教學計劃的制定必須充分考慮到教材的特點和學生的需求,使之更好地適應教學實際。參考以下教學計劃,可以更好地了解教學設計的要點和流程。
高中數學三角函數教學設計大全(17篇)篇一
《考試說明》和《考綱》是每位考生必須熟悉的最權威最準確的高考信息,通過研究應明確“考什么”、“考多難”、“怎樣考”這三個問題。
命題通常注意試題背景,強調數學思想,注重數學應用;試題強調問題性、啟發性,突出基礎性;重視通性通法,淡化特殊技巧,凸顯數學的問題思考;強化主干知識;關注知識點的銜接,考察創新意識。
《考綱》明確指出“創新意識是理性思維的高層次表現”。因此試題都比較新穎活潑。所以復習中你就要加強對新題型的練習,揭示問題的本質,創造性地解決問題。
2.多維審視知識結構。
高考數學試題一直注重對思維方法的考查,數學思維和方法是數學知識在更高層次上的抽象和概括。知識是思維能力的載體,因此通過對知識的考察達到考察數學思維的目的。你需要建立各部分內容的知識網絡;全面、準確地把握概念,在理解的基礎上加強記憶;加強對易錯、易混知識的梳理;要多角度、多方位地去理解問題的實質;體會數學思想和解題的方法。
3.把答案蓋住看例題。
參考書上例題不能看一下就過去了,因為看時往往覺得什么都懂,其實自己并沒有理解透徹。所以,在看例題時,把解答蓋住,自己去做,做完或做不出時再去看,這時要想一想,自己做的與解答哪里不同,哪里沒想到,該注意什么,哪一種方法更好,還有沒有另外的解法。經過上面的`訓練,自己的思維空間擴展了,看問題也全面了。如果把題目的來源搞清了,在題后加上幾個批注,說明此題的“題眼”及巧妙之處,收益將更大。
4.研究每題都考什么。
數學能力的提高離不開做題,“熟能生巧”這個簡單的道理大家都懂。但做題不是搞題海戰術,要通過一題聯想到多題。你需要著重研究解題的思維過程,弄清基本數學知識和基本數學思想在解題中的意義和作用,研究運用不同的思維方法解決同一數學問題的多條途徑,在分析解決問題的過程中既構建知識的橫向聯系又養成多角度思考問題的習慣。
與其一節課抓緊時間大汗淋淋地做二、三十道考查思路重復的題,不如深入透徹地掌握一道典型題。例如深入理解一個概念的多種內涵,對一個典型題,盡力做到從多條思路用多種方法處理,即一題多解;對具有共性的問題要努力摸索規律,即多題一解;不斷改變題目的條件,從各個側面去檢驗自己的知識,即一題多變。習題的價值不在于做對、做會,而在于你明白了這道題想考你什么。
5.答題少費時多辦事。
解題上要抓好三個字:數,式,形;閱讀、審題和表述上要實現數學的三種語言自如轉化(文字語言、符號語言、圖形語言)。要重視和加強選擇題的訓練和研究。不能僅僅滿足于答案正確,還要學會優化解題過程,追求解題質量,少費時,多辦事,以贏得足夠的時間思考解答高檔題。要不斷積累解選擇題的經驗,盡可能小題小做,除直接法外,還要靈活運用特殊值法、排除法、檢驗法、數形結合法、估計法來解題。在做解答題時,書寫要簡明、扼要、規范,不要“小題大做”,只要寫出“得分點”即可。
6.錯一次反思一次。
每次考試或多或少會發生一些錯誤,這并不可怕,要緊的是避免類似的錯誤在今后的考試中重現。
因此平時要注意把錯題記下來,做錯題筆記包括三個方面:
(1)記下錯誤是什么,最好用紅筆劃出。
(2)錯誤原因是什么,從審題、題目歸類、重現知識和找出答案四個環節來分析。
(3)錯誤糾正方法及注意事項。根據錯誤原因的分析提出糾正方法并提醒自己下次碰到類似的情況應注意些什么。你若能將每次考試或練習中出現的錯誤記錄下來分析,并盡力保證在下次考試時不發生同樣錯誤,那么在高考時發生錯誤的概率就會大大減少。
7.分析試卷總結經驗。
每次考試結束試卷發下來,要認真分析得失,總結經驗教訓。特別是將試卷中出現的錯誤進行分類。
(1)遺憾之錯。就是分明會做,反而做錯了的題。
(2)似非之錯。記憶不準確,理解不夠透徹,應用不夠自如;回答不嚴密不完整等等。
(3)無為之錯。由于不會答錯了或猜錯了,或者根本沒有作答,這是無思路、不理解,更談不上應用的問題。原因找到后就盡早消除遺憾、弄懂似非、力爭有為。切實解決“會而不對、對而不全”的老大難問題。
8.優秀是一種習慣。
柏拉圖說:“優秀是一種習慣”。好的習慣終生受益,不好的習慣終生后悔、吃虧。如“審題之錯”是否出在急于求成?可采取“一慢一快”戰術,即審題要慢,要看清楚,步驟要到位,動作要快,步步為營,穩中求快,立足于一次成功,不要養成唯恐做不完,匆匆忙忙搶著做,寄希望于檢查的壞習慣。
高中數學三角函數教學設計大全(17篇)篇二
教學目標:
(1)了解坐標法和解析幾何的意義,了解解析幾何的基本問題。
(2)進一步理解曲線的方程和方程的曲線。
(3)初步掌握求曲線方程的方法。
(4)通過本節內容的教學,培養學生分析問題和轉化的能力。
教學重點、難點:求曲線的方程。
教學用具:計算機。
教學方法:啟發引導法,討論法。
教學過程:
【引入】。
1.提問:什么是曲線的方程和方程的曲線。
學生思考并回答,教師強調。
2.坐標法和解析幾何的意義、基本問題。
對于一個幾何問題,在建立坐標系的基礎上,用坐標表示點;用方程表示曲線,通過研究方程的性質間接地來研究曲線的性質,這一研究幾何問題的方法稱為坐標法,這門科學稱為解析幾何,解析幾何的兩大基本問題就是:
(1)根據已知條件,求出表示平面曲線的方程。
(2)通過方程,研究平面曲線的性質。
【問題】。
如何根據已知條件,求出曲線的方程。
【概括總結】通過學生討論,師生共同總結:
分析上面兩個例題的求解過程,我們總結一下求解曲線方程的大體步驟:
首先應有坐標系;其次設曲線上任意一點;然后寫出表示曲線的點集;再代入坐標;最后整理出方程,并證明或修正.說得更準確一點就是:
(1)建立適當的坐標系,用有序實數對例如表示曲線上任意一點的坐標;。
(2)寫出適合條件的點的集合;。
(3)用坐標表示條件,列出方程;。
(4)化方程為最簡形式;。
(5)證明以化簡后的方程的解為坐標的點都是曲線上的點.
