教學(xué)工作計劃還可以幫助教師和學(xué)生對教學(xué)活動進行評估和反思,及時發(fā)現(xiàn)問題和改進教學(xué)的不足之處。請大家認(rèn)真閱讀以下教學(xué)工作計劃的范文,并根據(jù)自身情況進行適當(dāng)?shù)男薷摹?/p>
平方差公式教學(xué)教案(實用14篇)篇一
3、在緊張而輕松地教學(xué)氛圍內(nèi),進一步激發(fā)學(xué)生的學(xué)習(xí)興趣熱情。
重點是掌握公式的結(jié)構(gòu)特征及正確運用公式。難點是公式推導(dǎo)的理解及字母的廣泛含義。
以教師的精講、引導(dǎo)為主,輔以引導(dǎo)發(fā)現(xiàn)、合作交流。
(一)創(chuàng)設(shè)問題情境,引入新課。
1、你會做嗎?
(1)(x+1)(x—1)=_____=()()。
(3)(3x+2)(3x—2)=_____=()()。
2、能否用簡便方法運算:×(這里需要用到平方差公式,設(shè)疑激發(fā)學(xué)生興趣。)。
交流上面第1題的答案,引導(dǎo)學(xué)生進一步思考:
(合作交流,探究新知:兩數(shù)之和與這兩數(shù)之差相乘時,積是二項式。這是因為具備這樣特點的兩個二項式相乘,積的四項中,會出現(xiàn)互為相反數(shù)的兩項,合并這兩項的結(jié)果為零,于是就剩下兩項了。而它們的積等于這兩個數(shù)的平方差。)。
我們把(a+b)(a—b)=a—b叫做乘法的平方差公式。再遇到類似形式的多項式相乘時,就可以直接運用公式進行計算。(在此基礎(chǔ)上,讓學(xué)生用語言敘述公式,并讓學(xué)生熟記。)。
(三)嘗試探究。
(四)鞏固練習(xí)。
(l)(x+a)(x—a)。
(2)(m+n)(m—n)(3)(a+3b)(a—3b)。
(4)(1—5y)(l+5y)(5)998×1002。
(6)395×405。
2、直接寫出答案:
(l)(—a+b)(a+b)。
(2)(a—b)(b+a)。
(3)(—a—b)(—a+b)。
(4)(a—b)(—a—b)(5)999×1001。
(6)×(讓學(xué)生獨立完成,互評互改。)。
(五)小結(jié)。
2.運用公式要注意什么?
(1)要符合公式特征才能運用平方差公式;
(2)有些式子表面不能應(yīng)用公式,但實質(zhì)能應(yīng)用公式,要注意分清a、b。
(學(xué)生回答,教師總結(jié))。
(六)作業(yè)。
p106習(xí)題1—5題。
教學(xué)反思。
通過精心備課,本節(jié)課在教學(xué)中是比較成功的。成功之處在于整個教學(xué)流程環(huán)環(huán)相扣,層層遞進,抓住了學(xué)生思維這條主線,遵循由淺入深,由特殊到一般的認(rèn)知規(guī)律,引起學(xué)生的興趣。使他們能夠積極參與其中,同時,使他們的思維得到了鍛煉和發(fā)展。不足之處:時間安排不是很合理,前松后緊。課堂上沒有給更多的學(xué)生提供展示自己思考結(jié)果的機會,過于注重“收”,而“放”不夠。
平方差公式教學(xué)教案(實用14篇)篇二
(4)(+3z)(-3z)=_____.
(1)(x+1)(1+x),。
(2)(2x+)(-2x),。
(3)(a-b)(-a+b),。
(4)(-a-b)(-a+b)。
幫助學(xué)生理解公式的特征,掌握公式的特征是正確運用公式的關(guān)鍵,除了掌握公式的特征外還有必要理解公式中的字母a、b具有廣泛的含義,幾字母a、b可以表示具體的數(shù)、也可以表示單項式或多項式,由于學(xué)生的認(rèn)知能力有一個過程,教學(xué)中應(yīng)由易到難逐步安排學(xué)習(xí)這方面的內(nèi)容。
平方差公式教學(xué)教案(實用14篇)篇三
平方差公式是多項式乘法運算中一個重要的公式,是特殊的多項式與多項式相乘的一種簡便計算。通過復(fù)習(xí)多項式乘以多項式的計算導(dǎo)入新課,為探究新知識奠定基礎(chǔ)。在重難點處設(shè)計問題:“觀察以上3個算式的特點和運算結(jié)果的特點,對比等號兩邊代數(shù)式的結(jié)構(gòu),你發(fā)現(xiàn)了什么?”讓學(xué)生發(fā)現(xiàn)規(guī)律并嘗試運用自己的語言來描述。
