教案模板的編寫應該基于教學大綱和教材要求,保證教學內容的全面性和科學性。以下是一些成功教師分享的優秀教案模板,希望能給您帶來啟示。
商的變化規律說課稿(優秀19篇)篇一
我說課的內容是人教版小學數學四年級上冊第五單元除數是兩位數的除法中的例5“商的變化規律”。
(二)教材分析。
這是一節新授課,主要學習商的三個變化規律:即商隨除數的變化而變化的規律、商隨被除數的'變化而變化的規律和商不變的規律。“商不變的規律”是一個新的數學規律。在小學數學中占有很重要的地位,它是進行除法簡便運算的依據,也是今后學習小數乘、除法、分數、比的基本性質等知識的基礎。在學習本節課前學生已經掌握了除數是兩位數的除法法則,為本節課的學習提供了知識鋪墊和思想孕伏。本堂課利用學生已有的計算技能,通過計算比較,提出問題引導學生思考發現商的變化規律,這部分內容不但可以鞏固所學的計算知識,同時培養了學生初步的抽象,概括能力,以及善于觀察、勤于思考,勇于探索的良好的學習習慣。基于對教材的以上認識,依據數學課程標準,確定如下教學目標。
(三)教學目標。
知識與技能目標:
1、結合具體情境,通過計算、觀察、比較、探索,引導學生發現商的變化規律,并能運用規律解決問題。
2、培養學生初步的觀察分析和抽象概括能力。
過程與方法目標:引導學生經歷“計算—觀察—比較—探索—應用”的過程。
教學難點:運用規律,進行被除數和除數末尾都有零的簡便計算,明晰算理。
(四)教學設想:
1、充分發揮學生主體作用,自主探究。
通過這一節課的學習,使學生掌握商的三個變化規律,也為學生今后的數學學習打下了堅實的基礎。通過課堂教學的實施,引導學生積極參與到探究規律、總結規律的過程中,讓學生在觀察、思考、嘗試、交流的過程中,實現師生互動、生生交流,促進學生主動參與知識的形成過程。
2、緊抓學生知識的生長點,將學生知識、能力有效延伸。
本課通過研究商不變的規律,在學生初步感知到被除數、除數、商之間存在著變化的規律基礎上,抓住學生這個知識的生長點,從單純的算式計算延伸到算式內部、算式之間的聯系上,延伸學生的知識范圍。進而使學生通過本節課研究,經歷數學規律產生或發現的一般過程。
本節課我根據教學內容的編排特點和兒童的認知發展規律,引導學生用眼睛觀察,比較相關算式的內在聯系;動腦去想,抽象出“變”的規律;動口去說,概括出商的變化規律,讓學生在多種感官的協同活動中主動獲取知識。
而學生也在創設的情景中,圍繞中心問題通過觀察比較,探究規律,發現規律,表述規律,應用規律,同時也培養了學生的自主觀察、發現、抽象概括、語言表達能力以及創新精神。
在整堂課中,始終圍繞著觀察算式、找出規律、表述規律,充分體現了學生主動參與學習的積極性。
我把整個教學過程分為四大環節進行的。
第一環節:創設情境,導入新課。
在這一環節,我設計的是通過小精靈聰聰給大家帶來兩組口算題,要同學們同桌兩人一組進行口算比賽,先算完又全對的為贏。我認為這樣設計有利于吸引孩子注意力,激發學生學習興趣。
第二環節:自主探索,發現規律。
(一)探索“商隨除數(被除數)的變化而變化的規律”。
(課件出示例題)在學生匯報結果之后,引導學生仔細觀察算式并思考:
(1)每一組題中的什么數變了?
(2)什么數沒有變?
(3)除數(或被除數)和商的變化有什么特點?(被除數不變,商隨除數的變化而變化的)。
根據回答邊引導觀察第一組算式,提問:除數是怎樣變化的?商是怎樣隨著除數的變化而變化的?分別從上往下、再從下往上看第一個算式和第二個算式比較、第二個算式和第三個算式比較,從而發現:被除數不變,除數乘幾擴大,商除以幾變小;除數除以幾變小,商乘幾擴大。
這是本節課要學習的第一個規律:被除數不變,商隨除數的變化而變化的,因為被除數不變時,商和除數是成反比例的,這對學生來講可能較難理解,所以我采取幫扶的方法,一來減緩知識梯度,二來培養了學生自主探究的方法,為第二個除數不變,商隨被除數的變化而變化的規律探究,奠定了自學的基礎,所以第二個規律的學習我放手讓學生自學。
認真觀察第二組算式,看看你能發現什么?邊觀察邊思考,然后和小組同學說一說:
(1)每一組題中的什么數變了?
(2)什么數沒有變?
(3)除數(或被除數)和商的變化有什么特點?
在全班匯報自學情況,然后引導小結第二個規律:除數不變,被除數乘幾,商也乘幾;被除數除以幾,商也除以幾。
通過對剛才這兩組算式的觀察、比較,我們發現商的變化和被除數、除數有密切的關系。這就是這節課我們要研究的新知識:商的變化規律。板書課題。(商的變化規律)。
(二)小組合作,探索“商不變的規律”。
在這一環節主要探討第三個規律:被除數和除數同時擴大(或縮小)相同的倍數(零除外)商不變。這是本節課的教學重點,我采用了小組合作學習的方法,因為數學課程標準指出:數學教學活動必須建立在學生的認知發展水平和已有知識經驗基礎之上,教師應激發學生的學習積極性,向學生提供充分從事數學活動的機會,讓他們在自主探索和合作交流的過程中真正理解和掌握基本的數學知識與技能,數學思想和方法,獲得廣泛的數學活動的廣泛經驗。這樣既培養的學生的合作意識與合作能力,又充分體現了教師是數學學習的組織者、引導者與合作者。
1、(課件出示)例題的表格,
說明要求:先填表,再回答問題,然后和小組同學交流:
(1)表中什么數有變化?什么數沒有變化?