上述五個步驟可簡記為:建系設點;寫出集合;列方程;化簡;修正。
下面再看一個問題:
【小結】師生共同總結:
(1)解析幾何研究研究問題的方法是什么?
(2)如何求曲線的方程?
【作業】課本第72頁練習1,2,3;。
高中數學三角函數教學設計大全(17篇)篇三
1、在初中學過原命題、逆命題知識的基礎上,初步理解四種命題。
2、給一個比較簡單的命題(原命題),可以寫出它的逆命題、否命題和逆否命題。
3、通過對四種命題之間關系的學習,培養學生邏輯推理能力。
4、初步培養學生反證法的數學思維。
二、教學分析。
重點:四種命題;難點:四種命題的關系。
1、本小節首先從初中數學的命題知識,給出四種命題的概念,接著,講述四種命題的關系,最后,在初中的基礎上,結合四種命題的知識,進一步講解反證法。
3、“若p則q”形式的命題,也是一種復合命題,并且,其中的p與q,可以是命題也可以是開語句,例如,命題“若,則x,y全為0”,其中的p與q,就是開語句。對學生,只要求能分清命題“若p則q”中的條件與結論就可以了,不必考慮p與q是命題,還是開語句。
三、教學手段和方法(演示教學法和循序漸進導入法)。
1、以故事形式入題。
2、多媒體演示。
四、教學過程。
(一)引入:一個生活中有趣的與命題有關的笑話:某人要請甲乙丙丁吃飯,時間到了,只有甲乙丙三人按時赴約。丁卻打電話說“有事不能參加”主人聽了隨口說了句“該來的沒來”甲聽了臉色一沉,一聲不吭的走了,主人愣了一下又說了一句“哎,不該走的走了”乙聽了大怒,拂袖即去。主人這時還沒意識到又順口說了一句:“俺說的又不是你”。這時丙怒火中燒不辭而別。四個客人沒來的沒來,來的又走了。主人請客不成還得罪了三家。大家肯定都覺得這個人不會說話,但是你想過這里面所蘊涵的數學思想嗎?通過這節課的學習我們就能揭開它的廬山真面,學生的興奮點被緊緊抓住,躍躍欲試!
設計意圖:創設情景,激發學生學習興趣。
(二)復習提問:
1.命題“同位角相等,兩直線平行”的條件與結論各是什么?
2.把“同位角相等,兩直線平行”看作原命題,它的逆命題是什么?
3.原命題真,逆命題一定真嗎?
學生活動:
設計意圖:通過復習舊知識,打下學習否命題、逆否命題的基礎.。
(三)新課講解:
1.命題“同位角相等,兩直線平行”的條件是“同位角相等”,結論是“兩直線平行”;如果把“同位角相等,兩直線平行”看作原命題,它的逆命題就是“兩直線平行,同位角相等”。也就是說,把原命題的結論作為條件,條件作為結論,得到的命題就叫做原命題的逆命題。
2.把命題“同位角相等,兩直線平行”的條件與結論同時否定,就得到新命題“同位角不相等,兩直線不平行”,這個新命題就叫做原命題的否命題。
3.把命題“同位角相等,兩直線平行”的條件與結論互相交換并同時否定,就得到新命題“兩直線不平行,同位角不相等”,這個新命題就叫做原命題的逆否命題。
(四)組織討論:
讓學生歸納什么是否命題,什么是逆否命題。
例1及例2。
學生活動:
討論后回答。
這兩個逆否命題都真.。
原命題真,逆否命題也真。
引導學生討論原命題的真假與其他三種命題的真。
假有什么關系?舉例加以說明,同學們踴躍發言。
(六)課堂小結:
1、一般地,用p和q分別表示原命題的條件和結論,用vp和vq分別表示p和q否定時,四種命題的形式就是:
原命題若p則q;
逆命題若q則p;(交換原命題的條件和結論)。
否命題,若vp則vq;(同時否定原命題的條件和結論)。
逆否命題若vq則vp。(交換原命題的條件和結論,并且同時否定)。
2、四種命題的關系。
(1).原命題為真,它的逆命題不一定為真.。
(2).原命題為真,它的否命題不一定為真.。
(3).原命題為真,它的逆否命題一定為真。
(七)回扣引入。
分析引入中的笑話,先討論,后總結:現在我們來分析一下主人說的四句話:
第一句:“該來的沒來”
其逆否命題是“不該來的來了”,甲認為自己是不該來的,所以甲走了。
第二句:“不該走的走了”,其逆否命題為“該走的沒走”,乙認為自己該走,所以乙也走了。
第三句:“俺說的不是你(指乙)”其值為真其非命題:“俺說的是你”為假,則說的是他(指丙)為真。所以,丙認為說的是自己,所以丙也走了。
同學們,生活中處處是數學,期待我們善于發現的眼睛。
五、作業。
1.設原命題是“若。
斷它們的真假.,則”,寫出它的逆命題、否命題與逆否命題,并分別判。
高中數學三角函數教學設計大全(17篇)篇四
教學目標:
(1)掌握直線方程的一般形式,掌握直線方程幾種形式之間的互化。
(2)理解直線與二元一次方程的關系及其證明。
教學用具:計算機。
教學方法:啟發引導法,討論法。
教學過程:
下面給出教學實施過程設計的簡要思路:
(一)引入的設計。
前邊學習了如何根據所給條件求出直線方程的方法,看下面問題:
問:說出過點(2,1),斜率為2的直線的方程,并觀察方程屬于哪一類,為什么?