問題提出后,學(xué)生能積極進行分組討論、交流,各組小組長闡述自己小組討論的結(jié)果。大多數(shù)的學(xué)生能找出規(guī)律,說出大概意思,但是無法用精準(zhǔn)的語言完整的描述出來,語言表達無條理、含糊。針對這種情況,在以后的課堂教學(xué)過程中要注意加強對學(xué)生的邏輯思維能力和語言表達能力的.培養(yǎng)。最后經(jīng)過師生的共同努力,得出了平方差公式以及公式的特征。
在例題展示環(huán)節(jié)中,我通過2道例題的運算,訓(xùn)練學(xué)生正確應(yīng)用公式進行計算,體會公式在簡化運算中的作用。實踐練習(xí)的設(shè)計,使學(xué)生從不同角度認(rèn)識平方差公式,進一步加強學(xué)生對公式的理解。在運用公式時,學(xué)生基本掌握運用平方差公式的步驟:首先要判斷算式是否符合平方差公式特征,然后再尋找算式中的a,b項,最后運用平方差公式運算。
拓展延伸環(huán)節(jié)中,學(xué)生通過尋找算式中的a,b項,慢慢發(fā)現(xiàn)a,b項不僅可以代表數(shù),也可以代表單項式、多項式等代數(shù)式,這樣設(shè)計可以進一步深化學(xué)生對字母含義的理解。在學(xué)生獨立完成練習(xí)和堂測中,經(jīng)過巡視,我發(fā)現(xiàn)近三分之一的學(xué)生對較復(fù)雜的多項式不能準(zhǔn)確找出a,b項,特別是b項代表多項式時,負數(shù)去括號時出錯較多。
最后通過設(shè)計遞進式的問題串,引導(dǎo)學(xué)生自己一步步總結(jié)出本節(jié)課所學(xué)的知識內(nèi)容,從而培養(yǎng)他們的歸納總結(jié)和語言表達能力。
本節(jié)課采用學(xué)習(xí)小組討論、交流的學(xué)習(xí)方式,讓學(xué)優(yōu)生帶動學(xué)困生,整體教學(xué)效果良好,學(xué)生基本掌握平方差公式的運用,對于較復(fù)雜的a、b項的運算,在自習(xí)課上將加強練習(xí)。
平方差公式教學(xué)教案(實用14篇)篇四
2、注意培養(yǎng)學(xué)生分析、綜合和抽象、概括以及運算能力。
教學(xué)重點和難點。
難點:用公式的結(jié)構(gòu)特征判斷題目能否使用公式。
教學(xué)過程設(shè)計。
我們已經(jīng)學(xué)過了多項式的乘法,兩個二項式相乘,在合并同類項前應(yīng)該有幾項?合并同類項以后,積可能會是三項嗎?積可能是二項嗎?請舉出例子。
讓學(xué)生動腦、動筆進行探討,并發(fā)表自己的見解。教師根據(jù)學(xué)生的回答,引導(dǎo)學(xué)生進一步思考:
(當(dāng)乘式是兩個數(shù)之和以及這兩個數(shù)之差相乘時,積是二項式。這是因為具備這樣特點的兩個二項式相乘,積的四項中,會出現(xiàn)互為相反數(shù)的兩項,合并這兩項的結(jié)果為零,于是就剩下兩項了。而它們的積等于乘式中這兩個數(shù)的平方差)。
繼而指出,在多項式的乘法中,對于某些特殊形式的多項式相乘,我們把它寫成公式,并加以熟記,以便遇到類似形式的多項式相乘時就可以直接運用公式進行計算。以后經(jīng)常遇到(a+b)(a-b)這種乘法,所以把(a+b)(a-b)=a2-b2作為公式,叫做乘法的平方差公式。
在此基礎(chǔ)上,讓學(xué)生用語言敘述公式。
例1計算(1+2x)(1-2x)。
解:(1+2x)(1-2x)。
=12-(2x)2。
=1-4x2.
教師引導(dǎo)學(xué)生分析題目條件是否符合平方差公式特征,并讓學(xué)生說出本題中a,b分別表示什么。
例2計算(b2+2a3)(2a3-b2)。
解:(b2+2a3)(2a3-b2)。
=(2a3+b2)(2a3-b2)。
=(2a3)2-(b2)2。
=4a6-b4.
教師引導(dǎo)學(xué)生發(fā)現(xiàn),只需將(b2+2a3)中的兩項交換位置,就可用平方差公式進行計算。
課堂練習(xí)。
(l)(x+a)(x-a);(2)(m+n)(m-n);
(3)(a+3b)(a-3b);(4)(1-5y)(l+5y)。
例3計算(-4a-1)(-4a+1)。
讓學(xué)生在練習(xí)本上計算,教師巡視學(xué)生解題情況,讓采用不同解法的兩個學(xué)生進行板演。
解法1:(-4a-1)(-4a+1)。
=[-(4a+l)][-(4a-l)]。
=(4a+1)(4a-l)。
=(4a)2-l2。
=16a2-1.
解法2:(-4a-l)(-4a+l)。
=(-4a)2-l。
=16a2-1.