2、在小組交流的基礎上全班交流時引導學生分別從左往右、從右往左每兩欄進行比較從而發現并概括出規律:被除數和除數同時擴大(或縮小)相同的倍數(零除外)商不變。
第三環節:應用反饋、運用規律。
這一環節我采取由易到難的形式呈現,首先完成練習十七的第四題,直接運用本節課所學的規律;加深對知識的鞏固,進一步熟悉商的變化規律,了解商的變化規律的應用價值。第二完成第五題,雖然也是運用商不變的規律,但是題型稍有變化,練習題不是成組出現的提高了一點難度。從而達到知識的升華。
第四環節:課堂總結、拓展延伸。
先啟發學生回顧本節課學習的知識,讓學生根據板書了解本節課知識重點,從而形成完整的知識結構體系。拓展延伸練習的難度在鞏固練習的基礎上又加大了一點,既鍛煉學生的思維能力,又加深了對商不變規律的進一步理解。
商的變化規律說課稿(優秀19篇)篇二
1、兩數相除,商是19,如果商擴大20倍,被除數縮小4倍,那么除數()。
2、兩數相除,商是19,如果被除數擴大12倍,除數擴大6倍,那么商是()。
3、兩個因數的積是360,如果一個因數除以3,另一個因數不變,積變為()。
4、兩個因數相乘,一個因數乘6,另一個因數不變,那么積()。
5、兩個因數相乘的積是5600,如果一個因數不變,另外一個因數除以10,那么積是()。
6、兩個數相乘是75,如果一個因數乘7,另一個因數除以7,積是()。
7、已知a×b=400,如果a乘3,則積是(),如果b除以5,則積是()。
8、兩個數相乘,一個因數乘10,另一個因數也乘10,積()。
9、兩個因數的積是420,如果一個因數不變,另一個因數乘8,積是()。
10、兩個數相乘的積是160,如果一個因數除以2,另一個因數也除以2,積是()。
11、兩數相除的商是15,如果被除數、除數同時擴大10倍,商是()。如果被除數不變,只把除數擴大5倍,商是()。
12、150÷30,如果被除數增加300,要使商不變,除數應該()。
13、兩數相除,如果被除數擴大5倍,要使商不變,除數應該()。
14、1400÷70,如果除數不變,被除數除以10,那么商應該()。
15、被除數不變,除數乘3,商應當()。
16、兩個數的商是6,如果被除數與除數都除以2,商是()。
17、兩數相除,商是80,如果去掉除數個位上的0,商是()。
18、兩個數的商是12,如果被除數除以3,除數不變,則商是()。
19、兩數相除,商是19,如果商擴大20倍,除數縮小4倍,那么被除數()。
20、在一個除法算式里,除數除以5,要使商不變,被除數應該()。
21、在一道除法算式里,如果被除數除以20,除數(),商不變。
22、兩數相乘,如果一個因數縮小5倍,另一個因數擴大5倍,積()。
23、兩數相乘,如果一個因數擴大8倍,另一個因數縮小2倍,積()。
24、兩數相除,如果被除數擴大4倍,除數擴大4倍,商()。
25、兩數相除,如果被除數擴大4倍,除數縮小2倍,商()。
26、兩數相除,如果被除數縮小2倍,除數擴大4倍,商()。
27、兩數相除,被除數縮小12倍,除數縮小2倍,商()。
28、小科在計算除法時,把除數末尾的0漏寫了,結果得到的商是70,正確的商應該是()。
29、芳芳在計算乘法時,把一個因數末尾多寫了1個0,結果得到800,正確的積是應該是()。
30、小冬在計算除法時,把被除數末尾的“0”漏寫了,結果得到的商是70,正確的商應該是()。
31、兩數相乘,積是36,一個因數擴大2倍,另一個因數縮小3倍,那么積是()。
32、兩數相乘,積是72,一個因數擴大4倍,另一個因數縮小3倍,那么積是()。
33、兩數相除,商是8,余數是10,如果被除數和除數同時擴大10倍,商是(),余數是()。
34、兩數相除,商是7,余數是3,如果被除數和除數同時擴大120倍,商是(),余數是()。
35、兩數相除,商是8,余數是600,如果被除數和除數同時縮小100倍,商是(),余數是()。
36、兩個數相除,商是27,如果被除數擴大12倍,除數擴大6倍,那么商是()。
37、兩個數相除,商是27,如果被除數擴大12倍,除數縮小6倍,那么商是()。
38、兩個數相除,商是270,如果被除數縮小3倍,除數擴大6倍,那么商是()。
39、兩數相除,商是19,如果商擴大20倍,除數不變,那么被除數()。
40、兩數相除,商是19,如果商擴大5倍,被除數不變,那么除。
商的變化規律說課稿(優秀19篇)篇三
2、經歷“積的變化規律”的發現、表達和應用的過程,初步獲得探索規律的方法和經驗,發展概括、推理能力。
3、感受探索、運用規律的樂趣。
一、從生活中來。
結合這三個算式說說你的發現。
二、探索規律。
1、發現規律。
請同學們拿出學習單一,有兩組算式,大家可以選擇其中一組研究,也可以兩組都完成。
在研究之前請同學讀一讀學習建議。
我們來聽聽他們是怎么思考的。
按什么順序觀察的第一個因數,從()到()乘幾,第二個因數不變。積也乘幾,看來觀察得越全面,得到的結論才能越完整。
2、表達規律。
匯報,強調幾相同,0除外。把這條規律寫在黑板上。那這條重要的規律就是積的變化規律。
3、像剛才那樣,我們用大量的不同的例子來概括這個規律的方法,叫做不完全歸納法。
4、應用規律。
1、你能根據8×50﹦400,直接寫出下面各題的積。
三、到生活中去。
商的變化規律說課稿(優秀19篇)篇四
《商的變化規律》一課屬于比較傳統的知識,它是在學生學習了筆算乘法、除法的基礎上進行教學的。與舊教材相比,教材對本知識點作了適當調整:舊教材中只研究了商不變的規律,而新教材中卻改為了商的變化規律,引導學生探討被除數不變商隨除數變化的規律和除數不變商隨被除數變化的規律,提升了學生自由探究數學問題的空間,因此頗具挑戰性。那么老師怎樣做到“老課新上”?做到在“主動教育”模式下始終讓學生成為課堂教學活動中的小主人,怎樣在自主活動中發現問題、探索問題、解決問題以及主動優化,努力實現數學課堂的真正高效?基于以上幾點,我們的教學策略定為:扶放結合、引導探索、自主參與、學會學習、培養能力。
在課堂呈現上余老師緊緊地把握住了以下三點:
1、“問題生成單”是主動教育課堂的“魂”。
我校的“主動教育”教學模式的基石是“問題生成單”,我們在設計本節課之處就始終用“問題生成單”作為課堂的主線,經歷試教之處的時間不夠用、教學環節不夠精簡、課堂探究不夠深入、課堂效率不夠高效等問題后,我們對預習生成單進行了再次設計,將教材中簡單、靜態、結果性的文本,設計成為豐富、生動、過程化的“問題生成單”,讓問題生成單成為整堂課的“魂”。在整堂課中,“問題生成單”分三次呈現。
第一次呈現:在開課環節,教師設計了第一層次的舊知復習,用積的變化規律舊知為新知搭橋鋪墊,為探討除法中商的變化規律起到了方法上的遷移。
第二次呈現:教師要求學生根據問題生成單研究當被除數不變時,研討除數變商會怎樣?除數不變,商會隨著被除數的變化而發生怎樣的變化,起到了為學生分散難點的目的。
第三次呈現:老師要求學生根據第二次的呈現,對被除數、除數都變,商會怎樣變進行合理猜想。
一張小小的問題生成單凝聚著老師課前精心解讀教材的心血,三次精彩的呈現為學生提供了探究的空間,使學生為完成一定任務而進行設想、預見、磋商、探究、討論、辯解,思維發生碰撞,構筑了課堂上有活力、有價值的教學資源,成為了主動教育的“魂”,進而促進學生在有限的40分鐘課堂里獲得了最高效的主動發展。
2、“學生自主探究”成為了主動教育課堂的“根”。
“讓過程和方法進課堂”可謂余老師上課的特色。整節課余老師非常注重培養學生在學習過程中對數學問題的探究,體現了學生的主動和教師的主導,師生和諧共榮,極符學生的認知規律、新課程標準和我校主動教育模式要求。課堂上我們看到教師始終把激勵學生學習、為學生搭建學習平臺作為教學的主線,讓小組中的每個學生都在寬松的氛圍中,始終處于一種積極求知、好學向上的狀態,奠定了學好數學信心的基礎;同時重視合作、探究,使得學生愿意與伙伴交流,敢于自由表達自己的想法,在參與中體驗到學習的樂趣。
課堂上一次次探究活動真正成為師生互動、生生互動,共同發展的數學活動過程,使學生在課堂上有了自主,有了發揚個性、施展才能的空間,成為了主動教學的“根”。
3、“學生自主構建、歸納、總結、提煉”,成為主動教育課堂新的增長點!
