教案模板需要根據學生的學習特點和認知規律,合理選擇教學方法和教學手段。教學設計是教學過程中的核心環節,這里有一些精選的教案模板供大家參考。
平方差公式說課稿(熱門19篇)篇一
一、學習目標:
2.會推導平方差公式,并能運用公式進行簡單的運算.
二、重點難點。
難點:理解平方差公式的結構特征,靈活應用平方差公式.
三、合作學習。
你能用簡便方法計算下列各題嗎?
12001×19992998×1002。
導入新課:計算下列多項式的積.
1x+1x-12m+2m-2。
32x+12x-14x+5yx-5y。
結論:兩個數的和與這兩個數的差的積,等于這兩個數的平方差.
即:a+ba-b=a2-b2。
四、精講精練。
文檔為doc格式。
平方差公式說課稿(熱門19篇)篇二
《平方差公式》這一節重點和難點就在于結構的不變性和字母的可變性。因此我的教學設計思想是從讓每一位學生理解和掌握公式結構的不變性和字母的可變性從而達到熟練運用的目的。只是在具體的教學手段和措施及側重點上有所區別。雖然如此,我個人認為基本目標已經達到,也取得了初步成效,尤其是對易錯點的側重讓學生記憶深刻效果更明顯。
具體來說,成功之處我們都基本實現了教學目標,突出了教學重難點,教學過程環環相扣,題目設計逐層深入,及時反饋學習效果,精講多練。基本實現了預想的效果。我自認為該課成功之處主要體現在:
1、課前準備充分,教學設計合理充實,有很強的實用性和創造性。
2、導入新穎,從小故事出發,激發學生興趣,給學生留下懸念,同時對平方差公式有了初步的感性認識,從而揭示課題。然后再通過一系列的探索和練習以及公式的幾何解釋,使學生對新知識的理解由感性認識到理性認識的過渡。
3、選題合理、有針對性和層次性。在鞏固練習中通過像(x+y)(x-y)這種簡單的套公式題型逐漸轉換到涉及帶負號的變式像(-a–b)(-a+b),(-a-b)(b-a),(a+b)(b-a)這樣的題型,通過各類變式和判斷及找錯的題型問題的暴露,及時處理。使得學生逐步加深對公式結構的理解和記憶。然后轉回到課前給學生留下的疑問,最后實現創新,用簡便方法計算像2002×1998.使得整個課堂容量大,充實。
進的例題練習讓學生逐步理解公式中字母的可變性。最后達到對公式的全面和深刻的理解和掌握,使公式的運用得到升華。
5、本節課的重點和難點就是在于結構的不變性和字母的可變性。我就側重運用公式時的易錯點。不僅在訓練期間多次強調的方式提醒學生易錯點,相同項在前,相反項在后,結果才能用相同相的平方減去相反項的平方,平方時底是單項式但系數不是1或底數是多項式時不要忘記打上括號,而且在最后的小結中給學生總結更是讓學生影響深刻。
6、對公式進行幾何意義的解釋,我通過直觀演示操作,將學生不易理解的問題,使它變得直觀,從而顯得簡單。
3、課堂效率有待提高。
改進方向:1、繼續加強平時的“生本”理念的灌輸和學生討論、發言的培訓和鼓勵。
2、教學設計時更全面、深入地考慮學生的問題也就是備課備學生。
3、加強對學生發現問題、總結規律、提出疑問等課堂效果體現的關鍵環節。
的培訓。
4、課堂教學注重多措施了解學生學習效果的反饋。俗話說:“金無足赤,人無完人”。一節課上得再好,還是有些問題沒有考慮到,以上四本人的自我剖析,有的地方做的不是很完美,敬請各位同仁批評指正,本人一定笑納,并表示感謝。
平方差公式說課稿(熱門19篇)篇三
本節課是圍繞“引導學生有效預習”的課題設計的,通過預設的問題引發學生思考,在學生的預習基礎上回答相關的問題,產生對整式的乘法、提公因式法和公式法的對比。