根據(jù)學(xué)生板演,教師指出兩種解法都很正確,解法1先用了提出負號的辦法,使兩乘式首項都變成正的,而后看出兩數(shù)的和與這兩數(shù)的差相乘的形式,應(yīng)用平方差公式,寫出結(jié)果。解法2把-4a看成一個數(shù),把1看成另一個數(shù),直接寫出(-4a)2-l2后得出結(jié)果。采用解法2的同學(xué)比較注意平方差公式的特征,能看到問題的本質(zhì),運算簡捷。因此,我們在計算中,先要分析題目的數(shù)字特征,然后正確應(yīng)用平方差公式,就能比較簡捷地得到答案。
課堂練習(xí)。
1、口答下列各題:
(l)(-a+b)(a+b);(2)(a-b)(b+a);
(3)(-a-b)(-a+b);(4)(a-b)(-a-b)。
2、計算下列各題:
(1)(4x-5y)(4x+5y);(2)(-2x2+5)(-2x2-5);
教師巡視學(xué)生練習(xí)情況,請不同解法的學(xué)生,或發(fā)生錯誤的學(xué)生板演,教師和學(xué)生一起分析解法。
2、運用公式要注意什么?
(1)要符合公式特征才能運用平方差公式;
(2)有些式子表面不能應(yīng)用公式,但實質(zhì)能應(yīng)用公式,要注意變形。
(l)(x+2y)(x-2y);(2)(2a-3b)(3b+2a);
(3)(-1+3x)(-1-3x);(4)(-2b-5)(2b-5);
平方差公式教學(xué)教案(實用14篇)篇五
在探索平方差公式的過程中,發(fā)展學(xué)生的符號感和推理能力。在計算的過程中發(fā)現(xiàn)規(guī)律,并能用符號表達,體會數(shù)學(xué)語言的嚴(yán)謹(jǐn)與簡潔。
激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣,鼓勵學(xué)生自己探索,培養(yǎng)學(xué)生的合作意識與創(chuàng)新能力。
重點。
難點。
一、復(fù)習(xí)導(dǎo)入。
1.回顧多項式乘多項式的法則。
2.創(chuàng)設(shè)情境:你能快速地口算下列式子的值嗎?
(1);(2).
師生共同想辦法,想到能否把數(shù)轉(zhuǎn)化成較整的數(shù)?
變形成:,
再試試把它當(dāng)成多項式乘法來算算,有什么發(fā)現(xiàn)?
繼續(xù)用你發(fā)現(xiàn)的方法算算,,,成功了嗎?
我們把這個有趣的結(jié)論整理并推廣,就可以得到今天要學(xué)習(xí)的一個乘法公式,平方差公式。
二、新課講解。
探究新知。
1.觀察相乘的兩個多項式有什么特點?運算的結(jié)果有什么特點?
討論交流后總結(jié)出:兩個數(shù)的和與這兩個數(shù)的差的積,等于這兩個數(shù)的平方差。
2.把式子里具體的數(shù)換成字母表示的數(shù),結(jié)論還成立嗎?
3.從上面的計算中你有什么發(fā)現(xiàn)呢?
引導(dǎo)學(xué)生發(fā)現(xiàn)對于不同形式的兩個數(shù),都有它們的和與它們的差的積都等于它們的平方差!用公式表示就是:,這里字母是任意形式的兩個數(shù)。這個公式叫做平方差公式。
下列多項式乘法中,能用平方差公式計算的是_______________(填寫序號)。
(1);(2);(3);
(4);(5);(6).
學(xué)生分組討論交流,歸納什么情況下可以使用平方差公式。通過討論,對平方差公式的理解達到一個新的高度:所謂兩數(shù)和、兩數(shù)差,從多項式的角度來看,就是有一項相同(),有一項相反(和),只要相乘的兩個多項式具備這樣的特點,都可以用平方差公式計算。不難判斷,上面的式子中(2)、(5)、(6)都可以用平方差公式計算。
三、典例剖析。
師生共同解答,教師板書。初學(xué)運用時要寫清楚步驟。
學(xué)生解答,關(guān)注學(xué)生是否理解平方差公式,能否正確識別乘法公式里的。
例3.計算:
學(xué)生解答,教師巡視,關(guān)注學(xué)生能否合理變形,靈活運用公式計算。
四、課堂練習(xí)。
1.下面各式的計算對不對?如果不對,應(yīng)怎樣改正?
(1);
(1);(2);
(3);(4).
3.計算:
(1);(2);
教師要注意發(fā)現(xiàn)學(xué)生的錯誤,組織學(xué)生對錯誤進行分析,對于第1題可以引導(dǎo)學(xué)生分析導(dǎo)致錯誤的原因。
五、小結(jié)。
師生共同回顧平方差公式的結(jié)構(gòu)特點,體會公式的作用,交流計算的經(jīng)驗。教師對課堂上學(xué)生掌握不夠牢固的知識進行辨析、強調(diào)與補充,學(xué)生也可以談一談個人的學(xué)習(xí)感受。
六、布置作業(yè)。
p50第1、6題。
平方差公式教學(xué)教案(實用14篇)篇六
學(xué)習(xí)目標(biāo):
1、能推導(dǎo)平方差公式,并會用幾何圖形解釋公式;。
3、經(jīng)歷探索平方差公式的推導(dǎo)過程,發(fā)展符號感,體會“特殊——一般——特殊”的認(rèn)識規(guī)律.