課堂中余老師緊緊抓住探究三條規律的過程,注重讓學生構建思考問題的方法,啟發學生有序觀察,多角度、多方向去挖掘思路,引導學生參與到發現規律、探究規律、總結規律的過程中。在學生發現商的變化有某種規律的萌動時,余老師鼓勵學生:“用自己的話講一講發現的規律。”并及時給予肯定,讓學生在觀察、比較、思考、嘗試中,實現師生互動、生生互動,激活了學生主動參與獲取知識的過程。
整節課教師下放“教學”,只作點拔,成為活動的組織者,巧妙設疑,引導學生去發現問題,解決問題,拓展他們的解題思路,既重視學生獨立思考的過程,又重視發揮集體的智慧,給學生提供了多向交流的機會。學生在靜思、合作、商討中,輕松、愉快地學到知識,增長本領,從而達到樂學、會學、創造學的境界。
本課在探究新知的過程中,亦學亦練,注重了知識的生成與鞏固,學與練相得益彰。同時教師非常注重總結性的語言,能適時地把學生表達的變化規律的用語,加以提煉并呈現給學生,使學生在全面了解商的變化規律的同時,又培養了學生用數學語言表達數學規律能力。
1、“積”、“商”是一對矛盾的統一體,學生極易混淆,建議可先復習乘法、除法的概念及算式各部分名稱,做好知識儲備,便于學生表述規律。
2、教師還應加強指導學生表述完整的練習,同時要適時引導、及時糾正,比如學生總結第一個規律時,說被除數不變,除數擴大(或縮小)幾倍,商就擴大或縮小幾倍。
主動教育是一種教育思想,教育策略,教育藝術,教育境界。教師大膽地把舞臺和空間讓給學生,把自己隱蔽起來,讓學生充分發揮其主動性,這樣,課堂就綻放出空靈之美。當然,“冰凍三尺非一日之寒”!模式的創新、思維的轉變,也都不是一蹴而就的過程。我們也從這節課中看到了自身許多的不足。
創新終歸出于實踐,期待在以后的實踐中與我們的孩子們共同轉變、攜手同行!正如我校“主動教育”教學理念中提出的“關注學生興趣,興趣煥發生命精彩;關注學生習慣,習慣影響學生未來;關注學生質疑,質疑引發智慧覺醒。”
商的變化規律說課稿(優秀19篇)篇五
特別值得一提的是這節課楊老師用了豐富的表揚語,這點值得我學習。最后我再提一點小小的不成熟的建議:剛引入時青蛙的只數和眼睛的倍數關系同時又引出只數與腿數的關系。要是讓學生帶著疑問自己發現他們間的倍數關系是不是效果更佳。
商的變化規律說課稿(優秀19篇)篇六
本節課的教學內容是四年級上冊第三單元的例4---“積的變化規律”。在乘法運算中探索積的變化規律是整數四則運算中內容結構的一個重要方面。教材例題以兩組乘法算式為載體,引導學生探索當一個因數不變時,另一個因數與積的變化情況,從中歸納出積的變化規律。在這個過程的探索中,我讓學生理解兩數相乘時,積的變化隨其中一個因數(或兩個因數)的變化而變化,同時體會事物間是密切相關的,受到辨證思想的啟蒙教育。
在教學過程中,有以下幾點感覺還不錯的地方:
1、我設計了讓學生自己舉例像書上那樣寫出2組算式,還設計了讓學生寫出自己的發現,這樣讓學生有自己的獨立思考,也對后面規律的揭示起到鋪墊的作用。
2、通過規律過程的探索,不但讓學生理解兩數相乘時積的變化隨其中一個因數的變化而變化,同時體會事物間是密切聯系的,培養學生遷移類推的能力。
3、練習的設計能由易到難,讓學生在學習中感到輕松自如,并且重視每次練習的反饋,及時掌握學生的學習情況。
這節課也有一些不足之處:
1、教師的語言不夠簡練,在教學2的.規律時讓學生探究規律的時間太多,有的時候學生已經說的很好了就不要讓其他學生再說了。
2、教師的提問要精練,例如教師提問“你能用我們今天學的知識來解決下面的問題嗎?”可以換成“這節課我們用積的變化規律來解決下面的問題。”
將本文的word文檔下載到電腦,方便收藏和打印。
商的變化規律說課稿(優秀19篇)篇七
“商的變化規律”在小學數學中占有很重要的地位,它是進行除法簡便運算的依據,也是今后學習小數乘除法、分數、比的基本性質等知識的基礎。教材中利用學生已有的計算技能,通過計算比較,提出問題引導學生思考發現商的變化規律。這部分內容不但可以鞏固所學的計算知識,同時培養了學生初步的抽象、概括能力以及善于觀察、勤于思考、勇于探索的良好的學習習慣。
本節課的教學目標是:
1、通過觀察、比較、探索,使學生發現商隨除數(或被除數)的變化而變化的規律。
2、培養學生初步抽象、概括能力。
3、培養學生善于觀察、勤于思考、勇于探索的良好習慣。
教學重難點:通過觀察、比較、探討發現商的變化規律。
本節課我根據教學內容的編排特點和兒童的認知發展規律,引導學生用眼觀察,比較相關算式的內在聯系;動腦去想,抽象出“變與不變”的規律;動口去說,概括出商的變化規律,讓學生在多種感官的協同活動中主動獲取知識。
而學生也在創設的情境中,圍繞中心問題通過觀察比較,探究規律,發現規律,表述規律,應用規律,同時也培養了學生的自主發現、抽象概括、語言表達能力以及創新精神。
一開始我選擇這一個內容,還以為只學習“商不變的性質”這一條規律,可是經過仔細閱讀教材之后,才發現這節課要解決的是商的三條規律,這樣一來,這節課的內容就很多,從量上來講就很足,一堂課要完成這么多的內容,這給我上好這堂課出了一個大難題。于是,思考過后,要同時完成這些內容,那么這節課就只能定位在讓學生通過觀察、比較、探索,使學生發現商隨除數(或被除數)。
的變化而變化的規律,并且能應用這些規律解決一些簡單的問題。
教材編排的時候,把被除數不變時,商隨除數變化而變化的規律放在最前面,接著是除數不變時,商隨著被除數的變化而變化的規律,最后是商不變的性質。因為我們知道被除數不變時,商和除數是成反比例的,這對學生來講可能較難理解,于是,我把除數不變時,商的變化規律放在第一個,這樣在正比例的基礎上,再來學習反比例,學生想度來說較容易理解。