讓學生充分自主的對知識產生探究,同時利用數形結合的思想驗證平方差公式;再通過質疑的方式加深對平方差公式結構特征的認識,有助于讓學生在應用平方差公式行分解因式時注意到它的前提條件;通過例題練習的鞏固,讓學生把握教材,吃透教材,讓學生更加熟練、準確,起到強化、鞏固的作用,讓學生領會換元的思想,達到初步發展學生綜合應用的能力。
本節課是運用提公因式法后公式法的第一課時——用平方差公式法分解因式。它是整式乘法的平方差公式的逆向應用,它是解高次方程的基礎,在教材中具有重要的地位。在教材的處理上以學生的自主探索為主,在原有用平方差公式進行整式乘法計算的知識的基礎上充分認識分解因式。明確因式分解是乘法公式的一種恒等變形,讓學生學會合情推理的能力,同時也培養了學生愛思考,善交流的良好學習慣。
(一)知識與技能。
2.掌握提公因式法、平方差公式分解因式的綜合應用。
(二)過程與方法。
1.經歷探究分解因式方法的過程,體會整式乘法與分解因式之間的聯系。
2.通過乘法公式:(a+b)(a-b)=a2-b2逆向變形,進一步發展觀察、歸納、類比、概括等能力,發展有條理地思考及語言表達能力。
3.通過活動4,將高次偶數指數向下次指數的轉達化,培養學生的化歸思想。
4.通過活動1,發現并歸納出因式分解的又一方法:逆用整式乘法的平方差公式,得到a2-b2=(a+b)(a-b)。
5.通過活動4,讓學生自己發現問題,提出問題,然后解決問題,體會在解決問題的過程中與他人合作的重要性。
(三)情感與態度。
1.通過探究平方差公式,讓學生獲得成功的體驗,鍛煉克服困難的意志,建立自己信心。
平方差公式說課稿(熱門19篇)篇四
在探索平方差公式的過程中,發展學生的符號感和推理能力。在計算的過程中發現規律,并能用符號表達,體會數學語言的嚴謹與簡潔。
激發學習數學的興趣,鼓勵學生自己探索,培養學生的合作意識與創新能力。
重點。
難點。
一、復習導入。
1.回顧多項式乘多項式的法則。
2.創設情境:你能快速地口算下列式子的值嗎?
(1);(2).
師生共同想辦法,想到能否把數轉化成較整的數?
變形成:,
再試試把它當成多項式乘法來算算,有什么發現?
繼續用你發現的方法算算,,,成功了嗎?
我們把這個有趣的結論整理并推廣,就可以得到今天要學習的一個乘法公式,平方差公式。
二、新課講解。
探究新知。
1.觀察相乘的兩個多項式有什么特點?運算的結果有什么特點?
討論交流后總結出:兩個數的和與這兩個數的差的積,等于這兩個數的平方差。
2.把式子里具體的數換成字母表示的數,結論還成立嗎?
3.從上面的計算中你有什么發現呢?
引導學生發現對于不同形式的兩個數,都有它們的和與它們的差的積都等于它們的平方差!用公式表示就是:,這里字母是任意形式的兩個數。這個公式叫做平方差公式。
下列多項式乘法中,能用平方差公式計算的是_______________(填寫序號)。
(1);(2);(3);
(4);(5);(6).
學生分組討論交流,歸納什么情況下可以使用平方差公式。通過討論,對平方差公式的理解達到一個新的高度:所謂兩數和、兩數差,從多項式的角度來看,就是有一項相同(),有一項相反(和),只要相乘的兩個多項式具備這樣的特點,都可以用平方差公式計算。不難判斷,上面的式子中(2)、(5)、(6)都可以用平方差公式計算。
三、典例剖析。
師生共同解答,教師板書。初學運用時要寫清楚步驟。
學生解答,關注學生是否理解平方差公式,能否正確識別乘法公式里的。
例3.計算:
學生解答,教師巡視,關注學生能否合理變形,靈活運用公式計算。
四、課堂練習。
1.下面各式的計算對不對?如果不對,應怎樣改正?
(1);
(1);(2);
(3);(4).