答:直線方程是,屬于二元一次方程,因為未知數有兩個,它們的最高次數為一次。
肯定學生回答,并糾正學生中不規范的表述.再看一個問題:
問:求出過點,的直線的方程,并觀察方程屬于哪一類,為什么?
答:直線方程是(或其它形式),也屬于二元一次方程,因為未知數有兩個,它們的最高次數為一次。
肯定學生回答后強調“也是二元一次方程,都是因為未知數有兩個,它們的最高次數為一次”。
啟發:你在想什么(或你想到了什么)?誰來談談?各小組可以討論討論。
學生紛紛談出自己的想法,教師邊評價邊啟發引導,使學生的認識統一到如下問題:
【問題1】“任意直線的方程都是二元一次方程嗎?”
這是本節課要解決的第一個問題,如何解決?自己先研究研究,也可以小組研究,確定解決問題的思路。
學生或獨立研究,或合作研究,教師巡視指導.
經過一定時間的研究,教師組織開展集體討論.首先讓學生陳述解決思路或解決方案:
思路一:…。
思路二:…。
教師組織評價,確定最優方案(其它待課下研究)如下:
按斜率是否存在,任意直線的位置有兩種可能,即斜率存在或不存在。
當存在時,直線的截距也一定存在,直線的方程可表示為,它是二元一次方程。
當不存在時,直線的方程可表示為形式的方程,它是二元一次方程嗎?
學生有的認為是有的認為不是,此時教師引導學生,逐步認識到把它看成二元一次方程的合理性:
平面直角坐標系中直線上點的坐標形式,與其它直線上點的坐標形式沒有任何區別,根據直線方程的概念,方程解的形式也是二元方程的解的形式,因此把它看成形如的二元一次方程是合理的。
綜合兩種情況,我們得出如下結論:
在平面直角坐標系中,對于任何一條直線,都有一條表示這條直線的關于、的二元一次方程。
至此,我們的問題1就解決了.簡單點說就是:直線方程都是二元一次方程.而且這個方程一定可以表示成或的形式,準確地說應該是“要么形如這樣,要么形如這樣的方程”。
同學們注意:這樣表達起來是不是很啰嗦,能不能有一個更好的表達?
學生們不難得出:二者可以概括為統一的形式。
這樣上邊的結論可以表述如下:
在平面直角坐標系中,對于任何一條直線,都有一條表示這條直線的形如(其中、不同時為0)的二元一次方程。
啟發:任何一條直線都有這種形式的方程.你是否覺得還有什么與之相關的問題呢?
【問題2】任何形如(其中、不同時為0)的二元一次方程都表示一條直線嗎?
師生共同討論,評價不同思路,達成共識:
(1)當時,方程可化為。
這是表示斜率為、在軸上的截距為的直線。
(2)當時,由于、不同時為0,必有,方程可化為。
這表示一條與軸垂直的直線。
因此,得到結論:
在平面直角坐標系中,任何形如(其中不同時為0)的二元一次方程都表示一條直線。
為方便,我們把(其中不同時為0)稱作直線方程的一般式是合理。
【動畫演示】。
演示“直線各參數”文件,體會任何二元一次方程都表示一條直線。
至此,我們的第二個問題也圓滿解決,而且我們還發現上述兩個問題其實是一個大問題的兩個方面,這個大問題揭示了直線與二元一次方程的對應關系,同時,直線方程的一般形式是對直線特殊形式的抽象和概括,而且抽象的層次越高越簡潔,我們還體會到了特殊與一般的轉化關系.
(三)練習鞏固、總結提高、板書和作業等環節的設計。
高中數學三角函數教學設計大全(17篇)篇五
新學期已經開始,在學校工作總體思路的.指導下,現將本學期數學組工作進行規劃、設想,力爭使本學期的工作扎實有效,為學校的發展做出新的貢獻。
以學校工作總體思路為指導,深入學習和貫徹新課程理念,以教育教學工作為重點,優化教學過程,提高課堂教學質量。結合數學組工作實際,用心開展教育教學研究活動,促進教師的專業發展,學生各項素質的提高,提高數學組教研工作水平。
1、加強常規教學工作,優化教學過程,切實提高課堂教學質量。
2、加強校本教研,用心開展教學研究活動,鼓勵教師根據教學實際開展教學研究,透過撰寫教學反思類文章等促進教師的專業化發展。
3、掌握現代教育技術,用心開展網絡教研,拓展教研的深度與廣度。
4、組織好學生的數學實踐活動,以調動學生學習用心性,豐富學生課余生活,促進其全面發展。
1、備課做好教學準備是上好課的前提,本學期要求每位教師做好教案、教學用具、作業本等準備,以良好的精神狀態進入課堂。
備課是上好課的基礎,本學期數學組仍采用年級組群眾備課形式,要求教案盡量做到環節齊全,反思具體,有價值。群眾備課時,所有教師務必做好準備,每個單元負責教師要提前安排好資料及備課方式,對于教案中修改或補充的資料要及時地在旁邊批注,電子教案的可在旁邊用紅色批注(發布校園網數學組板塊內),使群眾備課不流于形式,每節課前都要做到課前的“復備”。每一位教師在個人研究和群眾備課的基礎上構成適合自己、實用有效的教案,更好的為課堂教學服務。各年級組每月帶給單元備課活動記錄,在規定的群眾備課時間,教師無特殊原因不得缺席。
提高課后反思的質量,提倡教學以后將課堂上精彩的地方進行實錄,以案例形式進行剖析。對于原教案中不合理的及時記錄,結合課堂重新修改和設計,同年級教師能夠共同反思、共同提高,為以后的教學帶給借鑒價值。數學教師每周反思不少于2次,每學期要有1-2篇較高水平的反思或教學案例,及時發布在向校園網上,學校將及時進行評審。
教案檢查分平時抽查和定期檢查兩種形式,“推門課”后教師要及時帶給本節課的教案,每月26號為組內統一檢查教案時間,每月檢查結果將公布在校園網數學組板塊中的留言板中。