學(xué)習(xí)重難點:
難點:探索平方差公式,并用幾何圖形解釋公式.
學(xué)習(xí)過程:
一、自主探索。
1、計算:(1)(m+2)(m-2)(2)(1+3a)(1-3a)。
(3)(x+5y)(x-5y)(4)(y+3z)(y-3z)。
2、觀察以上算式及其運算結(jié)果,你發(fā)現(xiàn)了什么規(guī)律?再舉兩例驗證你的發(fā)現(xiàn).
3、你能用自己的語言敘述你的發(fā)現(xiàn)嗎?
(1)、公式左邊的兩個因式都是二項式。必須是相同的兩數(shù)的和與差。或者說兩個二項式必須有一項完全相同,另一項只有符號不同。
(2)、公式中的a與b可以是數(shù),也可以換成一個代數(shù)式。
二、試一試。
平方差公式教學(xué)教案(實用14篇)篇七
本節(jié)課是圍繞“引導(dǎo)學(xué)生有效預(yù)習(xí)”的課題設(shè)計的,通過預(yù)設(shè)的問題引發(fā)學(xué)生思考,在學(xué)生的預(yù)習(xí)基礎(chǔ)上回答相關(guān)的問題,產(chǎn)生對整式的乘法、提公因式法和公式法的對比。
讓學(xué)生充分自主的對知識產(chǎn)生探究,同時利用數(shù)形結(jié)合的思想驗證平方差公式;再通過質(zhì)疑的方式加深對平方差公式結(jié)構(gòu)特征的認(rèn)識,有助于讓學(xué)生在應(yīng)用平方差公式行分解因式時注意到它的前提條件;通過例題練習(xí)的鞏固,讓學(xué)生把握教材,吃透教材,讓學(xué)生更加熟練、準(zhǔn)確,起到強化、鞏固的作用,讓學(xué)生領(lǐng)會換元的思想,達到初步發(fā)展學(xué)生綜合應(yīng)用的能力。
本節(jié)課是運用提公因式法后公式法的第一課時——用平方差公式法分解因式。它是整式乘法的平方差公式的逆向應(yīng)用,它是解高次方程的基礎(chǔ),在教材中具有重要的地位。在教材的處理上以學(xué)生的自主探索為主,在原有用平方差公式進行整式乘法計算的知識的基礎(chǔ)上充分認(rèn)識分解因式。明確因式分解是乘法公式的一種恒等變形,讓學(xué)生學(xué)會合情推理的能力,同時也培養(yǎng)了學(xué)生愛思考,善交流的良好學(xué)習(xí)慣。
(一)知識與技能。
2.掌握提公因式法、平方差公式分解因式的綜合應(yīng)用。
(二)過程與方法。
1.經(jīng)歷探究分解因式方法的過程,體會整式乘法與分解因式之間的聯(lián)系。
2.通過乘法公式:(a+b)(a-b)=a2-b2逆向變形,進一步發(fā)展觀察、歸納、類比、概括等能力,發(fā)展有條理地思考及語言表達能力。
3.通過活動4,將高次偶數(shù)指數(shù)向下次指數(shù)的轉(zhuǎn)達化,培養(yǎng)學(xué)生的化歸思想。
4.通過活動1,發(fā)現(xiàn)并歸納出因式分解的又一方法:逆用整式乘法的平方差公式,得到a2-b2=(a+b)(a-b)。
5.通過活動4,讓學(xué)生自己發(fā)現(xiàn)問題,提出問題,然后解決問題,體會在解決問題的過程中與他人合作的重要性。
(三)情感與態(tài)度。
1.通過探究平方差公式,讓學(xué)生獲得成功的體驗,鍛煉克服困難的意志,建立自己信心。
平方差公式教學(xué)教案(實用14篇)篇八
2.注意培養(yǎng)學(xué)生分析、綜合和抽象、概括以及運算能力.
教學(xué)重點和難點。
難點:用公式的結(jié)構(gòu)特征判斷題目能否使用公式.
教學(xué)過程設(shè)計。
我們已經(jīng)學(xué)過了多項式的乘法,兩個二項式相乘,在合并同類項前應(yīng)該有幾項?合并同類項以后,積可能會是三項嗎?積可能是二項嗎?請舉出例子.
讓學(xué)生動腦、動筆進行探討,并發(fā)表自己的見解.教師根據(jù)學(xué)生的回答,引導(dǎo)學(xué)生進一步思考:
(當(dāng)乘式是兩個數(shù)之和以及這兩個數(shù)之差相乘時,積是二項式.這是因為具備這樣特點的兩個二項式相乘,積的四項中,會出現(xiàn)互為相反數(shù)的兩項,合并這兩項的結(jié)果為零,于是就剩下兩項了.而它們的積等于乘式中這兩個數(shù)的平方差)。
繼而指出,在多項式的乘法中,對于某些特殊形式的多項式相乘,我們把它寫成公式,并加以熟記,以便遇到類似形式的多項式相乘時就可以直接運用公式進行計算.以后經(jīng)常遇到(a+b)(a-b)這種乘法,所以把(a+b)(a-b)=a2-b2作為公式,叫做乘法的平方差公式.