3.計算:
(1);(2);
教師要注意發現學生的錯誤,組織學生對錯誤進行分析,對于第1題可以引導學生分析導致錯誤的原因。
五、小結。
師生共同回顧平方差公式的結構特點,體會公式的作用,交流計算的經驗。教師對課堂上學生掌握不夠牢固的知識進行辨析、強調與補充,學生也可以談一談個人的學習感受。
六、布置作業。
p50第1、6題。
平方差公式說課稿(熱門19篇)篇五
教師講課語言清晰,有較強的表達和應變能力,課堂教學基本功好。
乘法公式的引入,使學生既復習了多項式的乘法運算,又形象直觀地理解了乘法公式的內在實質。課堂教學中充分體現了以點撥為主的教學。對于公式的性能嚴格要求學生理解,課堂內的練習量、內容及安排上恰當好處,有基本運用公式,有變式運用公式,也有適當的加深應用,滿足了不同層次的學生的學習。
一點建議:
1、引入時,還可以安排得生動一點,可以先設疑,提出問題,讓學生探討,猜想,歸納,以激發學生更高的學習興趣,或采用多題的多項式乘法運算,當學生感到有些“煩“時,讓學生猜想這類運算能否運用簡單的結論來得出,從而使學生感到今天要學的內容的重要性,這樣學生的學習將更主動。
2、剛才說過語言清晰,但不夠精煉,尤其在總結公式特征時,未能用簡練的語言描述出特征,以致學生在完成例題和練習題的過程中,對在運用公式之前需要變型的題型,出錯率較高。其實平方差公式的特征就是有兩項相同,而另兩項恰恰是互為相反數或項。相同項在前,相反項在后,結果才能用相同項的平方減去相反項的平方。
3、對于平方差公式的幾何意義,敢于讓學生大膽上黑板演示是好的,但過程繁瑣,缺乏精煉,直觀,不能讓大部分學生弄懂。這時我們老師應該給出恰當準確的解釋。
以上是我的淺顯認識,不妥之處,還望楊老師海涵,大家批評。
平方差公式說課稿(熱門19篇)篇六
王老師上課時通過學生自己的試算、觀察、發現、總結、歸納,得出用平方差公式進行因式分解,這樣得出平方差公式后,并且把乘法公式進行對比,通過例題、練習與小結,教會學生如何正確應用平方差公式.這里特別要求學生注意公式的結構,教師可以用對應思想來加強對公式結構的理解和訓練。王老師放手讓學生探索,促進學生主動發展的教學方法貫穿于這節課的始終。
從學生的練習情況來看,許多同學都掌握了這節課的知識,整個課堂中,以學生練為主,王老師能敢于創新、敢于探索,整節課的學習,教師始終是學生學習活動的組織者、指導者和合作者,而學生始終都是一個發現者、探索者,充分發揮他們的學習主體作用。這樣大大提高了這節課的效率。
教師講課語言簡捷、清晰,有較強的表達和應變能力,課堂教學基本功好。乘法公式的引入由兩種形式的'引入,又形象直觀地理解了乘法公式的內在實質。做到以點撥為主的教學。對于公式的牲能嚴格要求學生理解,并能讓學生自己舉例符合公式形狀的例子,課堂內的練習量、內容及安排上恰當好處,有基本運用公式,有變式運用公式,也有適當的加深應用,滿足了不同層次的學生的學習。效果是比較顯著的。
平方差公式說課稿(熱門19篇)篇七
平方差公式是多項式乘法運算中一個重要的公式,是特殊的多項式與多項式相乘的一種簡便計算。通過復習多項式乘以多項式的計算導入新課,為探究新知識奠定基礎。在重難點處設計問題:“觀察以上3個算式的特點和運算結果的特點,對比等號兩邊代數式的結構,你發現了什么?”讓學生發現規律并嘗試運用自己的語言來描述。
問題提出后,學生能積極進行分組討論、交流,各組小組長闡述自己小組討論的結果。大多數的學生能找出規律,說出大概意思,但是無法用精準的語言完整的描述出來,語言表達無條理、含糊。針對這種情況,在以后的課堂教學過程中要注意加強對學生的邏輯思維能力和語言表達能力的.培養。最后經過師生的共同努力,得出了平方差公式以及公式的特征。
在例題展示環節中,我通過2道例題的運算,訓練學生正確應用公式進行計算,體會公式在簡化運算中的作用。實踐練習的設計,使學生從不同角度認識平方差公式,進一步加強學生對公式的理解。在運用公式時,學生基本掌握運用平方差公式的步驟:首先要判斷算式是否符合平方差公式特征,然后再尋找算式中的a,b項,最后運用平方差公式運算。
拓展延伸環節中,學生通過尋找算式中的a,b項,慢慢發現a,b項不僅可以代表數,也可以代表單項式、多項式等代數式,這樣設計可以進一步深化學生對字母含義的理解。在學生獨立完成練習和堂測中,經過巡視,我發現近三分之一的學生對較復雜的多項式不能準確找出a,b項,特別是b項代表多項式時,負數去括號時出錯較多。
最后通過設計遞進式的問題串,引導學生自己一步步總結出本節課所學的知識內容,從而培養他們的歸納總結和語言表達能力。
本節課采用學習小組討論、交流的學習方式,讓學優生帶動學困生,整體教學效果良好,學生基本掌握平方差公式的運用,對于較復雜的a、b項的運算,在自習課上將加強練習。