在整堂課中,始終圍繞著觀察算式、得出規律、表述規律和應用規律來進行教學。當然學生在學習這三條規律時,也是一條比一條輕松。第一條規律學生在教師的引導下,順利的得出,第二條第三條規律就放手讓學生學生自己去觀察算式,發現規律,表述規律,充分體現了學生的主體性和主動性。
在這里我要感謝那些不厭其煩地一遍又一遍聽我試講,不斷幫我改教案、幫我指點的老師,真的感謝你們!另外,在我的課中還有很多不足之處,懇請在場的各位領導和老師批評指正,希望你們能給我多提一些寶貴的建議。
商的變化規律說課稿(優秀19篇)篇八
本節課內容是人教版小學數學四年級上冊87頁的內容,本節課是在學生學習了筆算除法的基礎上學習的,并為后面學習學習小數乘除法、分數、比的基本性質等知識奠定了基礎,起到了承上啟下的作用。
依據《新課程標準》要求、數學的學科特征和學生的年齡特點,我確定本節課的教學目標為:
知識與技能目標:理解并掌握商的變法規律,培養學生初步的抽象、概況能力。
過程與方法目標:經歷對商的變法規律的探究過程,體驗觀察、比較、抽象、概況的思想和方法。
情感態度與價值觀目標:在學習過程中,感受數學知識之間的邏輯之美,激發學生的探索精神,培養創新能力。
根據《數學課程標準》對本學段的教學要求,為了使學生順利的達到教學目標,依據學生已有的生活經驗和知識基礎,我確立了本課的教學重點是:理解商的變化規律。;教學難點是:掌握商的變化規律解。
教無定法,貴在得法。新課標指出,有效地學習活動必須建立在學生的知識發展水平和已有的知識經驗基礎之上。四年級小學生的認知水平正處于具體到抽象的過程,根據他們的這些特征,以及教學內容的特點,我在教學中采用以情景教學法、觀察發現法為主,以多媒體演示法為輔的教學方法。
《新課程標準》中提出:學生的學習應當是一個生動活潑的、主動的和富有個性的過程,認真聽講、積極思考、動手實踐、自主探索、合作交流等都是學習數學的重要方式。因此,觀察法、動手實踐、自主探究、合作交流是本節課學生的主要學習方式。
我認為,鉆研教材,研究教法和學法是搞好教學的前提和基礎,而合理安排教學程序卻是教學成功的關鍵一環。為了讓學生學有所獲,這一節課我設計了四個教學環節:
第一個環節:創設情境,激發興趣。首先,我設計了孫悟空分餅的故事導入新課,創設情境,由故事引導學生去探索,激發學生的學習興趣。這樣設計的目的是,讓孩子從開始就充滿好奇心,滿懷興趣的參與學習,教學過程始終吸引孩子,把他們帶入探索問題,發現規律的境界。
第二環節:探索交流,解決問題。
這個環節是課堂教學的中心環節,新課標強調,要讓學生在實踐活動中進行探索性的學習。根據這一理念,我設計了3個教學活動。
活動一:探究除數不變,商隨被除數的變化而變化。
教學例8時,利用學生已有的知識和經驗基礎,放手讓學生通過計算觀察、比較等活動去發現規律。然后,讓學生用簡潔的語言總結表述規律,我加以糾正或補充。最后讓學生舉例驗證規律,進一步加深理解。
活動二:探究被除數不變,商隨除數的變化而變化。
我放手讓學生用探索第一個規律的方法,獨立觀察思考,也可以同桌或小組之間互相交流,然后匯報,結合課件演示,師生互動,產生共鳴。再舉例驗證。促使學生積極主動參與獲取知識的過程,激發學生創新潛能。
活動三:商不變的性質。
有了前面兩個規律的形成,第三個規律商不變的規律完全放手讓學生探究,借助課件演示讓學生明白比較時可以互相比,也可以同第一個比,但規律是一定的。
通過以上活動,其目的是讓學生充分經歷了觀察、比較、分析、歸納、概括等數學活動與數學思考,在動眼、動手、動口、動腦中充分感知,發現并歸納總結出理解商的變化規律。
第三環節:鞏固應用,內化提高。
對于新知需要及時組織學生鞏固運用,才能得到理解和內化。本環節我依據教學目標和學生在學習中存在的問題,對課本做一做及練習十七的題目加以整理和歸類,有針對性練習。使學生在解決這些問題的過程中,進一步理解、鞏固新知,訓練思維的靈活性、敏捷性、創造性,使學生的創新精神和實踐能力得到進一步提高。
第四環節:回顧整理,反思提升。
今天你學會了什么?你有什么收獲?你有什么感想?
通過全課總結,使學生對自己的學習過程、學習方法、學習成果等進行反思、評價。同時又可以培養學生的概括表達和自我評價的能力,以增強學生的自信心和榮譽感,使學生體驗獲得成功的樂趣。
以上就是我說課的全部內容,謝謝各位評委老師!
商的變化規律說課稿(優秀19篇)篇九
教學內容:四年級上冊教材58頁例4,做一做,練習九第1―4題。
教學目標:
1.知識技能:嘗試用簡潔的語言表達積的變化規律,培養學生初步的概括表達能力;
3.情感態度:培養學生團結協作、敢于交流表達的學習精神,體會與人交流和學習成功的體驗,培養學生集體榮譽感。
教學重難點:
1.用簡潔的語言概括“一個因數不變,另一個因數改變引起積的變化規律”;
2.有序交流、表達自己的想法。
教學過程:
一、探究“一個因數不變,另一個因數擴大幾倍,積就擴大幾倍”
1.初步感受問題。
8月,舟曲、汶川等地發生了嚴重的泥石流災害,當地人民的生命和財產遭受了巨大的損失。為了幫助災區人民渡過難關,4.1班的同學積極奉獻自己的.愛心,踴躍捐款,平均每人捐款約3元,照這樣計算:
2名同學捐款多少元?(3w2=6)。
20名同學捐款多少元?(3w20=60)。
200名同學捐款多少元?(3w200=600)。
(1)學生說出算式、口算;
(2)教師板書算式;
(3)進行德育。
2.研究問題。
觀察算式,獨立思考:以上算式有什么聯系和規律?
