念與性質、數列的通項公式與通項公式求法、數列的求和公式、數列的極限等。
10.立體幾何:包括多面體和旋轉體的體積和表面積、平面基本性質、直線和平面、平面和平面、直線、平面之間的位置關系、平行和垂直的判定和性質、以及角度和平面角、距離等。
以上是高中數學知識點總結,具體的學習方法和應對考試技巧需要根據個人情況來制定。
云南省數學知識點總結(優秀18篇)篇十二
(1)三角形中位線定義:連接三角形兩邊中點的線段叫做三角形的中位線。
(2)梯形中位線定義:連接梯形兩腰中點的線段叫做梯形的中位線。
注意:
(1)要把三角形的中位線與三角形的中線區分開。三角形中線是連接一頂點和它的對邊中點的線段,而三角形中位線是連接三角形兩邊中點的線段。
(2)梯形的中位線是連接兩腰中點的線段而不是連結兩底中點的線段。
(3)兩個中位線定義間的聯系:可以把三角形看成是上底為零時的梯形,這時三角形的中位線就變成梯形的中位線。
(1)三角形中位線定理:三角形的中位線平行于第三邊并且等于它的一半.
(2)梯形中位線定理:梯形的中位線平行于兩底,并且等于兩底和的一半.
三角形有三條中位線,首尾相接時,每個小三角形面積都等于原三角形的四分之一,這四個三角形都互相全等。
云南省數學知識點總結(優秀18篇)篇十三
1、買文具---(小面額的人民幣)。
2、買衣服---(大面額的人民幣)。
3、小小商店---(進行有關錢款的簡單計算)。
買文具(小面額的人民幣)。
1、認識各種小面額的人民幣。
2、體會小面額人民幣之間的換算關系。
3、從實際問題中理解“付出的錢、應付的錢、應找回的錢”三者之間的關系。
4、在購物情景中進行有關錢款的簡單計算。
買衣服(大面額的人民幣)。
1、讓學生在活動中認識大面額的人民幣,能從相同點和不同點上辨認。
2、會計算大面額人民幣之間的換算。
3、在購物活動中體會大面額人民幣的作用,運用人民幣的兌換知識,初步掌握付錢的方法。
小小商店。
1、在購物情景中會進行有關錢款的簡單計算。
2、通過購物中的活動,了解付費的方式是多樣化的。
3、通過購物的活動,鞏固復習100以內的加減法計算。
4、購物中能解決一些簡單的實際問題。
云南省數學知識點總結(優秀18篇)篇十四
經過一點可以作無數個圓。
經過兩點也可以作無數個圓,且圓心都在連結這兩點的線段的垂直平分線上。
定理:過不共線的三個點,可以作且只可以作一個圓。
推論:三角形的三邊垂直平分線相交于一點,這個點就是三角形的外心。
三角形的三條高線的交點叫三角形的垂心。
1.2垂徑定理。
圓是中心對稱圖形;圓心是它的對稱中心。
圓是周對稱圖形,任一條通過圓心的直線都是它的對稱軸。
定理:垂直于弦的直徑平分這條弦,并且評分弦所對的兩條弧。
推論1:平分弦(不是直徑)的直徑垂直于弦并且平分弦所對的兩條弧。
推論2:弦的垂直平分弦經過圓心,并且平分弦所對的兩條弧。
推論3:平分弦所對的一條弧的直徑,垂直評分弦,并且平分弦所對的另一條弧。
1.3弧、弦和弦心距。
定理:在同圓或等圓中,相等的弧所對的弦相等,所對的弦的弦心距相等。
二圓與直線的位置關系。
2.1圓與直線的位置關系。
如果一條直線和一個圓沒有公共點,我們就說這條直線和這個圓相離。
定理:經過圓的半徑外端點,并且垂直于這條半徑的直線是這個圓的切線。
定理:圓的切線垂直經過切點的半徑。
推論1:經過圓心且垂直于切線的直線必經過切點。
推論2:經過切點且垂直于切線的直線必經過圓心。
直線和圓的位置關系只能由相離、相切和相交三種。
2.2三角形的內切圓。
定理:三角形的三個內角平分線交于一點,這點是三角形的內心。
2.3切線長定理。
2.4圓的外切四邊形。
定理:圓的外切四邊形的兩組對邊的和相等。
定理:如果四邊形兩組對邊的和相等,那么它必有內切圓。
三圓與圓的位置關系。
3.1兩圓的位置關系。
經過兩個圓的圓心的直線,叫做兩圓的連心線,兩個圓心之間的距離叫做圓心距。
定理:兩圓的連心線是兩圓的對稱軸,并且兩圓相切時,它們切點在連心線上。
(1)兩圓外離dr+r。
(2)兩圓外切d=r+r。
(3)兩圓相交r-r。
(4)兩圓內切d=r-r(rr)。
(5)兩圓內含dr)。
特殊情況,兩圓是同心圓d=0。
3.2兩圓的公切線。
定理:兩圓的兩條外公切線的長相等;兩圓的兩條內公切線的長也相等。