在此基礎(chǔ)上,讓學(xué)生用語言敘述公式.
二、運用舉例變式練習(xí)。
例1計算(1+2x)(1-2x).
解:(1+2x)(1-2x)。
=12-(2x)2。
=1-4x2.
教師引導(dǎo)學(xué)生分析題目條件是否符合平方差公式特征,并讓學(xué)生說出本題中a,b分別表示什么.
例2計算(b2+2a3)(2a3-b2).
解:(b2+2a3)(2a3-b2)。
=(2a3+b2)(2a3-b2)。
=(2a3)2-(b2)2。
=4a6-b4.
教師引導(dǎo)學(xué)生發(fā)現(xiàn),只需將(b2+2a3)中的兩項交換位置,就可用平方差公式進行計算.
課堂練習(xí)。
(l)(x+a)(x-a);(2)(m+n)(m-n);。
(3)(a+3b)(a-3b);(4)(1-5y)(l+5y).
例3計算(-4a-1)(-4a+1).
讓學(xué)生在練習(xí)本上計算,教師巡視學(xué)生解題情況,讓采用不同解法的兩個學(xué)生進行板演.
解法1:(-4a-1)(-4a+1)。
=[-(4a+l)][-(4a-l)]。
=(4a+1)(4a-l)。
=(4a)2-l2。
=16a2-1.
解法2:(-4a-l)(-4a+l)。
=(-4a)2-l。
=16a2-1.
根據(jù)學(xué)生板演,教師指出兩種解法都很正確,解法1先用了提出負號的辦法,使兩乘式首項都變成正的,而后看出兩數(shù)的和與這兩數(shù)的差相乘的形式,應(yīng)用平方差公式,寫出結(jié)果.解法2把-4a看成一個數(shù),把1看成另一個數(shù),直接寫出(-4a)2-l2后得出結(jié)果.采用解法2的同學(xué)比較注意平方差公式的特征,能看到問題的本質(zhì),運算簡捷.因此,我們在計算中,先要分析題目的數(shù)字特征,然后正確應(yīng)用平方差公式,就能比較簡捷地得到答案.
課堂練習(xí)。
1.口答下列各題:
(l)(-a+b)(a+b);(2)(a-b)(b+a);。
(3)(-a-b)(-a+b);(4)(a-b)(-a-b).
2.計算下列各題:
(1)(4x-5y)(4x+5y);(2)(-2x2+5)(-2x2-5);。
教師巡視學(xué)生練習(xí)情況,請不同解法的學(xué)生,或發(fā)生錯誤的學(xué)生板演,教師和學(xué)生一起分析解法.
三、小結(jié)。
2.運用公式要注意什么?
(1)要符合公式特征才能運用平方差公式;。
(2)有些式子表面不能應(yīng)用公式,但實質(zhì)能應(yīng)用公式,要注意變形.
四、作業(yè)。
(l)(x+2y)(x-2y);(2)(2a-3b)(3b+2a);。
(3)(-1+3x)(-1-3x);(4)(-2b-5)(2b-5);。
2.計算:
(3)x(x-3)-(x+7)(x-7);(4)(2x-5)(x-2)+(3x-4)(3x+4).
平方差公式教學(xué)教案(實用14篇)篇九
會推導(dǎo)公式(a+b)(a-b)=a2-b2。
通過教學(xué)我對本節(jié)課的反思如下:
1、本節(jié)課我從復(fù)習(xí)舊知入手,在教學(xué)設(shè)計時提供充分探索與交流的空間,使學(xué)生經(jīng)歷觀察,猜測、推理、交流、等活動。對于平方差公式的教學(xué)要重視結(jié)果更要重視其發(fā)現(xiàn)過程,充分發(fā)揮其教育價值。不要回到傳統(tǒng)的“講公式、用公式、練公式、背公式”學(xué)生被動學(xué)習(xí)的局面。我在教學(xué)時沒有直接讓學(xué)生推導(dǎo)平方差公式,而是設(shè)置了一個做一做,讓學(xué)生通過計算四個多項式乘以多項式的題目,讓學(xué)生通過運算并觀察這幾個算式及其結(jié)果,自己發(fā)現(xiàn)規(guī)律。目的是讓學(xué)生經(jīng)歷觀察、歸納、概括公式的全過程,以培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的一般能力,讓學(xué)生體會發(fā)現(xiàn)的愉悅,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,感覺效果很好。
不足:在學(xué)生將4個多項式乘多項式做完評價后,應(yīng)及時把他們歸納為某式的平方差的形式,以便學(xué)生順理成章的猜測公式的結(jié)果。