3.歸納規律。
(1)小組交流:在小組內發表自己的看法,大家商討:怎樣用清楚簡潔的語言記錄表達所發現的規律。
4.驗證規律。
(1)另外寫一組算式,驗證規律的正確性;
(2)根據發現的規律,在上面的算式下面再寫兩個算式。
二、探究“一個因數不變,另一個因數縮小幾倍,積就縮小幾倍”
1.按從下往上的順序觀察剛才的算式組,感知問題;
2.研究問題:思考,有什么規律;
3.歸納規律:
(1)在小組內用自己的話說說發現的規律;
(2)全班交流。
4.驗證規律:
(1)小組內舉例驗證;
(2)按發現的規律把下面的算式再寫兩個:
80w4=320。
40w4=160。
20w4=80。
三、運用規律、解決問題。
1.做一做:學生獨立完成;說出思考過程。
2.練習九第1題:獨立完成;說明,補充。
3.練習九第2題:齊讀題;獨立思考;小組交流;講解。
4.練習九第3題:獨立完成;;小組交流;講解。
四、補充練習。
練習九第5題。供。
五、課堂總結。
六、作業:練習九第4題。
七、課后反思:
商的變化規律說課稿(優秀19篇)篇十
王老師這節課的設計是按照“讓學生在觀察、思考、抽象、概括的過程中逐漸形成規律,并進行驗證與應用”這幾個環節來開展教學的。教學過程清晰,科學,構建“研究問題——歸納規律——驗證規律——運用規律”的教學主線,教學目標明確,教學環節清晰、流暢,教學語言生動豐富,學生的主體性和教師的主導性得到了很好的體現,而且從學生在課堂上的表現來看,教學效果是很明顯的。總的來說,教師作為學生學習活動的組織者給學生提供了自主探索的空間,引導學生在觀察、猜測、反思等活動中逐步體會數學知識的產生、形成與發展的過程。使學生拓展思路,樂于質疑,樂于合作。下面就本節課的教學活動來談談自己的看法和建議:
1、復習導入時,王老師創設了看誰算的快的口算活動,這為探索積的變化規律做好了鋪墊。緊接著教師出示30×8=240,讓學生說出算式各部分的名稱后,教師直接總結出“當一個因數不變,另一個因數變化,積會怎樣變化呢”引出課題。我覺得這里處理較突兀,如果教師能引導學生從口算的式子中找乘法算式各部分的名稱,然后引導學生認真觀察其中的一組算式,讓學生自己去發現“一個因數不變,另一個因數變化,積也發生了變化”從而順勢引出新課,這樣引導學生自主的發現和猜想,為新知的學習做好鋪墊。
2、自主學習問題設計有漸進性,符合學生的認識特點。王老師讓學生自主地進行探索和交流,鼓勵學生獨立思考、發現規律,讓學生把自己的發現組內交流,交流中鼓勵學生用一句話概括出規律來,引導學生在觀察、猜測等活動中逐步體會積的變化規律。如果能給學生留出充足的探索時間和空間,讓學生真正理解了積的變化規律,那么在下一個例題的學習中學生會輕松很多,教師也可以真正做到放手讓學生自學。
3、在探索規律的學習活動中,教師構建了“研究問題—歸納規律—驗證規律—運用規律“的教學主線,讓學生經歷想辦法、找問題、找方法的過程,并能尊重每一個學生的個性,鼓勵學生用自己的語言表達想法和歸納規律。培養了學生初步的概括和表達能力,同時學生獲得了探索規律的一般方法和經驗,發展了學生的推理能力。四、應重視對中下等學生的指導。由于本節課例題比較簡單,大部分學生通過口算就能直接算出答案,無需通過積的變化規律進行計算,這就給部分思維發散性較差的學生形成了一個假象,以至無法真正懂得該規律的應用。作為數學老師,在課堂上要特別關注思維慢一些的學生,加強對他們的引導,使他們能更積極的更有目標的去思考,增強他們的自信心,從而能主動的去獲取知識。
商的變化規律說課稿(優秀19篇)篇十一
本節課內容是在學生已經學習了三位數乘兩位數和使用計算器進行計算的基礎上進行的,因此這節課中,我放手讓孩子們自己去計算,去比較,再通過我的適時引導,讓孩子用簡潔的語言概括出積的變化規律。
根據對教材和學情的分析,我制定了以下三維目標:
知識目標:
使學生結合具體情境,通過計算、觀察、比較,發現積隨因數變化而變化的規律,并在此基礎上放手探討積的變化規律。
能力目標:
培養學生初步的抽象概括能力和數學語言表達數學結論的能力。
情感目標:
體驗探索和發現數學規律的過程,進一步產生對數學的好奇心與興趣。
教學重點:
教學難點:
引導學生自己發現規律、驗證規律、應用規律。
我引導學生在具體的情境中通過觀察、猜想、驗證來自主探索概括出積的變化規律。
學生經歷觀察思考、提出猜想、驗證猜想、表述規律、應用規律的自主探索過程,獲得探索教學規律的一般經驗。
小黑板。
談話導入猜想規律驗證規律表述規律,小結探索方法應用規律拓展延伸課堂小結。
1、談話導入。
課的開始我與孩子進行談話學校為了獎勵參加大掃除的學生,每人發一本筆記本,每本筆記本6元,買2本需要多少元錢?買20本,200本呢?孩子你們算算。
2、根據學生的回答,我板書三個算式及其結果:
62=12(元)。
620=120(元)。
6200=1200(元)。
設計理念:我創造性地利用教材,將純粹的算式賦予一定的生活意義,讓孩子感受數學知識就在身邊,從而更大地激發學生的學習興趣。
(1)我提出問題:觀察這三個算式,你會發現什么規律呢?