2、課堂教學課堂是教學的主陣地。教師不但要上好公開課,更要上好每一天的“常規課”。遵守學校教學常規中對課堂教學的要求。課堂上要用心的創設有效的教學情境,要重視學習方法、思考方法的滲透與指導,重視數學知識的應用性。學校將繼續透過聽“推門課”促進課堂教學水平的提高,發現教學新秀。公開課力求有特點,能側重一個教學問題,促進組內教師的研討。一學期做到每人一節,年輕教師上兩節。課堂對于比較成熟的公開課或研討課鼓勵大家錄像,保存資料,及時地向校園網推薦。
高中數學三角函數教學設計大全(17篇)篇六
首先,可以聯系實際生活。數學知識在生活中有著廣泛的應用,與實際生活有著廣泛的聯系,在進行課堂導入設計時,教師可以聯系學生的實際生活,激發學生的好奇心。例如在學習拋物線的知識時,可以這樣導入:讓學生回想一下打籃球的情景,由于場地限制,在課堂上可以用乒乓球代替籃球,做投籃動作,讓學生仔細觀察籃球(乒乓球)落地時的軌跡,在學生積極參討論時,引入拋物線的知識。在導入中聯系實際生活,不僅能夠激發學生的興趣,并且能夠拉近學生與數學之間的距離。
其次,教師可以利用數學史進行導入。數學教材中很多知識都與數學史相關,學生對這部分知識充滿興趣,因此在教學過程中,教師設計課堂導入時可以從這一點入手,先通過提問或者介紹的方式,讓學生了解數學史上的重大事件和重要人物等,引起學生的敬佩和仰慕之情,然后引入相關的數學知識。興趣是最好的老師,在學生的期待下展開數學教學,無疑會提高課堂教學效率。課堂導入的方式有很多種,在具體的操作環節,教師要注意導入方式的多樣性,才能更好地激發學生的興趣,在高中數學教學中教師要根據實際情況進行合理選擇使用。
做好課堂提問設計。
首先,教師要精心設計問題。提問的目的是為了激發學生的興趣和思維,因此,教師提問的問題不能是單調、重復的,而應該是具有啟發性和針對性,能夠激發學生的思考,引導學生進行步步深入。最重要的是,教師提出的問題要符合學生的知識水平和認知能力,教師不僅應該了解教材,并且要全面了解學生,這樣才能使提出的問題符合學生的需要。學生的數學水平是不同的,接受能力也有差異,因此教師要注意提出問題的層次性,并針對不同水平的學生設計不同難度的問題,促進每個學生獲得進步和發展。
其次,課堂提問的方式要多樣化。如同教學方式需要多樣化一樣,提問的方式也要具有多樣化的特點,這樣才能更好地激發學生興趣,達到教學目的,否則,無論教師設計的問題多么巧妙,學生也會感到厭煩。根據問題的內容和學生實際情況,提問可以是直接問答;可以是導思式;可以教師提問、學生回答;也可以是學生提問、教師回答。在教學過程中教師要注意培養學生的問題意識,鼓勵學生自己提出問題,問題是思考的開端,對于學生來說提出問題比解決問題更重要,因此,教師要為學生創造機會,讓學生在認真閱讀教材的基礎上,根據自己的理解提出不懂的問題。提出的問題教師可以進行點撥,讓學生思考,也可以組織學生進行討論,培養學生分析問題和解決問題的能力。
高中數學三角函數教學設計大全(17篇)篇七
進一步掌握直線方程的各種形式,會根據條件求直線的方程。
【過程與方法】。
在分析問題、動手解題的過程中,提升邏輯思維、計算能力以及分析問題、解決問題的能力。
【情感、態度與價值觀】。
在學習活動中獲得成功的體驗,增強學習數學的興趣與信心。
二、教學重難點。
【重點】根據條件求直線的方程。
【難點】根據條件求直線的方程。
(一)課堂導入。
直接點明最近學習了直線方程的多種形式,這節課將練習求直線的方程。
(二)回顧舊知。
帶領學生復習回顧直線斜率的求法,以及直線方程的點斜式、兩點式和一般式。
為了加深學生的運用和理解,繼續引導學生思考,是否有其他解題思路。預設大部分學生能夠想到用點斜式進行計算。教師肯定學生想法并組織學生動手計算,之后請學生上黑板板演。
預設學生有多種解題方法,如ab、ac所在直線方程用兩點式求解,bc所在直線方程用點斜式求解。
學生板演后教師講解,點明不足,提示學生,計算結束后要記得將所求得方程整理為直線方程的一般式。
師生總結解題思路:求直線所在方程時,若給出兩點坐標,在符合條件的情況下,可直接套用公式,也可利用點斜式進行求解,注意一題多解的情況。
(四)小結作業。
小結:學生暢談收獲。
作業:完成課后相應練習題,根據已知條件求直線的方程。
高中數學三角函數教學設計大全(17篇)篇八
高中數學教學應鼓勵學生用數學去解決問題,甚至去探索一些數學本身的問題。教學中,教師不僅要培養學生嚴謹的邏輯推理能力、空間想象能力和運算能力,還要培養學生數學建模能力與數據處理能力,加強在“用數學”方面的教育。最好的方式就是用多媒體電腦和諸如《幾何畫板》、《幾何畫王》、《幾何專家》等工具軟件,為學生創設數學實驗情境。例如,在上“棱柱和異面直線”課時,我們指導學生用硬紙制作“長方體”和“正三棱柱”等模型。教師用《幾何畫板》設計并創作“長方體中的異面直線”課件,引導學生利用自己制作的“長方體”模型和上述課件,思考以下問題:“長方體中所有體對角線(4條)與所有面對角線(12條)共組成多少對異面直線?”、“長方體中所有體對角線(4條)與所有棱(12條)共組成多少對異面直線?”、“長方體中所有棱(12條)之間相互組成多少對異面直線?”、“長方體所有面對角線(12條)與所有棱(12條)共組成多少對異面直線?”、“長方體中所有面對角線(12條)之間相互組成多少對異面直線?”。然后由學生獨立進行數學實驗,探討上述問題。
此外,教師還要根據數學思想發展脈絡,充分利用實驗手段尤其是運用現代教育技術,創設教學實驗情景、設計系列問題、增加輔助環節,有助于引導學生通過操作、實踐,探索數學定理的證明和數學問題的解決方法,讓學生親自體驗數學建模過程,培養學生的數學創新能力和實踐能力,提高數學素養。
巧設情境,增加學生的投入感。