2、學(xué)生剛接觸這類乘法,我設(shè)計了兩個問題(1)等號左邊是幾個因式的積,兩個因式中的每一項有什么相同或不同之處。(2)等號右邊兩項有什么特點?便于學(xué)生發(fā)現(xiàn)總結(jié)。在這兩個二項式中有一項(a)完全相同,另一項(b與-b)互為相反數(shù)。右邊為這兩個數(shù)的平方差即完全相同的項的平方減去符號相反的平方。公式中的a,b不僅可以表示具體的數(shù)字,還可以是單項式,多項式等代數(shù)式。提醒學(xué)生利用平方公式計算,首先觀察是否符合公式的特點,這兩個數(shù)分別是什么,其次要區(qū)別相同的項和相反的項,表示兩數(shù)平方差時要加括號。平方差公式(a-b)(a+b)=a2-b2,它是特殊的整式的乘法,運用這一公式可以簡捷地計算出符合公式的特征的多項式乘法的結(jié)果.我很細地給學(xué)生講了以上特點,學(xué)生容易接受,課堂氣氛活躍,收到了一定的效果。
3、本節(jié)課如能將平方差公式的幾何意義簡要的結(jié)合說明,更能體會數(shù)學(xué)中數(shù)形結(jié)合的特點,因時間關(guān)系放在下一課時。
4、學(xué)生錯誤主要是:
(1)判斷不出哪些項是公式中的a,哪些項是公式中的b;
(2)平方時忽視系數(shù)的平方,如(2m)2=2m2。針對這一點在課堂教學(xué)中應(yīng)著重對于共性的或思維方式方面的錯誤及時指正,以確保達到教學(xué)效果。平方差公式是乘法公式中一個重要的公式,形式雖然簡單,學(xué)生往往學(xué)起來容易,真正掌握起來困難。部分學(xué)生只是死記硬背公式,不能完全理解其含義和具體應(yīng)用。
總之,在以后的教學(xué)中我會更深入的專研教材,結(jié)合教學(xué)目標(biāo)與要求,結(jié)合學(xué)生的實際特點,克服自己的弱點,盡量使數(shù)學(xué)課生動、自然、有趣。
平方差公式教學(xué)教案(實用14篇)篇十
導(dǎo)入新課,是課堂教學(xué)的重要一環(huán)。“好的開始是成功的一半”,首先是一個智力搶答,學(xué)生通過搶答初步感知平方差公式,接下來,采用小組合作學(xué)習(xí)的方式,利用“四問”讓學(xué)生進行試驗操作,學(xué)生選擇的字母有很多種,讓它們都有其共性。由此,學(xué)生在探索中驗證自己的猜想,同時也感受和認(rèn)識知識的發(fā)生和發(fā)展的過程,得出(a+b)(a-b)=a2-b2.經(jīng)過不斷的嘗試小組合作學(xué)習(xí)方式的教學(xué),我發(fā)現(xiàn)也真正體會到,只要我們給學(xué)生創(chuàng)造一個自由活動的空間,學(xué)生便會還給我們一個意外的驚喜。
把探究的機會留給學(xué)生,讓學(xué)生在動腦思考中構(gòu)建知識,真正成為教學(xué)活動的主體。使他們在活動中進行規(guī)律的總結(jié),并且通過交流練習(xí)、應(yīng)用,深化了對規(guī)律的理解。學(xué)生對知識的掌握往往通過練習(xí)來達到目的。新授后要有針對性強的有效訓(xùn)練,讓學(xué)生對所學(xué)知識建立初步的表象,以達到對知識的理解、掌握及應(yīng)用,實現(xiàn)從感性認(rèn)識到理性認(rèn)識的升華。在此設(shè)計了三個層次的有效訓(xùn)練,讓學(xué)生體會平方差公式的特點:第一層次是直接運用公式,第二層次是將式子進行適當(dāng)變形后應(yīng)用公式,第三個層次是平方差公式的靈活應(yīng)用。通過做題學(xué)生歸納出平方差公式的運用技巧。
以四人小組為單位,各小組出兩道具有平方差公式的結(jié)構(gòu)特征的題目,看誰出得有水平。學(xué)生每人都設(shè)計了題目,任意叫了四位學(xué)生在黑板上寫,經(jīng)評價結(jié)果都對了。這種方法,不僅令人耳目一新,而且把學(xué)生引入不協(xié)調(diào)——探究——發(fā)現(xiàn)——解決問題的一個學(xué)習(xí)過程,使學(xué)生獲得思維之趣,參與之樂,成功之悅。
本節(jié)課在采用小組學(xué)習(xí)之后,為了讓學(xué)生的鞏固有效果,采用了學(xué)生上臺講解、作業(yè)實物投影的方式來進行,多種方式的選擇,讓學(xué)生暴露出自己的問題,然后通過生生互動、師生互動解決問題,實現(xiàn)問題及時處理,學(xué)習(xí)效果不錯。
1、節(jié)奏的把握上。
這一節(jié)我覺得不是很順,尤其在從幾何角度解釋平方差公式、例2⑵的其他計算方法等問題上,花了不少時間,節(jié)奏把握的不是很好。