我引導孩子從上向下觀察:因數到因數,積到積有什么規律。
(2)小組交流,集體匯報。讓孩子把自己發現的規律講給同伴聽,經過小組內交流,孩子不難提出猜想:一個因數不變,另一個因數乘以幾,積就乘以幾。
(3)我引導孩子再次從下向上觀察,這次孩子很快提出新的規律:一個因數不變,另一個因數除以幾,積就除以幾。
設計理念:孩子通過獨立觀察,小組交流,使學生真正體驗自主探索和發現數學規律的過程。同時,我活用教材,用一組算式揭示兩條規律,先后有序,主次分明。
3、驗證規律。
孩子都看出規律來了,那么這些規律是不是適合所有的算式呢?下面請孩子自己來驗證一下。
我出示小黑板,男生女生分為兩組,一組應用規律直接寫出結果,另一組用筆算或計算器驗證。兩組交換角色再次驗證。
設計理念:通過學生分組協作,體驗驗證數學規律的過程。
4、表述規律,小結探索方法。
設計理念:孩子通過對探索過程的反思,逐步形成自己的思維策略。
5、應用規律。
孩子自己完成教材1—4題。指明孩子自己說說如何得出結果的。個別孩子可能會提出:我用筆算也挺簡單的,那我今天學的有什么用呢。好問題出來了,進入下一環節。
6、拓展延伸。
(1)一個數乘以18積是270,如果這個數乘以54,積是()。
(2)3610=360。
(362)(362)=。
(363)(363)=。
設計理念:通過層次分明,形式多樣的練習,可以有效地激發學生學習興趣,拓展學生的思維空間,使不同的學生得到不同的發展。
7、課堂總結,內化規律。
這節課你學到了什么?學的高興嗎?
設計理念:培養學生自我總結、自我反思的學習能力。
本節課我創造性地活用教材,營造了寬松、自主的學習氛圍,孩子們通過看、想、說、做等數學活動,去經歷主動觀察獨立思考小組交流提出猜想驗證規律運用規律的過程,豐富了學生學習的體驗,培養學生的數學思維。
商的變化規律說課稿(優秀19篇)篇十二
教學內容:
探索當一個因數不變時,另一個因數與積的變化規律情況。(課文第58頁的例4,“做一做”及相應的練習)。
教學目標:
2、使學生經歷變化規律的發現過程,感受發現數學中的規律是一件十分有趣的事情。
3、嘗試用簡潔的語言表達積的變化規律,培養初步的概括和表達能力。
4、初步獲得探索規律的一般方法和經驗,發展學生的`推理能力。
5、培養學生初步的抽象、概括能力及善于觀察、勤于思考、勇于探索的良好習慣。
教學重點:
教學難點:
教具準備:
課件、計算器。
教學過程:
一、研究“兩數相乘,其中一個因數變化,它們的積如何變化的規律。
1、研究問題,概括規律。
(1)兩數相乘,一個因數不變,另一個因數乘幾時,積怎么變化。
6×2=。
6×20=。
6×200=。
組織小組交流。
教師出示課件二進行集體交流。
教師出示課件三:根據8×50=400,直接寫出積。
16×50=。
32×50=。
學生自做后教師演示。
歸納規律:兩數相乘,當一個因數不變,另一個因數乘幾時,積也要乘幾。
教師出示課件四,學生小組合作計算。
80×4=。
40×4=。
20×4=。
引導學生概括:兩數相乘,當一個因數不變,另一個因數除以幾時,積也要除以幾。
(3)整體概括規律。
問:誰能用一句話將發現的兩條規律概括為一條?
教師出示課件五。
兩數相乘,一個因數不變,另一個因數乘(或除以)幾,積也要乘(或除以)幾。
2、驗證規律。
先用積的變化規律填空,再用筆算或計算器驗算。
教師出示課件六:
12×8=40×21=。
12×16=40×7=。
12×32=20×21=。
12×64=。
3、應用規律。
完成例4下面的做一做和練習9的1-――4題。
學生完成后,教師出示課件7―10進行集體訂正。
二、研究“兩數相乘,兩個因數都發生變化,積變化的規律“。
1、獨立思考,發現規律。
完成下列計算,說規律。
18×24=432。
(18×2)×(24÷2)=(18÷2)×(24×2)=。
2、組織全班交流,概括規律:兩數相乘,一個因數乘(或除以)幾,另一個因數除以(或乘)幾,它們的乘積不變。
三、鞏固新知。
教師出示課件11根據12345679×9=111111111,直接寫出下面各題的積。
集體訂正。
四、總結:
這節課有什么收獲?
五、作業:
第59頁4、5。
商的變化規律說課稿(優秀19篇)篇十三
我教學的內容是人教課標版數學四年級上冊第五單元例5“商的變化規律”。
“商的變化規律”在小學數學中占有很重要的地位,它是進行除法簡便運算的依據,也是今后學習小數乘除法、分數、比的基本性質等知識的基礎。教材中利用學生已有的計算技能,通過計算比較,提出問題引導學生思考發現商的變化規律。這部分內容不但可以鞏固所學的`計算知識,同時培養了學生初步的抽象、概括能力以及善于觀察、勤于思考、勇于探索的良好的學習習慣。
本節課的教學目標是:
1、通過觀察、比較、探索,使學生發現商隨除數(或被除數)的變化而變化的規律。
2、培養學生初步抽象、概括能力。
3、培養學生善于觀察、勤于思考、勇于探索的良好習慣。
本節課我根據教學內容的編排特點和兒童的認知發展規律,引導學生用眼觀察,比較相關算式的內在聯系;動腦去想,抽象出“變與不變”的規律;動口去說,概括出商的變化規律,讓學生在多種感官的協同活動中主動獲取知識。
而學生也在創設的情境中,圍繞中心問題通過觀察比較,探究規律,發現規律,表述規律,應用規律,同時也培養了學生的自主發現、抽象概括、語言表達能力以及創新精神。
一開始我選擇這一個內容,還以為只學習“商不變的性質”這一條規律,可是經過仔細閱讀教材之后,才發現這節課要解決的是商的三條規律,這樣一來,這節課的內容就很多,從量上來講就很足,一堂課要完成這么多的內容,這給我上好這堂課出了一個大難題。于是,思考過后,要同時完成這些內容,那么這節課就只能定位在讓學生通過觀察、比較、探索,使學生發現商隨除數(或被除數)。
的變化而變化的規律,并且能應用這些規律解決一些簡單的問題。
教材編排的時候,把被除數不變時,商隨除數變化而變化的規律放在最前面,接著是除數不變時,商隨著被除數的變化而變化的規律,最后是商不變的性質。因為我們知道被除數不變時,商和除數是成反比例的,這對學生來講可能較難理解,于是,我把除數不變時,商的變化規律放在第一個,這樣在正比例的基礎上,再來學習反比例,學生想度來說較容易理解。
在整堂課中,始終圍繞著觀察算式、得出規律、表述規律和應用規律來進行教學。當然學生在學習這三條規律時,也是一條比一條輕松。第一條規律學生在教師的引導下,順利的得出,第二條第三條規律就放手讓學生學生自己去觀察算式,發現規律,表述規律,充分體現了學生的主體性和主動性。
在這里我要感謝那些不厭其煩地一遍又一遍聽我試講,不斷幫我改教案、幫我指點的老師,真的感謝你們!另外,在我的課中還有很多不足之處,懇請在場的各位領導和老師批評指正,希望你們能給我多提一些寶貴的建議。
商的變化規律說課稿(優秀19篇)篇十四
例[4]通過學生觀察兩組乘法算式,引導學生探索當其中一個因數不變時,另一個因數和積的變化情況,并從中歸納出因數和積的變化規律,滲透變與不變的函數變化規律。第一組呈現的是:當一個因數不變,另一個因數擴大幾倍,積也擴大幾倍;第二組呈現的是:當一個因數不變,另一個因數縮小成原來的幾分之一,積也縮小成原來的幾分之一。在教學中,側重的是讓學生在計算練習中理解數的變化,至于如何準確的表述出來,并不重要。
練習九的5題練習題都是應用積的變化規律來解決實際問題的,要引導學生先找到變化規律,理解題意后再解答。特別是第4題,蘋果5元3千克,不能算出1千克多少元,只能應用變化規律來解答:5元能買3千克,打算買6千克,千克數是原來的2倍,積也是原來的2倍,即5×2=10元。
教學目標。
(2)、初步獲得探索規律的一般方法和經驗,發展學生的推理能力。
(3)、培養學生初步的抽象、概括能力及善于觀察、勤于思考、勇于探索的良好習慣。
教學設計:
一出示嘗試題,喚起學生得探求新知的欲望。
同學們的計算能力非常強,能快速口算這些題嗎?(出示)。
6×2=1280×4=320。
6×20=12040×4=160。
6×200=120020×4=80。
二、自主學習,探索新知。
1、現在就請同學們以小組為單位,互相交流自己寫得算式,并說一說你是怎樣想的?