平方差公式說課稿(熱門19篇)篇八
前不久聽了我校朱昌榮老師的一節數學課,這節課是朱老師安排的一節乘法公式——平方差公式的新授課,這節課給我留下了深刻的影響。
教師講課語言清晰,有較強的表達和應變能力,課堂教學基本功好。
乘法公式的引入,使學生既復習了多項式的乘法運算,又形象直觀地理解了乘法公式的內在實質。課堂教學中充分體現了以點撥為主的教學。對于公式的性能嚴格要求學生理解,課堂內的練習量、內容及安排上恰當好處,有基本運用公式,有變式運用公式,也有適當的加深應用,滿足了不同層次的學生的學習。
一點建議:
1、引入時,還可以安排得生動一點,可以先設疑,提出問題,讓學生探討,猜想,歸納,以激發學生更高的學習興趣,或采用多題的多項式乘法運算,當學生感到有些“煩“時,讓學生猜想這類運算能否運用簡單的結論來得出,從而使學生感到今天要學的內容的重要性,這樣學生的學習將更主動。
2、剛才說過語言清晰,但不夠精煉,尤其在總結公式特征時,未能用簡練的語言描述出特征,以致學生在完成例題和練習題的過程中,對在運用公式之前需要變型的題型,出錯率較高。其實平方差公式的特征就是有兩項相同,而另兩項恰恰是互為相反數或項。相同項在前,相反項在后,結果才能用相同項的平方減去相反項的平方。
3、對于平方差公式的幾何意義,敢于讓學生大膽上黑板演示是好的,但過程繁瑣,缺乏精煉,直觀,不能讓大部分學生弄懂。這時我們老師應該給出恰當準確的解釋。
以上是我的淺顯認識,不妥之處,還望朱老師海涵,大家批評。
謝謝。
平方差公式說課稿(熱門19篇)篇九
(4)(+3z)(-3z)=_____.
(1)(x+1)(1+x),。
(2)(2x+)(-2x),。
(3)(a-b)(-a+b),。
(4)(-a-b)(-a+b)。
幫助學生理解公式的特征,掌握公式的特征是正確運用公式的關鍵,除了掌握公式的特征外還有必要理解公式中的字母a、b具有廣泛的含義,幾字母a、b可以表示具體的數、也可以表示單項式或多項式,由于學生的認知能力有一個過程,教學中應由易到難逐步安排學習這方面的內容。
平方差公式說課稿(熱門19篇)篇十
《平方差公式》是一節公式定理課,是各位老師非常熟悉的一個課題,對大家更熟悉,我深深感到一種壓力。但是,無論如何,“新”、“實”是我追求的目標。為此,我作了如下努力:
1、把數學問題“蘊藏”在游戲中。
導入新課,是課堂教學的重要一環。“好的開始是成功的一半”,首先是一個智力搶答,學生通過搶答初步感知平方差公式,接下來,采用小組合作學習的方式,利用“四問”讓學生進行試驗操作,學生選擇的字母有很多種,讓它們都有其共性。由此,學生在探索中驗證自己的猜想,同時也感受和認識知識的發生和發展的過程,得出(a+b)(a-b)=a2-b2.經過不斷的嘗試小組合作學習方式的教學,我發現也真正體會到,只要我們給學生創造一個自由活動的空間,學生便會還給我們一個意外的驚喜。
2、充分重視“自主、合作、探究”的教學方式的運用。
把探究的機會留給學生,讓學生在動腦思考中構建知識,真正成為教學活動的主體。使他們在活動中進行規律的總結,并且通過交流練習、應用,深化了對規律的理解。學生對知識的掌握往往通過練習來達到目的。新授后要有針對性強的有效訓練,讓學生對所學知識建立初步的表象,以達到對知識的理解、掌握及應用,實現從感性認識到理性認識的升華。在此設計了三個層次的有效訓練,讓學生體會平方差公式的特點:第一層次是直接運用公式,第二層次是將式子進行適當變形后應用公式,第三個層次是平方差公式的靈活應用。通過做題學生歸納出平方差公式的運用技巧。
3、自置懸念,享受成功。
以四人小組為單位,各小組出兩道具有平方差公式的結構特征的題目,看誰出得有水平。學生每人都設計了題目,任意叫了四位學生在黑板上寫,經評價結果都對了。這種方法,不僅令人耳目一新,而且把學生引入不協調——探究——發現——解決問題的一個學習過程,使學生獲得思維之趣,參與之樂,成功之悅。
4、切實落在實效上。
本節課在采用小組學習之后,為了讓學生的鞏固有效果,采用了學生上臺講解、作業實物投影的方式來進行,多種方式的選擇,讓學生暴露出自己的問題,然后通過生生互動、師生互動解決問題,實現問題及時處理,學習效果不錯。
5、值得注意的是:
1、節奏的把握上。
這一節我覺得不是很順,尤其在從幾何角度解釋平方差公式、例2⑵的其他計算方法等問題上,花了不少時間,節奏把握的不是很好。
2、充分發揮學生的主體地位上。
這節課上,我覺得學生的積極性不很高,回答問題沒有激情,說明我背學生還不夠,自己想象的比現實的好。
平方差公式說課稿(熱門19篇)篇十一
2.注意培養學生分析、綜合和抽象、概括以及運算能力.