2、充分發(fā)揮學(xué)生的主體地位上。
這節(jié)課上,我覺得學(xué)生的積極性不很高,回答問題沒有激情,說明我背學(xué)生還不夠,自己想象的比現(xiàn)實的好。
平方差公式教學(xué)教案(實用14篇)篇十一
我參與了學(xué)校組織的“同課異構(gòu)”活動,授課內(nèi)容是《乘法公式——平方差公式(一課時)》。
上學(xué)期末我恰好在任縣二中參加了一次關(guān)于教材研究的會議,當(dāng)時河南一位從教三十多年且參與教材編寫的專家指出:關(guān)于概念、公式、法則的教學(xué)一般有六個環(huán)節(jié):引入;形成;明確表述;辨析;鞏固應(yīng)用;歸納提升。新課標(biāo)也要求我們在教學(xué)中不只是傳授學(xué)生基本的知識技能,還要以培養(yǎng)學(xué)生的數(shù)學(xué)能力及合作探究的意識為目標(biāo)。為此,我在設(shè)計本節(jié)課的教學(xué)環(huán)節(jié)時充分考慮學(xué)生的認(rèn)知規(guī)律,并以培養(yǎng)學(xué)生的數(shù)學(xué)素質(zhì),了解運用數(shù)學(xué)思想方法,增強學(xué)生的合作探究意識為宗旨。
我的教學(xué)流程是按照“引入——猜想——證明——辨析——應(yīng)用——歸納——檢測”的順序進行的,非常符合學(xué)生的認(rèn)知規(guī)律。我覺得本節(jié)課比較好的方面有以下幾點:
1.在利用圖形面積證明平方差公式時,我沒有采用教材上直接給出剪接方法再證明的過程,只給出了原圖讓學(xué)生們自己去探究不同的方法。事實證明,學(xué)生們不只拼出了書上的方法,還從對角線剪開拼出了梯形,平行四邊形和長方形三種方法,思維一下就開闊了。這里我并沒有為了證明而證明,也沒有怕浪費時間匆匆而過,而是給學(xué)生留下了充足的思考和討論時間,真正激發(fā)了學(xué)生的思維。
2.通過設(shè)置一個“找朋友”的小游戲來辨析公式,調(diào)動了學(xué)生的積極性,活躍了課堂氣氛,因此,游戲過后學(xué)生對公式的結(jié)構(gòu)特征也有了更深刻的了解。
3.共享收獲環(huán)節(jié),我采用的是制作微課的方式,形式比較新穎,從認(rèn)識公式到知道公式的特征,再到感悟數(shù)形結(jié)合的數(shù)學(xué)思想,最后是感受到數(shù)學(xué)運算的一種簡捷美,將本節(jié)課升華到了一個新的高度。
當(dāng)然,本節(jié)課也有一些遺憾和不足之處。比如,由于緊張,在授課過程中遺漏了兩點,通過播放幻燈片才慌忙補充上;在處理學(xué)生練習(xí)時,為了抓緊時間完成進度沒有把學(xué)生的出錯點講透講細;游戲環(huán)節(jié)參與學(xué)生有些少,應(yīng)讓更多的同學(xué)動起來;當(dāng)堂檢測的題目應(yīng)該設(shè)置上分值和檢測時間,讓學(xué)生限時完成,然后可以根據(jù)學(xué)生得分了解本節(jié)課的學(xué)習(xí)效果,以便下節(jié)課再有針對性的進行講解和練習(xí)查漏補缺。
通過這次“同課異構(gòu)”活動,我感覺自己在教學(xué)環(huán)節(jié)設(shè)計、課件制作和使用、導(dǎo)學(xué)案的規(guī)范書寫等各方面都有了提高,通過各位領(lǐng)導(dǎo)和老師的點評,我也有了更多的收獲,相信可以為我今后的教學(xué)所用。
平方差公式教學(xué)教案(實用14篇)篇十二
教學(xué)目標(biāo):
一、知識與技能。
1、參與探索平方差公式的過程,發(fā)展學(xué)生的推理能力2、會運用公式進行簡單的乘法運算。
二、過程與方法。
1、經(jīng)歷探索過程,學(xué)會歸納推導(dǎo)出某種特種特定類型乘法并用簡單的。
數(shù)學(xué)式子表達出,即給出公式。
2、在探索過程的教學(xué)中,培養(yǎng)學(xué)生觀察、歸納的能力,發(fā)展學(xué)生的符。
號感和語言描述能力。
三、情感與態(tài)度。
以探索、歸納公式和簡單運用公式這一數(shù)學(xué)情景,加深學(xué)生的體驗,增加學(xué)習(xí)數(shù)學(xué)和使用的信心。培養(yǎng)學(xué)生由觀察-發(fā)現(xiàn)-歸納-驗證-使用這一數(shù)學(xué)方法的逐步形成.