云南省數學知識點總結(優秀18篇)篇十五
1、平面的基本性質:
公理1如果一條直線的兩點在一個平面內,那么這條直線在這個平面內;。
公理2過不在一條直線上的三點,有且只有一個平面;。
公理3如果兩個不重合的平面有一個公共點,那么它們有且只有一條過該點的公共直線。
2、空間點、直線、平面之間的位置關系:
直線與直線—平行、相交、異面;。
直線與平面—平行、相交、直線屬于該平面(線在面內,最易忽視);。
平面與平面—平行、相交。
3、異面直線:
平面外一點a與平面一點b的連線和平面內不經過點b的直線是異面直線(判定);。
所成的角范圍(0,90)度(平移法,作平行線相交得到夾角或其補角);。
兩條直線不是異面直線,則兩條直線平行或相交(反證);。
異面直線不同在任何一個平面內。
求異面直線所成的角:平移法,把異面問題轉化為相交直線的夾角。
二、空間中的平行關系。
1、直線與平面平行(核心)。
定義:直線和平面沒有公共點。
判定:不在一個平面內的一條直線和平面內的一條直線平行,則該直線平行于此平面(由線線平行得出)。
2、平面與平面平行。
定義:兩個平面沒有公共點。
判定:一個平面內有兩條相交直線平行于另一個平面,則這兩個平面平行。
性質:兩個平面平行,則其中一個平面內的直線平行于另一個平面;如果兩個平行平面同時與第三個平面相交,那么它們的交線平行。
3、常利用三角形中位線、平行四邊形對邊、已知直線作一平面找其交線。
三、空間中的垂直關系。
1、直線與平面垂直。
定義:直線與平面內任意一條直線都垂直。
判定:如果一條直線與一個平面內的兩條相交的直線都垂直,則該直線與此平面垂直。
性質:垂直于同一直線的兩平面平行。
推論:如果在兩條平行直線中,有一條垂直于一個平面,那么另一條也垂直于這個平面。
2、平面與平面垂直。
定義:兩個平面所成的二面角(從一條直線出發的兩個半平面所組成的圖形)是直二面角(二面角的平面角:以二面角的棱上任一點為端點,在兩個半平面內分別作垂直于棱的兩條射線所成的角)。
判定:一個平面過另一個平面的垂線,則這兩個平面垂直。
性質:兩個平面垂直,則一個平面內垂直于交線的直線與另一個平面垂直。
云南省數學知識點總結(優秀18篇)篇十六
(一)、有趣的“0”“一年級0”可以表示沒有,“0”可以參加計算,“0”在數中起到占位作用,“0”可以表示起點,表示0度。
(二)、基數與序數表示物體的多少時,用的是基數;表示物體排列的次序時,用的是序數。基數與序數不同,基數表示物體的多少,序數表示物體的排列次序。
(一)、數簡單圖形數零亂放置的物體或數某一類圖形的個數時,應先將所有物體依次標上序號,可以按照序號,順序觀察,數準指定的圖形。注意對于同一個物體,從不同的角度去觀察,觀察的結果也會不同。因此在數簡單圖形時,要善于從不同的角度觀察問題、分析問題。
(二)、數復雜圖形數復雜圖形時可以按大小分類來數。
(三)、數數按條件的要求去數。
比一比當比較的2個對象整齊的排列時,很容易采用連線比的方法比較出誰多誰少。如果比較的2個對象是雜亂排列的,可以通過數數目的方法進行比較。也可以采用分段比的方法。
(一)、擺一擺要善于尋找不同的方法。
(二)、移一移。
(一)、圖形變化的規律觀察圖形的變化,可以從圖形的形狀、位置、方向、數量、大小、顏色等方面入手,從中尋找規律。
(二)、數列的規律數列就是按一定規律排成的一列數。怎樣尋找已知數列的規律,并按規律填出指定的某個數是解題的關鍵。
(三)、數表的規律把一些數按照一定的規律,填在一個圖形固定的位置上,再把按照這一規律填出的圖形排列起來。從給出的圖形中尋找規律,按照規律填圖是解題的關鍵。
(一)、填數字給出的算式是一組,不同算式中相同圖形中所填的數字是相同的。在做這些題時,不要為只填出一個答案而滿足,應找出所有的答案。如果不必要一一列出時,應給以說明,這才是完整、正確的解答。
(二)、填符號比較2個數的大小,首先要比較2個數的位數,位數多的數大;其次,當2個數的位數相同時,從高位比起,相同數位上的數大的那個數就大。當2個數各個相同數位上的數都分別相同時,這2個數相等。
(1)同一個數分別加上(或減去)1個相等的數,所得的結果相等;
(2)同一個數分別加上2個不同的數,所加的哪個數大,那個算式的結果就大;