教學重點和難點。
難點:用公式的結構特征判斷題目能否使用公式.
教學過程設計。
我們已經學過了多項式的乘法,兩個二項式相乘,在合并同類項前應該有幾項?合并同類項以后,積可能會是三項嗎?積可能是二項嗎?請舉出例子.
讓學生動腦、動筆進行探討,并發表自己的見解.教師根據學生的回答,引導學生進一步思考:
(當乘式是兩個數之和以及這兩個數之差相乘時,積是二項式.這是因為具備這樣特點的兩個二項式相乘,積的四項中,會出現互為相反數的兩項,合并這兩項的結果為零,于是就剩下兩項了.而它們的積等于乘式中這兩個數的平方差)。
繼而指出,在多項式的乘法中,對于某些特殊形式的多項式相乘,我們把它寫成公式,并加以熟記,以便遇到類似形式的多項式相乘時就可以直接運用公式進行計算.以后經常遇到(a+b)(a-b)這種乘法,所以把(a+b)(a-b)=a2-b2作為公式,叫做乘法的平方差公式.
在此基礎上,讓學生用語言敘述公式.
二、運用舉例變式練習。
例1計算(1+2x)(1-2x).
解:(1+2x)(1-2x)。
=12-(2x)2。
=1-4x2.
教師引導學生分析題目條件是否符合平方差公式特征,并讓學生說出本題中a,b分別表示什么.
例2計算(b2+2a3)(2a3-b2).
解:(b2+2a3)(2a3-b2)。
=(2a3+b2)(2a3-b2)。
=(2a3)2-(b2)2。
=4a6-b4.
教師引導學生發現,只需將(b2+2a3)中的兩項交換位置,就可用平方差公式進行計算.
課堂練習。
(l)(x+a)(x-a);(2)(m+n)(m-n);。
(3)(a+3b)(a-3b);(4)(1-5y)(l+5y).
例3計算(-4a-1)(-4a+1).
讓學生在練習本上計算,教師巡視學生解題情況,讓采用不同解法的兩個學生進行板演.
解法1:(-4a-1)(-4a+1)。
=[-(4a+l)][-(4a-l)]。
=(4a+1)(4a-l)。
=(4a)2-l2。
=16a2-1.
解法2:(-4a-l)(-4a+l)。
=(-4a)2-l。
=16a2-1.
根據學生板演,教師指出兩種解法都很正確,解法1先用了提出負號的辦法,使兩乘式首項都變成正的,而后看出兩數的和與這兩數的差相乘的形式,應用平方差公式,寫出結果.解法2把-4a看成一個數,把1看成另一個數,直接寫出(-4a)2-l2后得出結果.采用解法2的同學比較注意平方差公式的特征,能看到問題的本質,運算簡捷.因此,我們在計算中,先要分析題目的數字特征,然后正確應用平方差公式,就能比較簡捷地得到答案.
課堂練習。
1.口答下列各題:
(l)(-a+b)(a+b);(2)(a-b)(b+a);。
(3)(-a-b)(-a+b);(4)(a-b)(-a-b).
2.計算下列各題:
(1)(4x-5y)(4x+5y);(2)(-2x2+5)(-2x2-5);。
教師巡視學生練習情況,請不同解法的學生,或發生錯誤的學生板演,教師和學生一起分析解法.
三、小結。
2.運用公式要注意什么?
(1)要符合公式特征才能運用平方差公式;。
(2)有些式子表面不能應用公式,但實質能應用公式,要注意變形.
四、作業。
(l)(x+2y)(x-2y);(2)(2a-3b)(3b+2a);。
(3)(-1+3x)(-1-3x);(4)(-2b-5)(2b-5);。
2.計算:
(3)x(x-3)-(x+7)(x-7);(4)(2x-5)(x-2)+(3x-4)(3x+4).
平方差公式說課稿(熱門19篇)篇十二
學習目標:
1、能推導平方差公式,并會用幾何圖形解釋公式;。
3、經歷探索平方差公式的推導過程,發展符號感,體會“特殊——一般——特殊”的認識規律.
學習重難點:
難點:探索平方差公式,并用幾何圖形解釋公式.
學習過程:
一、自主探索。
1、計算:(1)(m+2)(m-2)(2)(1+3a)(1-3a)。
(3)(x+5y)(x-5y)(4)(y+3z)(y-3z)。
2、觀察以上算式及其運算結果,你發現了什么規律?再舉兩例驗證你的發現.
3、你能用自己的語言敘述你的發現嗎?