點撥:擴大的倍數相同。
教師進一步引導:剛剛在這組算式里同學們發現,一個因數不變,另一個因數擴大10倍,積也擴大10倍。
如果讓你接著再往下寫,你還能再寫出來嗎?
3、猜一猜,如果一個因數不變,另一個因數擴大5倍,積會有怎樣的變化?
請同學們寫出一組這樣的算式驗證一下。學生寫出后匯報。
如果擴大30倍呢?如果擴大100倍呢?
你能試著用一句話來概括一下我們發現的這些規律嗎?
讓我們一起把剛才的發現記錄下來:(板書)一個因數不變,另一個因數擴大幾倍,積也擴大相同的倍數。
根據我們發現的規律,同學們來查一查你寫的算式,對嗎?
板書:一個因數不變,另一個因數縮小幾倍,積也縮小相同的倍數。
誰來出一組算式,驗證一下我們的猜想!
4、同學們,你能把我們發現的規律用一句話來概括嗎?
板書:一個因數不變,另一個因數擴大(或縮小)幾倍,積也擴大(或縮小)相同的倍數。
5、你還有什么問題嗎?
剛才同學們通過積極得動腦思考,交流探究,發現了……(學生讀板書)這也就是我們這節課重點學習的“積的變化規律”(同時板書課題)。
運用這個規律,能幫助我們解決許多的數學問題。想不想試一試?
三、鞏固拓展,運用新知。
教學建議和教學思路。
本課內容的學習需要學生的自主探索和合作交流,因此,教學時可以讓學生以小組為單位,互相交流自已的想法和發現的規律,對所得到的信息、資源進行整合、概括,教師則作適時的提示、補充和糾正。
商的變化規律說課稿(優秀19篇)篇十五
1、教學內容:
這節課內容是人教版四年級上冊第三單元的例題、想想、做做第1—4題。
2、教材分析:
本節課是在學生已經學習了三位數乘兩位數和使用計算器進行計算的基礎上,引導學生借助計算器探索積的一些變化規律,掌握這些規律,為學生進一步加深對乘法運算的理解以及今后自主探索和理解小數乘除法的計算方法做好準備。
教材首先出示2×6=12、20×6=120、200×6=1200,讓學生依據給出的乘法算式,探索當一個因數不變,另一個因數乘一個數,得到的積會有什么變化,引導學生作出猜想。再列舉一些例子,用計算器計算來驗證猜想。引導學生觀察,學生比較容易發現規律,提出猜想,用計算器進行驗證。由于研究的是關于運算的規律,勢必涉及較大數的計算,為了將學生的思維從繁雜的計算中解脫出來,使學生更加關注規律的發現過程,所以用計算器作為探索規律的工具。
3、說教學目標。
基于以上認識,我從知識和能力、過程與方法、情感態度與價值觀三個維度設計了以下教學目標:
(1)借助計算器的計算,使學生探索并掌握一個因數不變,另一個因數乘幾,積也隨著乘幾的變化規律。
(2)經歷觀察、比較、猜想、驗證和歸納等一系列的數學活動,體驗探索和發現數學規律的基本方法,進一步獲得一些探索數學規律的經驗,發展思維能力。
(3)通過學習活動的參與,培養學生合作交流的能力,并在探索活動中感受數學結論的嚴謹性與正確性,獲得成功的體驗,增強學習數學的興趣和自信心。
4、教學重點:使學生探索并掌握一個因數不變,另一個因數乘幾(或除以幾),積也隨著乘幾(或除以幾)的變化規律。
教學難點:在探索和發現規律上,能更多的體驗一般策略和方法,發展數學思考。
5、課前準備:課件、學生每人計算器一個、學生每人一張空白表格。
(1)教法:讓學生在具體的情境中用觀察、驗證來探索積的變化規律,教師引導與學生自主探究相結合,充分發揮學生學習的主動性。
(2)學法:通過觀察交流,讓學生經歷提出猜想、驗證猜想、表述規律、應用規律的自主探索過程,獲得探索數學規律的經驗。
結合本課特點,我設計了以下五個教學環節:
(1)課件出示我校為福利院捐款獻愛心的照片,創設我校師生為福利院捐款買物品的情境,已知每千克橙子6元,買2千克多少元?買20千克?買200千克呢?不僅使學生感知捐款的意義,還為學生學習新知創設熟悉的情景。
(2)引導學生列出第一個問題的算式,計算出結果。并使學生清楚地知道算式中的三個數分別叫做一個因數、另一個因數和積。
(1)6×2=12。
(2)6×20=120。
(3)6×200=1200。
(3)引導學生觀察、比較,思考積會怎樣變化。提出猜想:一個因數不變,另一個因數乘幾,積也隨著乘幾。
『設計理念』這樣的設計是想讓學生解決生活中的實際問題,激發學生的學習興趣,培養學生的數感及提出數學猜想的意識和能力。
為您提供優質資源!
為您提供優質資源!