為了構建生動活潑富有個性的數學課堂,我把創設情境,激發學生的學習興趣當成數學教學的重頭戲,使之成為數學課的一道亮麗的風景。《數學課程標準》強調數學課堂教學必須注意從學生熟悉的生活情境和感興趣的事物出發,使學生有更多的機會從周圍熟悉的事物中學習數學,理解數學,讓學生感受到數學就在他們周圍。因此,我從學生已有的生活經驗出發,創設有趣的教學情境,強化學生的感性認識,豐富學生的學習過程,引導學生在情境中觀察、操作、交流,感受數學與日常生活的密切聯系,感受數學在生活中的作用,加深對數學的理解,并運用數學知識解決現實生活中的問題。如《課程標準》在綜合實踐的教學建議部分提供了這樣一個案例:
要求學生統計自己家庭一周內丟棄的塑料袋個數,并依據所收集的數據展開討論。其程序是:(1)作為家庭作業提出此問題;(2)學生自主進行統計活動;(3)請某學生在課堂上對結果做現場統計(列出統計表,老師也把自己的統計結果融入其中);(4)統計分析(引導學生根據數據對全班一周丟棄塑料袋情況用不同的算法進行描述和評價);(5)結合問題情境深入領會有關概念(如平均數、中位數、眾數等)的含義,并通過問題的層層深入讓學生進一步感受不同統計量來表示同一問題的必要性;(6)問題自然延伸(計算這些袋對土地造成的污染,先估計一個袋的污染,然后通過多種方式計算推及到一周呢?一年呢?全校同學的家庭呢?照此速度要多久就會污染整個學校呢?)。由此例可以看出,這種模式的一個關鍵點就是圍繞著學生日常生活來展開的,由學生身邊的事所引出的數學問題,使學生體會到數學與生活的緊密和諧關系,樸素的問題情境自然讓學生產生一種情感上的親和力和感召力,可以讓他們真正應用數學,并引導他們學會做事。
高中數學三角函數教學設計大全(17篇)篇九
1、先做簡單題,后做難題。
2、遇到較難的大題,把所有跟該題有關的知識點都寫出來,要知道數學講究步驟分。
3、若是證明題,萬一不會,可以先寫出已知條件,再寫出要證明的最后一步,再一步一步往上推,中間步驟隨便寫點。(使用于粗心的教師,但我們不提倡,重點是要平時學好)。
一、整體把握、抓大放小。
拿到試卷后可以先快速瀏覽一下所有題目,根據積累的考試經驗,大致估計一下每部分應該分配的時間。對于能夠很快做出來的.題目,一定要拿到應得的分數。
二、確定每部分的答題時間。
1、考試時占用了很多時間卻一點也沒有做出來的題目。對于這類題目,你以后考試時就應該盡量減少時間,或者放棄,等以后學習進階了再嘗試著做。
2、考試時花了過多的時間才做出來的題目。對于這類題目,你以后平時做題時要盡量加快速度,或者通過“反復訓練”等提高反應速度,這樣,你下次考試時能用較少的時間做出來。
三、碰到難題時。
1、你可以先用“直覺”最快的找到解題思路;。
2、如果“直覺”不管用,你可以聯想以前做過的類似的題目,從而找到解題思路;。
3、如果這樣也不行,你可以猜測一下這道題目可能涉及到的知識點和解題技巧。
4、對于花了一定時間仍然不能做出來的題目,要勇于放棄。
四、卷面整潔、字跡清楚、注意小節。
做到卷面整潔、字跡清楚,把標點、符號、解題步驟等小的地方盡量做好,不要丟掉應得的每一分。
高中數學三角函數教學設計大全(17篇)篇十
掌握三角函數模型應用基本步驟:
(1)根據圖象建立解析式;
(2)根據解析式作出圖象;
(3)將實際問題抽象為與三角函數有關的簡單函數模型。
利用收集到的數據作出散點圖,并根據散點圖進行函數擬合,從而得到函數模型。
(精確到0.001)。
米的速度減少,那么該船在什么時間必須停止卸貨,將船駛向較深的水域?
本題的解答中,給出貨船的進、出港時間,一方面要注意利用周期性以及問題的條件,另一方面還要注意考慮實際意義。關于課本第64頁的“思考”問題,實際上,在貨船的安全水深正好與港口水深相等時停止卸貨將船駛向較深的水域是不行的,因為這樣不能保證船有足夠的時間發動螺旋槳。
練習:教材p65面3題。
(1)根據圖象建立解析式;
(2)根據解析式作出圖象;
(3)將實際問題抽象為與三角函數有關的簡單函數模型。
2、利用收集到的數據作出散點圖,并根據散點圖進行函數擬合,從而得到函數模型。
高中數學三角函數教學設計大全(17篇)篇十一
解三角形及應用舉例。
解三角形及應用舉例。
一.基礎知識精講。
掌握三角形有關的定理。
利用正弦定理,可以解決以下兩類問題:
(1)已知兩角和任一邊,求其他兩邊和一角;。
(2)已知兩邊和其中一邊的對角,求另一邊的對角(從而進一步求出其他的邊和角);利用余弦定理,可以解決以下兩類問題:
(1)已知三邊,求三角;。
(2)已知兩邊和它們的夾角,求第三邊和其他兩角。
掌握正弦定理、余弦定理及其變形形式,利用三角公式解一些有關三角形中的三角函數問題.
二.問題討論。
思維點撥:已知兩邊和其中一邊的對角解三角形問題,用正弦定理解,但需注意解的情況的討論.
思維點撥::三角形中的三角變換,應靈活運用正、余弦定理.在求值時,要利用三角函數的有關性質.
例6:在某海濱城市附近海面有一臺風,據檢測,當前臺風中心位于城市o(如圖)的東偏南方向300km的海面p處,并以20km/h的速度向西偏北的方向移動,臺風侵襲的范圍為圓形區域,當前半徑為60km,并以10km/h的速度不斷增加,問幾小時后該城市開始受到臺風的侵襲。
一.小結:
1.利用正弦定理,可以解決以下兩類問題:
(1)已知兩角和任一邊,求其他兩邊和一角;。
(2)已知兩邊和其中一邊的對角,求另一邊的對角(從而進一步求出其他的邊和角);。
2.利用余弦定理,可以解決以下兩類問題:
(1)已知三邊,求三角;。
(2)已知兩邊和它們的夾角,求第三邊和其他兩角。
3.邊角互化是解三角形問題常用的手段.