(3)同一個數分別減去2個不同的數,所減的哪個數小,那個算式的結果就大;
(4)2個不同的數減去同一個數,哪個被減數大,那個算式的結果就大。七、說道理做數學題,每一步都要有理由,要把道理想清楚,說出來。
應用題一道簡單的應用題,是由已知條件和所求問題組成的。一般先說題意,再列算式。
云南省數學知識點總結(優秀18篇)篇十七
集合部分一般以選擇題出現,屬容易題。重點考查集合間關系的理解和認識。近年的試題加強了對集合計算化簡能力的考查,并向無限集發展,考查抽象思維能力。在解決這些問題時,要注意利用幾何的直觀性,并注重集合表示方法的轉換與化簡。簡易邏輯考查有兩種形式:一是在選擇題和填空題中直接考查命題及其關系、邏輯聯結詞、“充要關系”、命題真偽的判斷、全稱命題和特稱命題的否定等,二是在解答題中深層次考查常用邏輯用語表達數學解題過程和邏輯推理。
函數是高考的重點內容,以選擇題和填空題的為載體針對性考查函數的定義域與值域、函數的性質、函數與方程、基本初等函數(一次和二次函數、指數、對數、冪函數)的應用等,分值約為10分,解答題與導數交匯在一起考查函數的性質。導數部分一方面考查導數的運算與導數的幾何意義,另一方面考查導數的簡單應用,如求函數的單調區間、極值與最值等,通常以客觀題的形式出現,屬于容易題和中檔題,三是導數的綜合應用,主要是和函數、不等式、方程等聯系在一起以解答題的形式出現,如一些不等式恒成立問題、參數的取值范圍問題、方程根的個數問題、不等式的證明等問題。
一是考查空間幾何體的結構特征、直觀圖與三視圖;二是考查空間點、線、面之間的位置關系;三是考查利用空間向量解決立體幾何問題:利用空間向量證明線面平行與垂直、求空間角等(文科不要求)、在高考試卷中,一般有1~2個客觀題和一個解答題,多為中檔題。
一般有1~2個客觀題和1個解答題,其中客觀題主要考查直線斜率、直線方程、圓的方程、直線與圓的位置關系、圓錐曲線的定義應用、標準方程的求解、離心率的計算等,解答題則主要考查直線與橢圓、拋物線等的位置關系問題,經常與平面向量、函數與不等式交匯,考查一些存在性問題、證明問題、定點與定值、最值與范圍問題等。
云南省數學知識點總結(優秀18篇)篇十八
經過一點可以作無數個圓。
經過兩點也可以作無數個圓,且圓心都在連結這兩點的線段的垂直平分線上。
定理:過不共線的三個點,可以作且只可以作一個圓。
推論:三角形的三邊垂直平分線相交于一點,這個點就是三角形的外心。
三角形的三條高線的交點叫三角形的垂心。
1.2垂徑定理。
圓是中心對稱圖形;圓心是它的對稱中心。
圓是周對稱圖形,任一條通過圓心的直線都是它的對稱軸。
定理:垂直于弦的直徑平分這條弦,并且評分弦所對的兩條弧。
推論1:平分弦(不是直徑)的直徑垂直于弦并且平分弦所對的兩條弧。
推論2:弦的垂直平分弦經過圓心,并且平分弦所對的兩條弧。
推論3:平分弦所對的一條弧的直徑,垂直評分弦,并且平分弦所對的另一條弧。
1.3弧、弦和弦心距。
定理:在同圓或等圓中,相等的弧所對的弦相等,所對的弦的弦心距相等。
二圓與直線的位置關系。
2.1圓與直線的位置關系。
如果一條直線和一個圓沒有公共點,我們就說這條直線和這個圓相離。
定理:經過圓的半徑外端點,并且垂直于這條半徑的直線是這個圓的切線。
定理:圓的切線垂直經過切點的半徑。
推論1:經過圓心且垂直于切線的直線必經過切點。
推論2:經過切點且垂直于切線的直線必經過圓心。
直線和圓的位置關系只能由相離、相切和相交三種。
2.2三角形的內切圓。
定理:三角形的三個內角平分線交于一點,這點是三角形的內心。
2.3切線長定理。
2.4圓的外切四邊形。
定理:圓的外切四邊形的兩組對邊的和相等。
定理:如果四邊形兩組對邊的和相等,那么它必有內切圓。
三圓與圓的位置關系。
3.1兩圓的位置關系。
經過兩個圓的圓心的直線,叫做兩圓的連心線,兩個圓心之間的距離叫做圓心距。
定理:兩圓的連心線是兩圓的對稱軸,并且兩圓相切時,它們切點在連心線上。
(1)兩圓外離dr+r。
(2)兩圓外切d=r+r。
(3)兩圓相交r-rdr)。
(4)兩圓內切d=r-r(rr)。
(5)兩圓內含dr)。
特殊情況,兩圓是同心圓d=0。
3.2兩圓的公切線。
定理:兩圓的兩條外公切線的長相等;兩圓的兩條內公切線的長也相等。