(1)、公式左邊的兩個因式都是二項式。必須是相同的兩數的和與差。或者說兩個二項式必須有一項完全相同,另一項只有符號不同。
(2)、公式中的a與b可以是數,也可以換成一個代數式。
二、試一試。
平方差公式說課稿(熱門19篇)篇十三
2.經歷探索平方差公式的過程,認識“特殊”與“一般”的關系,了解“特殊到一般”的認識規律和數學發現方法,平方差公式第一課時教學反思。
重點:公式的理解與正確運用(考點:此公式很關鍵,一定要搞清楚特征,在以后的學習中還繼續應用)。
難點:公式的理解與正確運用。
教法:自主探究和合作交流。
(1)(x+2)(x-2)(2)(1+2y)(1-2y)(3)(x+3y)(x-3y)。
=x2-22=12-(2y)2=x2-(3y)2。
學生分組討論,交流,小組長回答問題。
師生共同總結歸納:
即兩數和與兩數差的積,等于它們的平方差。
(1)一組完全相同的項;
(2)一組互為相反數的項。
2.例題。
(1)(5+6x)(5-6x)(2)(-m+n)(-m-n)。
3.公式應用。
(1)(a+2)(a-2)(2)(-x+2y)(-x-3y)。
兩個學生板演,其余學生在練習本上自己獨立完成。
老師巡視,輔導學困生。
1.計算(1)(a+1)(a-1)(a2+1)(2)(a+b)(a-b)(a2+b2)。
師生共同分析:此題特征,兩次利用平方差公式,教學反思《平方差公式第一課時教學反思》。
學生在練習本上獨立完成,同桌互相檢查。
2.(ab)(-ab)=?能用平方差公式嗎?它的a和b分別是什么?
學生分組討論交流,獨立完成運算。
1、(ab+8)(ab-8)2、(5m-n)(-5m-n)。
3、(3x+4y-z)(3x-4y+z)4、(a+b)(a-b)(a2+b2)。
2、運用公式要注意的.問題:
(2)公式中的a、b可以代表什么?
一、檢測導入。
二、例題展示。
三、拓展延伸。
四、達標堂測。
五、歸納小結。
即兩數和與兩數差的積,等于它們的平方差。
六、布置作業。
p21:習題1.91、2。
平方差公式說課稿(熱門19篇)篇十四
(4)(+3z)(—3z)=_____。
(1)(x+1)(1+x),
(2)(2x+)(—2x),
(3)(a—b)(—a+b),
(4)(—a—b)(—a+b)。
幫助學生理解公式的特征,掌握公式的特征是正確運用公式的關鍵,除了掌握公式的特征外還有必要理解公式中的字母a、b具有廣泛的含義,幾字母a、b可以表示具體的數、也可以表示單項式或多項式,由于學生的認知能力有一個過程,教學中應由易到難逐步安排學習這方面的內容。
平方差公式說課稿(熱門19篇)篇十五
1、把數學問題“蘊藏”在游戲中。
導入新課,是課堂教學的重要一環。“好的開始是成功的一半”,首先是一個智力搶答,學生通過搶答初步感知平方差公式,接下來,采用小組合作學習的方式,利用“四問”讓學生進行試驗操作,學生選擇的字母有很多種,讓它們都有其共性。由此,學生在探索中驗證自己的猜想,同時也感受和認識知識的發生和發展的過程,得出(a+b)(a-b)=a2-b2.經過不斷的嘗試小組合作學習方式的教學,我發現也真正體會到,只要我們給學生創造一個自由活動的空間,學生便會還給我們一個意外的驚喜。
2、充分重視“自主、合作、探究”的教學方式的運用。
把探究的機會留給學生,讓學生在動腦思考中構建知識,真正成為教學活動的主體。使他們在活動中進行規律的總結,并且通過交流練習、應用,深化了對規律的理解。學生對知識的掌握往往通過練習來達到目的。新授后要有針對性強的有效訓練,讓學生對所學知識建立初步的表象,以達到對知識的理解、掌握及應用,實現從感性認識到理性認識的升華。在此設計了三個層次的有效訓練,讓學生體會平方差公式的特點:第一層次是直接運用公式,第二層次是將式子進行適當變形后應用公式,第三個層次是平方差公式的靈活應用。通過做題學生歸納出平方差公式的運用技巧。
3、自置懸念,享受成功。
以四人小組為單位,各小組出兩道具有平方差公式的結構特征的題目,看誰出得有水平。學生每人都設計了題目,任意叫了四位學生在黑板上寫,經評價結果都對了。這種方法,不僅令人耳目一新,而且把學生引入不協調——探究——發現——解決問題的一個學習過程,使學生獲得思維之趣,參與之樂,成功之悅。