教學(xué)重點:公式的簡單運用。
教學(xué)難點:公式的推導(dǎo)。
教學(xué)方法:學(xué)生探索歸納與教師講授結(jié)合。
課前準(zhǔn)備:投影儀、幻燈片。
平方差公式教學(xué)教案(實用14篇)篇十三
通過教學(xué)我對本節(jié)課的反思如下:
1、本節(jié)課我從復(fù)習(xí)舊知入手,在教學(xué)設(shè)計時提供充分探索與交流的空間,使學(xué)生經(jīng)歷觀察,猜測、推理、交流、等活動。對于平方差公式的教學(xué)要重視結(jié)果更要重視其發(fā)現(xiàn)過程,充分發(fā)揮其教育價值。不要回到傳統(tǒng)的“講公式、用公式、練公式、背公式”學(xué)生被動學(xué)習(xí)的'局面。我在教學(xué)時沒有直接讓學(xué)生推導(dǎo)平方差公式,而是設(shè)置了一個做一做,讓學(xué)生通過計算四個多項式乘以多項式的題目,讓學(xué)生通過運算并觀察這幾個算式及其結(jié)果,自己發(fā)現(xiàn)規(guī)律。目的是讓學(xué)生經(jīng)歷觀察、歸納、概括公式的全過程,以培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的一般能力,讓學(xué)生體會發(fā)現(xiàn)的愉悅,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,感覺效果很好。
不足:在學(xué)生將4個多項式乘多項式做完評價后,應(yīng)及時把他們歸納為某式的平方差的形式,以便學(xué)生順理成章的猜測公式的結(jié)果。
2、學(xué)生剛接觸這類乘法,我設(shè)計了兩個問題(1)等號左邊是幾個因式的積,兩個因式中的每一項有什么相同或不同之處。(2)等號右邊兩項有什么特點?便于學(xué)生發(fā)現(xiàn)總結(jié)。在這兩個二項式中有一項(a)完全相同,另一項(b與—b)互為相反數(shù)。右邊為這兩個數(shù)的平方差即完全相同的項的平方減去符號相反的平方。公式中的a,b不僅可以表示具體的數(shù)字,還可以是單項式,多項式等代數(shù)式。提醒學(xué)生利用平方公式計算,首先觀察是否符合公式的特點,這兩個數(shù)分別是什么,其次要區(qū)別相同的項和相反的項,表示兩數(shù)平方差時要加括號。平方差公式(a—b)(a+b)=a2—b2,它是特殊的整式的乘法,運用這一公式可以簡捷地計算出符合公式的特征的多項式乘法的結(jié)果。我很細地給學(xué)生講了以上特點,學(xué)生容易接受,課堂氣氛活躍,收到了一定的效果。
3、本節(jié)課如能將平方差公式的幾何意義簡要的結(jié)合說明,更能體會數(shù)學(xué)中數(shù)形結(jié)合的特點,因時間關(guān)系放在下一課時。
4、學(xué)生錯誤主要是:(1)判斷不出哪些項是公式中的a,哪些項是公式中的b;(2)平方時忽視系數(shù)的平方,如(2m)2=2m2。針對這一點在課堂教學(xué)中應(yīng)著重對于共性的或思維方式方面的錯誤及時指正,以確保達到教學(xué)效果。平方差公式是乘法公式中一個重要的公式,形式雖然簡單,學(xué)生往往學(xué)起來容易,真正掌握起來困難。部分學(xué)生只是死記硬背公式,不能完全理解其含義和具體應(yīng)用。
總之,在以后的教學(xué)中我會更深入的專研教材,結(jié)合教學(xué)目標(biāo)與要求,結(jié)合學(xué)生的實際特點,克服自己的弱點,盡量使數(shù)學(xué)課生動、自然、有趣。
平方差公式教學(xué)教案(實用14篇)篇十四
學(xué)習(xí)方法:歸納、概括、總結(jié)。
創(chuàng)設(shè)問題情境,引入新課。
在前兩學(xué)時中我們學(xué)習(xí)了因式分解的定義,即把一個多項式分解成幾個整式的積的形式,還學(xué)習(xí)了提公因式法分解因式,即在一個多項式中,若各項都含有相同的因式,即公因式,就可以把這個公因式提出來,從而將多項式化成幾個因式乘積的形式。
如果一個多項式的各項,不具備相同的因式,是否就不能分解因式了呢?當(dāng)然不是,只要我們記住因式分解是多項式乘法的相反過程,就能利用這種關(guān)系找到新的因式分解的方法,本學(xué)時我們就來學(xué)習(xí)另外的一種因式分解的方法——公式法。
1、請看乘法公式。
(a+b)(a-b)=a2-b2(1)。
左邊是整式乘法,右邊是一個多項式,把這個等式反過來就是。
a2-b2=(a+b)(a-b)(2)。
利用平方差公式進行的因式分解,第(2)個等式可以看作是因式分解中的平方差公式。
a2-b2=(a+b)(a-b)。
如x2-16。
=(x)2-42。
=(x+4)(x-4)。
9m2-4n2。
=(3m)2-(2n)2。
=(3m+2n)(3m-2n)。
例1、把下列各式分解因式:
例2、把下列各式分解因式:。
(1)9(m+n)2-(m-n)2;(2)2x3-8x.
補充例題:判斷下列分解因式是否正確。
(1)(a+b)2-c2=a2+2ab+b2-c2.
(2)a4-1=(a2)2-1=(a2+1)(a2-1)。
1、教科書習(xí)題。
2、分解因式:x4-16x3-4x4x2-(y-z)2。
3、若x2-y2=30,x-y=-5求x+y。