三.作業:p80闖關訓練。
高中數學三角函數教學設計大全(17篇)篇十二
三角函數的相關知識內容,其實與我們的生活都有著密切而廣泛的關聯,因此高中數學教師在進行三角函數的教學時,可以充分應用三角函數生活性特點,在符合其知識內容的基礎上,創設與實際生活密切關聯的情境,引導學生主動參與課堂教學與學習之中,良好進行感知,產生強烈的探究與求職的欲望。例如:為將三角函數的圖像性質更好的傳授于學生,引導學生主動參與學習過程,提升其探究能動性,教師就可以在新知識的教學之前,良好的將本節課的知識點內容和實際生活中的問題結合,創設一定的教學情境,設置如下問題:
假設其為半徑2米的風車,每隔12秒旋轉一周,其最低點o距離地面0.5米,風車圓周上的一點a從o開始,其運動t(s)后,與地面的距離設為h(m)。那么(1)函數h=f(t)關系式如何?(2)你能畫出函數h=f(t)的圖像么?在這樣的問題性教學情境的創設之下,加之教師的鼓勵性語言,以及生活情境的感觸,就會很容易激發學生的學習興趣,充分發揮其內心想要學習的情感,探究欲望也得到了明顯的加強。在充分調動學生學習的積極性、主動性及探究性的情況下,其內在能動性會促使學生積極參與進教師的整體教學活動之中,有利于其分析、解決問題能力的提高。
教師應引導學生全面實現對三角函數知識的掌握。
數學知識之間是彼此相聯系的,因此三角函數的教學中,教師必須持有整體觀念,將三角函數置于更寬闊的知識框架之中,靈活運用多樣化的教學方法,結合新課標的要求和學生的學習特點進行創新教學方案的制定,引導學生充分認識三角函數與非三角函數的聯系,以便更加全面、具體的對三角函數的概念與知識等形成良好的理解與掌握。
高中數學教師應重視通過綜合練習強化學生的反省抽象能力引導學生對三角函數充分認識,了解三角函數如sin等并不只是一個簡單的運算符號,而應將其作為一個整體的概念來掌握,也只有這樣才能真正了解三角函數的內行,才能為三角函數之后的變形與公式推導奠定基礎。高中數學教師應充分利用課堂教學的時間與空間,強化學生對三角函數概念的抽象概括及綜合運用能力等。此外,綜合分析的方法也是解答三角函數問題的有效方法之一。因為,數形結合思想也是常用的一種基本數學思想,因此教師可引導學生在解答數學題時,綜合分析并運用所學過的所有可以用到的數學知識,將其有機結合,有效解答三角函數問題。
高中數學三角函數教學設計大全(17篇)篇十三
為了更好地貫徹落實和科課程標準有關要求,促進廣大教師學習現代教學理論,進一步激發廣大教師課堂教學的創新意識,切實轉變教學觀念,積極探索新課程理念下的教與學,有效解決教學實踐中存在的問題,促進課堂教學質量的全面提高,在20xx年由福建省普通教育教學研究室組織,舉辦了一次教學設計大賽活動。這次活動數學學科高中組共收到有49篇教學設計文章。獲獎文章推薦評審專家組本著公平、公正的原則,經過認真的評審,全部作品均評出了相應的獎項;專家組還為獲得一、二等獎的作品撰寫了點評。本稿收錄的作品全部是參加此次福建省教學設計競賽獲獎作者的文章。按照征文的規則,我們對入選作品的格式作了一些修飾,并經過適當的`整合,以饗讀者。
在此還需要說明的是,為了方便閱讀,獲獎文章的排序原則,并非按照獲獎名次的前后順序,而是按照高中數學新課程必修1—5的內容順序,進行編排的。部分體現大綱教材內容的文章則排在后面。
不管你獲得的是哪個級別的獎項,你們都可以有成就感,因為那是你們用心、用汗澆灌出的果實,它記錄了你們奉獻于數學教育事業的心路歷程。書中每一篇的教學設計都耐人尋味,都能帶給我們許多遐想和啟迪。你們是優秀的,在你們未來悠遠的職業里程中,只要努力,將有更多的輝煌在等待著大家。謝謝你們!
1、集合與函數概念實習作業。
《普通高中課程標準實驗教科書·數學(1)》(人教a版)第44頁。-----《實習作業》。本節課程體現數學文化的特色,學生通過了解函數的發展歷史進一步感受數學的魅力。學生在自己動手收集、整理資料信息的過程中,對函數的概念有更深刻的理解;感受新的學習方式帶給他們的學習數學的樂趣。
該內容在《普通高中課程標準實驗教科書·數學(1)》(人教a版)第44頁。學生第一次完成《實習作業》,積極性高,有熱情和新鮮感,但缺乏經驗,所以需要教師精心設計,做好準備工作,充分體現教師的“導演”角色。特別在分組時注意學生的合理搭配(成績的好壞、家庭有無電腦、男女生比例、口頭表達能力等),選題時,各組之間盡量不要重復,盡量多地選不同的題目,可以讓所有的學生在學習共享的過程中受到更多的數學文化的熏陶。
《標準》強調數學文化的重要作用,體現數學的文化的價值。數學教育不僅應該幫助學生學習和掌握數學知識和技能,還應該有助于學生了解數學的價值。讓學生逐步了解數學的思想方法、理性精神,體會數學家的創新精神,以及數學文明的深刻內涵。
1、了解函數概念的形成、發展的歷史以及在這個過程中起重大作用的歷史事件和人物;
2、體驗合作學習的方式,通過合作學習品嘗分享獲得知識的快樂;
3、在合作形式的小組學習活動中培養學生的領導意識、社會實踐技能和民主價值觀。
五、教學重點和難點。
重點:了解函數在數學中的核心地位,以及在生活里的廣泛應用;
難點:培養學生合作交流的能力以及收集和處理信息的能力。
【課堂準備】。
1、分組:4~6人為一個實習小組,確定一人為組長。教師需要做好協調工作,確保每位學生都參加。
2、選題:根據個人興趣初步確定實習作業的題目。教師應該到各組中去了解選題情況,盡量多地選擇不同的題目。
高中數學三角函數教學設計大全(17篇)篇十四
圓錐曲線的定義反映了圓錐曲線的本質屬性,它是無數次實踐后的高度抽象.恰當地利用定義解題,許多時候能以簡馭繁.因此,在學習了橢圓、雙曲線、拋物線的定義及標準方程、幾何性質后,再一次強調定義,學會利用圓錐曲線定義來熟練的解題”。
二、學生學習情況分析。
我所任教班級的學生參與課堂教學活動的積極性強,思維活躍,但計算能力較差,推理能力較弱,使用數學語言的表達能力也略顯不足。
三、設計思想。
由于這部分知識較為抽象,如果離開感性認識,容易使學生陷入困境,降低學習熱情.在教學時,借助多媒體動畫,引導學生主動發現問題、解決問題,主動參與教學,在輕松愉快的環境中發現、獲取新知,提高教學效率.