4、切實落在實效上。
本節課在采用小組學習之后,為了讓學生的鞏固有效果,采用了學生上臺講解、作業實物投影的方式來進行,多種方式的選擇,讓學生暴露出自己的問題,然后通過生生互動、師生互動解決問題,實現問題及時處理,學習效果不錯。
5、值得注意的是:
1、節奏的把握上。
這一節我覺得不是很順,尤其在從幾何角度解釋平方差公式、例2⑵的其他計算方法等問題上,花了不少時間,節奏把握的不是很好。
2、充分發揮學生的主體地位上。
這節課上,我覺得學生的積極性不很高,回答問題沒有激情,說明我背學生還不夠,自己想象的比現實的好。
平方差公式說課稿(熱門19篇)篇十六
通過教學我對本節課的反思如下:
1、本節課我從復習舊知入手,在教學設計時提供充分探索與交流的空間,使學生經歷觀察,猜測、推理、交流、等活動。對于平方差公式的教學要重視結果更要重視其發現過程,充分發揮其教育價值。不要回到傳統的“講公式、用公式、練公式、背公式”學生被動學習的'局面。我在教學時沒有直接讓學生推導平方差公式,而是設置了一個做一做,讓學生通過計算四個多項式乘以多項式的題目,讓學生通過運算并觀察這幾個算式及其結果,自己發現規律。目的是讓學生經歷觀察、歸納、概括公式的全過程,以培養學生學習數學的一般能力,讓學生體會發現的愉悅,激發學生學習數學的興趣,感覺效果很好。
不足:在學生將4個多項式乘多項式做完評價后,應及時把他們歸納為某式的平方差的形式,以便學生順理成章的猜測公式的結果。
2、學生剛接觸這類乘法,我設計了兩個問題(1)等號左邊是幾個因式的積,兩個因式中的每一項有什么相同或不同之處。(2)等號右邊兩項有什么特點?便于學生發現總結。在這兩個二項式中有一項(a)完全相同,另一項(b與—b)互為相反數。右邊為這兩個數的平方差即完全相同的項的平方減去符號相反的平方。公式中的a,b不僅可以表示具體的數字,還可以是單項式,多項式等代數式。提醒學生利用平方公式計算,首先觀察是否符合公式的特點,這兩個數分別是什么,其次要區別相同的項和相反的項,表示兩數平方差時要加括號。平方差公式(a—b)(a+b)=a2—b2,它是特殊的整式的乘法,運用這一公式可以簡捷地計算出符合公式的特征的多項式乘法的結果。我很細地給學生講了以上特點,學生容易接受,課堂氣氛活躍,收到了一定的效果。
3、本節課如能將平方差公式的幾何意義簡要的結合說明,更能體會數學中數形結合的特點,因時間關系放在下一課時。
4、學生錯誤主要是:(1)判斷不出哪些項是公式中的a,哪些項是公式中的b;(2)平方時忽視系數的平方,如(2m)2=2m2。針對這一點在課堂教學中應著重對于共性的或思維方式方面的錯誤及時指正,以確保達到教學效果。平方差公式是乘法公式中一個重要的公式,形式雖然簡單,學生往往學起來容易,真正掌握起來困難。部分學生只是死記硬背公式,不能完全理解其含義和具體應用。
總之,在以后的教學中我會更深入的專研教材,結合教學目標與要求,結合學生的實際特點,克服自己的弱點,盡量使數學課生動、自然、有趣。
平方差公式說課稿(熱門19篇)篇十七
進一步使學生理解掌握平方差公式,并通過小結使學生理解公式數學表達式與文字表達式在應用上的差異.
教學重點和難點:公式的應用及推廣.
1.(1)用較簡單的代數式表示下圖紙片的面積.
(2)沿直線裁一刀,將不規則的右圖重新拼接成一個矩形,并用代數式表示出你新拼圖形的面積.
講評要點:
沿hd、gd裁開均可,但一定要讓學生在裁開之前知道。
hd=bc=gd=fe=a-b,
這樣裁開后才能重新拼成一個矩形.希望推出公式:
a2-b2=(a+b)(a-b)。
2.(1)敘述平方差公式的數學表達式及文字表達式;。
(2)試比較公式的兩種表達式在應用上的差異.
說明:平方差公式的數學表達式在使用上有三個優點.(1)公式具體,易于理解;(2)公式的特征也表現得突出,易于初學的人“套用”;(3)形式簡潔.但數學表達式中的a與b有概括性及抽象性,這樣也就造成對具體問題存在一個判定a、b的`問題,否則容易對公式產生各種主觀上的誤解.
依照公式的文字表達式可寫出下面兩個正確的式子:
經對比,可以讓人們體會到公式的文字表達式抽象、準確、概括.因而也就“欠”明確(如結果不知是誰與誰的平方差).故在使用平方差公式時,要全面理解公式的實質,靈活運用公式的兩種表達式,比如用文字公式判斷一個題目能否使用平方差公式,用數學公式確定公式中的a與b,這樣才能使自己的計算即準確又靈活.
3.判斷正誤:
(1)(4x+3b)(4x-3b)=4x2-3b2;(×)(2)(4x+3b)(4x-3b)=16x2-9;(×)。
(3)(4x+3b)(4x-3b)=4x2+9b2;(×)(4)(4x+3b)(4x-3b)=4x2-9b2;(×)。
(1)102×98;(2)(y+2)(y-2)(y2+4).
解:(1)102×98(2)(y+2)(y-2)(y2+4)。
=(100+2)(100-2)=(y2-4)(y2+4)。
=9996;。
(1)103×97;(2)(x+3)(x-3)(x2+9);。
(3)59.8×60.2;(4)(x-)(x2+)(x+).
3.請每位同學自編兩道能運用平方差公式計算的題目.
例2填空:
思考題:什么樣的二項式才能逆用平方差公式寫成兩數和與這兩數的差的積?
(某兩數平方差的二項式可逆用平方差公式寫成兩數和與這兩數的差的積)。
練習。
填空:
1.x2-25=()();。
2.4m2-49=(2m-7)();。
3.a4-m4=(a2+m2)()=(a2+m2)()();。
例3計算:
(1)(a+b-3)(a+b+3);(2)(m2+n-7)(m2-n-7).
解:(1)(a+b-3)(a+b+3)(2)(m2+n-7)(m2-n-7)。
=[(a+b)-3][(a+b)+3]=[(m2-7)+n][(m2-7)-n]。
=(a+b)2-9=a2+2ab+b2-9.=(m2-7)2-n2。
=m4-14m2+49-n2.
1.什么是平方差公式?一般兩個二項式相乘的積應是幾項式?
3.怎樣判斷一個多項式的乘法問題是否可以用平方差公式?
(1)(a2+b)(a2-b);(2)(-4m2+5n)(4m2+5n);。
(3)(x2-y2)(x2+y2);(4)(9a2+7b2)(7b2-9a2).
(1)69×71;(2)53×47;(3)503×497;(4)40×39.
平方差公式說課稿(熱門19篇)篇十八
平方差公式是在學習多項式乘法等知識的基礎上,自然過渡到具有特殊形式的多項式的乘法,體現教材從一般到特殊的意圖。教材為學生在教學活動中獲得數學的思想方法、能力、素質提供了良好的契機。對它的學習和研究,不僅得到了特殊的多項式乘法的簡便算法,而且為以后的因式分解,分式的化簡、二次根式中的分母有理化、解一元二次方程、函數等內容奠定了基礎,同時也為完全平方公式的學習提供了方法,因此,平方差公式在教材中有承上啟下的作用,是初中階段一個重要的公式。
學生是在學習積的乘方和多項式乘多項式后學習平方差公式的,但在進行積的乘方的運算時,底數是數與幾個字母的積時往往把括號漏掉,在進行多項式乘法運算時常常會確定錯某些次符號及漏項等問題。學生學習平方差公式的困難在于對公式的結構特征以及公式中字母的廣泛的理解,當公式中a、b是式時,要把它括號在平方。
難點:理解掌握平方差公式的結構特點以及靈活運用平方差公式解決實際問題.。
平方差公式說課稿(熱門19篇)篇十九
本節課采用情景—探究的方式,以猜想、實驗、論證為主要探究方式,得出平方差公式,應用逆向思維的方向,演繹出平方差公式,對公式的應用首先提醒學生要注意其特征,其次要做好式子的變形,把問題轉化成能夠應用公式的方面上來,應用公式法因式分解的過程,實際上就是轉化和化歸的過程。在解決認識平方差公式的`結構時候,重點突出學生自我思想的形成,能夠充分地不公式用自己的語言來敘述,在整個教學設計中,教師只作為了一個點撥者和引路人。然后應用有梯度的典型例題加以鞏固,在學生頭腦中形成一個清晰完整的數學模型,使學生在今后的練習中游刃有余。
不足之處:
教學中時間把握還是不足,在設計的題目中不怎么合理,應按題目的難度從易到難。
有些題目的歸納可放手給學生討論后由學生說出,而不是教師代替。小組評價做的不夠,沒有足夠的小組的活動,沒有小組的競賽。
教學語言還太隨意,數學的語言應該嚴謹。在語調上應該有所變化。