四、教學目標。
1.深刻理解并熟練掌握圓錐曲線的定義,能靈活應用定義解決問題;熟練掌握焦點坐標、頂點坐標、焦距、離心率、準線方程、漸近線、焦半徑等概念和求法;能結合平面幾何的基本知識求解圓錐曲線的方程。
2.通過對練習,強化對圓錐曲線定義的理解,提高分析、解決問題的能力;通過對問題的不斷引申,精心設問,引導學生學習解題的一般方法。
3.借助多媒體輔助教學,激發學習數學的興趣.
五、教學重點與難點:。
教學重點。
1.對圓錐曲線定義的理解。
2.利用圓錐曲線的定義求“最值”
3.“定義法”求軌跡方程。
教學難點:。
巧用圓錐曲線定義解題。
【設計思路】。
(一)開門見山,提出問題。
一上課,我就直截了當地給出——。
例題1:(1)已知a(-2,0),b(2,0)動點m滿足|ma|+|mb|=2,則點m的軌跡是()。
(a)橢圓(b)雙曲線(c)線段(d)不存在。
(2)已知動點m(x,y)滿足(x1)2(y2)2|3x4y|,則點m的軌跡是()。
(a)橢圓(b)雙曲線(c)拋物線(d)兩條相交直線。
【設計意圖】。
定義是揭示概念內涵的邏輯方法,熟悉不同概念的不同定義方式,是學習和研究數學的一個必備條件,而通過一個階段的學習之后,學生們對圓錐曲線的定義已有了一定的認識,他們是否能真正掌握它們的本質,是我本節課首先要弄清楚的問題。
為了加深學生對圓錐曲線定義理解,我以圓錐曲線的定義的運用為主線,精心準備了兩道練習題。
高中數學三角函數教學設計大全(17篇)篇十五
三角函數是函數,象限符號坐標注。函數圖象單位圓,周期奇偶增減現。
同角關系很重要,化簡證明都需要。正六邊形頂點處,從上到下弦切割;
中心記上數字1,連結頂點三角形;向下三角平方和,倒數關系是對角,頂點任意一函數,等于后面兩根除。誘導公式就是好,負化正后大化小,變成稅角好查表,化簡證明少不了。二的一半整數倍,奇數化余偶不變,將其后者視銳角,符號原來函數判。兩角和的余弦值,化為單角好求值,余弦積減正弦積,換角變形眾公式。和差化積須同名,互余角度變名稱。
計算證明角先行,注意結構函數名,保持基本量不變,繁難向著簡易變。
逆反原則作指導,升冪降次和差積。條件等式的證明,方程思想指路明。
萬能公式不一般,化為有理式居先。公式順用和逆用,變形運用加巧用;
1加余弦想余弦,1減余弦想正弦,冪升一次角減半,升冪降次它為范;
三角函數反函數,實質就是求角度,先求三角函數值,再判角取值范圍;
利用直角三角形,形象直觀好換名,簡單三角的方程,化為最簡求解集。
山西鐵路工程建設監理有限公司。
劉榮申。
高中數學三角函數教學設計大全(17篇)篇十六
教學設計的優劣對于提高教學質量,培養學生思維,調動學生的積極性有著十分重要的意義。在實施高中數學新課改的今天,怎樣完成一個優秀的教學設計呢?我們認為應該從以下幾個方面著手:
一、教學設計應有利于讓學生學會學習,發揮學生的主體作用。
傳統的課堂設計,常常是“教師問,學生答,教師寫,學生記,教師考,學生背?!痹谶@樣教學下,學生機械被動地學習,不能主動對話、溝通、交流。久而久之,他們學習數學的興趣會逐漸褪去。新課程標準要求教師必需轉變角色,尊重學生的主體性,以新的理念指導設計教學。在教學過程中,要根據不同學習內容,使學習成為在教師指導下自動的、建構過程。教師是教學過程的組織者和引導者,教師在設計教學目標,組織教學活動等方面,應面向全體學生,突出學生的主體性,充分發揮學生的主觀能動性,讓學生自主參與探究問題。
二、教學設計應注重初高中知識的銜接問題。
總結。
提高學生的自學能力善于思考、勇于鉆研的意識。
三、
教學設計應考慮到學生當前的知識水平。
我校學生,大部分是居于中等及以下的學生,基礎知識、基本技能、基本數學思想方法差,思維能力、運算能力較低,空間想象能力以及實踐和創新意識能力更無須談說。因此數學學習還處在比較被動的狀態,存在問題較多,主要表現在:
1、學習懶散,不肯動腦;
2、不訂計劃,慣性運轉;
5、死記硬背,機械模仿,教師講的聽得懂,例題看得懂,就是書上的作業做不起;
6、不懂不問,一知半解;
8、不重總結,輕視復習。因此教師需多花時間了解學生具體情況、學習狀態,對學生數學學習方法進行指導,力求做到轉變思想與傳授方法結合,課上與課下結合,學法與教法結合,統一指導與個別指導結合,促進學生掌握正確的學習方法。只有憑借著良好的學習方法,才能達到“事半功倍”的學習效果。
四、教學設計中教師應以科學的眼光審視教材。
高中數學新課程是具有厚實的數學專業和教育教學理論與實踐水平的專家群體,經過深思熟慮、系統地分析教學的情況和學生的實際來編寫的。很多內容編排很好,我們應該尊重教材,但我們不應迷信教材,認請教材的思路與意圖,理解教材中所蘊藏的知識、技能、情感與價值等層面上的內涵,同時也應該用批判的眼光去審視它,不迷信教材,在此基礎上,要挖掘和超越教材,做到既忠實教材,又不拘泥于教材,結合本校、本班學生的實際情況,創新出最適合自己所教學生的題目,啟發、誘導學生進行深入的體驗和感悟,真正做到“走進教材,又走出教材。”
五、教學設計應注重新課的導入與新知識的形成過程。
教師在授課過程中,應適時、適度地引出新課題,創設出最佳的教學氣氛,引起學生對本課題的興趣。
常用的課題導入的幾種類型有1.創設生產生活化情境導入課題2.講故事引入課題。
3.設置懸念,以疑激趣引入課題。
六、教學設計應注重從學生的角度進行教學反思。
教學行為的本質在于使學生受益,教得好是為了促進學得好。在講習題時,當我們向學生介紹一些精巧奇妙的解法時,特別是一些奇思妙解時,學生表面上聽懂了,但當他自己解題時卻茫然失措。我們教師在備課時把要講的問題設計的十分精巧,連板書都設計好了,表面上看天衣無縫,其實,任何人都會遭遇失敗,教師把自己思維過程中失敗的部分隱瞞了,最有意義,最有啟發的東西抽掉了,學生除了贊嘆我們教師的高超的解題能力以外,又有什么收獲呢?所以貝爾納說“構成我們學習上最大障礙的是已知的東西,而不是未知的東西”大數學家希爾伯特的老師富士在講課時就常把自己置于困境中,并再現自己從中走出來的過程,讓學生看到老師的真實思維過程是怎樣的。人的能力只有在逆境中才能得到最好的鍛煉。經常去問問學生,對數學學習的感受,借助學生的眼睛看一看自己的教學行為,是促進教學的必要手段。
高中數學三角函數教學設計大全(17篇)篇十七
教學目標:
(1)掌握直線方程的一般形式,掌握直線方程幾種形式之間的互化。
(2)理解直線與二元一次方程的關系及其證明。
教學用具:計算機。
教學方法:啟發引導法,討論法。
教學過程:
前邊學習了如何根據所給條件求出直線方程的方法,看下面問題:
問:說出過點(2,1),斜率為2的直線的方程,并觀察方程屬于哪一類,為什么?
答:直線方程是,屬于二元一次方程,因為未知數有兩個,它們的最高次數為一次。
肯定學生回答,并糾正學生中不規范的表述。再看一個問題:
問:求出過點,的直線的方程,并觀察方程屬于哪一類,為什么?
答:直線方程是(或其它形式),也屬于二元一次方程,因為未知數有兩個,它們的最高次數為一次。
肯定學生回答后強調“也是二元一次方程,都是因為未知數有兩個,它們的最高次數為一次”。
啟發:你在想什么(或你想到了什么)?誰來談談?各小組可以討論討論。
學生紛紛談出自己的想法,教師邊評價邊啟發引導,使學生的認識統一到如下問題:
【問題1】“任意直線的方程都是二元一次方程嗎?”
這是本節課要解決的第一個問題,如何解決?自己先研究研究,也可以小組研究,確定解決問題的思路。
學生或獨立研究,或合作研究,教師巡視指導。
經過一定時間的研究,教師組織開展集體討論。首先讓學生陳述解決思路或解決方案:
思路一:…。
思路二:…。
教師組織評價,確定最優方案(其它待課下研究)如下:
按斜率是否存在,任意直線的位置有兩種可能,即斜率存在或不存在。
當存在時,直線的截距也一定存在,直線的方程可表示為,它是二元一次方程。
當不存在時,直線的方程可表示為形式的方程,它是二元一次方程嗎?
學生有的認為是有的認為不是,此時教師引導學生,逐步認識到把它看成二元一次方程的合理性:
平面直角坐標系中直線上點的坐標形式,與其它直線上點的坐標形式沒有任何區別,根據直線方程的概念,方程解的形式也是二元方程的解的形式,因此把它看成形如的二元一次方程是合理的。
綜合兩種情況,我們得出如下結論:
在平面直角坐標系中,對于任何一條直線,都有一條表示這條直線的關于、的二元一次方程。
至此,我們的問題1就解決了。簡單點說就是:直線方程都是二元一次方程。而且這個方程一定可以表示成或的形式,準確地說應該是“要么形如這樣,要么形如這樣的方程”。
同學們注意:這樣表達起來是不是很啰嗦,能不能有一個更好的表達?
學生們不難得出:二者可以概括為統一的形式。
這樣上邊的結論可以表述如下:
在平面直角坐標系中,對于任何一條直線,都有一條表示這條直線的形如(其中、不同時為0)的二元一次方程。
啟發:任何一條直線都有這種形式的方程。你是否覺得還有什么與之相關的問題呢?
【問題2】任何形如(其中、不同時為0)的二元一次方程都表示一條直線嗎?
師生共同討論,評價不同思路,達成共識:
(1)當時,方程可化為。
這是表示斜率為、在軸上的截距為的直線。
(2)當時,由于、不同時為0,必有,方程可化為。
這表示一條與軸垂直的直線。
因此,得到結論:
在平面直角坐標系中,任何形如(其中不同時為0)的二元一次方程都表示一條直線。
為方便,我們把(其中不同時為0)稱作直線方程的一般式是合理。
【動畫演示】。
演示“直線各參數”文件,體會任何二元一次方程都表示一條直線。
至此,我們的第二個問題也圓滿解決,而且我們還發現上述兩個問題其實是一個大問題的兩個方面,這個大問題揭示了直線與二元一次方程的對應關系,同時,直線方程的一般形式是對直線特殊形式的抽象和概括,而且抽象的層次越高越簡潔,我們還體會到了特殊與一般的轉化關系。
(三)練習鞏固、總結提高、板書和作業等環節的設計。