一個因數另一個因數積積的變化。
(1)6×2=12。
(2)6×20=120。
(3)6×200=1200。
(2)引導學生舉例,進一步驗證猜想。同桌相互合作,寫出任意一組算式:一個因數不變,另一個因數乘一個數。用計算器或者筆算算出結果,進行比較。全班交流,通過交流進一步確認猜想成立。
(3)語言表述規律,小結探索方法。首先讓學生說規律,然后講出探索的方法:如用計算器計算,提出猜想、驗證猜想、不完全歸納等。
『設計理念』新課標當中指出:把現代信息技術作為學生學習數學和解決問題的強有力工具,使學生樂意并有更多的精力投入到現實的探索性的數學活動中來。因此這一環節我讓學生充分利用計算器,運用不完全歸納法,通過具體豐富的實例驗證猜想,讓學生用數學語言準確地描述自己發現的規律。引導學生掌握數學規律與知識的獲得方法,充分發揮學生學習的主動性,培養學生的合作交流的能力,幫助學生在自主探究和合作交流的過程中真正理解和掌握基本的數學知識與技能、數學思想和方法,使學生終生受益。
(1)課本p83想想做做第1題。采用題組的形式讓學生應用規律直接寫出乘法算式的積。完成后再讓學生說說是怎樣想的,使學生進一步熟悉積的變化規律。
(2)用規律解釋口算、筆算、和簡算。
口算:16×5=16×500=16×5000=。
豎式計算:17×517×5017×500。
簡便計算:125×48=125×8×6。
讓學生口頭回答,體會積的變化規律的應用,進一步明確乘數末尾有0的乘法的口算、筆算方法,以及積的變化規律在乘法計算中的巧妙應用。
(3)補充題:2008年的奧運會在北京舉行,小明的爸爸決定去北京觀看一些比賽項目,為中國健兒加油。
如果坐汽車,每小時行使60千米,4小時可以多少千米?
如果坐火車,火車的速度是汽車的`2倍,同樣的時間可以行使多少千米?
這題的第2個問題中蘊含著兩種解題思路,讓學生說一說、比一比。一種是根據速度×時間=路程的數量關系,先算出變化了的那個因數是多少,再求積。另一種是根據一個因數不變,另一個因數乘以幾,原來的積也乘以幾解決問題。兩種方法得出的積相同,使學生體會積的變化規律是客觀存在的普遍規律。
『設計理念』在層次分明,形式多樣的練習中,通過讓學生想一想、填一填、說一說,使學生在規律的應用中逐步加深對積的變化規律的理解。
36×5400=18×24=。
36×540=180×240=。
36×54=1800×2400=。
『設計理念』這一環節是通過兩組題目的計算,讓學生用本節課的研究問題的方法繼續探索積的變化規律,使得積的變化規律的內涵得到延伸,讓學生對這一規律有進一步的理解。
通過今天這節課的學習,你有了什么收獲?還有哪些疑問?
『設計理念』在回憶中總結全課,培養學生的反思意識與能力。
綜觀全課,我給學生營造了寬松的學習氛圍,讓學生在主動觀察、討論交流、猜想驗證等數學活動中,通過看、想、說的過程,逐步探索出一個因數不變,另一個因數乘幾,積也隨著乘幾的變化規律。這樣的探索過程豐富了學生學習的體驗,加深了學生的思考,突破了學生思維和經驗的障礙,而且為學生創造了猜測與驗證、辨析與交流的空間,激發了他們的學習興趣,讓學生真正成為了學習的主人,使課堂充滿生命的活力。
商的變化規律說課稿(優秀19篇)篇十六
規律《積的變化規律》是人教版小學數學四年級上冊第三單元的內容,教材安排了積的變化規律的例題學習,掌握這些規律,為學生進一步加深對乘法運算的理解,以及理解小數乘法的計算方法做準備。
本節課內容是在學生已經學習了三位數乘兩位數和使用計算器進行計算的基礎上進行的,因此這節課中,我放手讓孩子們自己去計算,去比較,再通過我的適時引導,讓孩子用簡潔的語言概括出積的變化規律。
根據對教材和學情的分析,我制定了以下三維目標:
知識目標:使學生結合具體情境,通過計算、觀察、比較,發現積隨因數變化而變化的規律,并在此基礎上放手探討積的變化規律。
能力目標:培養學生初步的抽象概括能力和數學語言表達數學結論的能力。
情感目標:體驗探索和發現數學規律的過程,進一步產生對數學的好奇心與興趣。
教學難點:引導學生自己發現規律、驗證規律、應用規律。
我引導學生在具體的情境中通過觀察、猜想、驗證來自主探索概括出積的變化規律。
學生經歷觀察思考、提出猜想、驗證猜想、表述規律、應用規律的自主探索過程,獲得探索教學規律的一般經驗。
小黑板。
談話導入——猜想規律——驗證規律——表述規律,小結探索方法——應用規律——拓展延伸——課堂小結。
1、談話導入。
課的開始我與孩子進行談話“學校為了獎勵參加大掃除的學生,每人發一本筆記本,每本筆記本6元,買2本需要多少元錢?買20本,200本呢?孩子你們算算。”
根據學生的回答,我板書三個算式及其結果:
6×2=12(元)。
6×20=120(元)。
6×200=1200(元)。
設計理念:我創造性地利用教材,將純粹的算式賦予一定的生活意義,讓孩子感受數學知識就在身邊,從而更大地激發學生的學習興趣。
(1)我提出問題:觀察這三個算式,你會發現什么規律呢?
我引導孩子從上向下觀察:因數到因數,積到積有什么規律。
(2)小組交流,集體匯報。讓孩子把自己發現的規律講給同伴聽,經過小組內交流,孩子不難提出猜想:一個因數不變,另一個因數乘以幾,積就乘以幾。
(3)我引導孩子再次從下向上觀察,這次孩子很快提出新的規律:一個因數不變,另一個因數除以幾,積就除以幾。
設計理念:孩子通過獨立觀察,小組交流,使學生真正體驗自主探索和發現數學規律的過程。同時,我活用教材,用一組算式揭示兩條規律,先后有序,主次分明。
孩子都看出規律來了,那么這些規律是不是適合所有的算式呢?下面請孩子自己來驗證一下。
我出示小黑板,男生女生分為兩組,一組應用規律直接寫出結果,另一組用筆算或計算器驗證。兩組交換角色再次驗證。
設計理念:通過學生分組協作,體驗驗證數學規律的過程。
4、表述規律,小結探索方法。
設計理念:孩子通過對探索過程的反思,逐步形成自己的思維策略。
孩子自己完成教材1—4題。指明孩子自己說說如何得出結果的。個別孩子可能會提出:我用筆算也挺簡單的,那我今天學的有什么用呢。好問題出來了,進入下一環節。
6、拓展延伸。
(1)一個數乘以18積是270,如果這個數乘以54,積是()。
(2)36×10=360。
(36÷2)×(36×2)=。
(36×3)×(36÷3)=。
設計理念:通過層次分明,形式多樣的練習,可以有效地激發學生學習興趣,拓展學生的思維空間,使不同的學生得到不同的發展。
這節課你學到了什么?學的高興嗎?
設計理念:培養學生自我總結、自我反思的學習能力。
本節課我創造性地活用教材,營造了寬松、自主的學習氛圍,孩子們通過看、想、說、做等數學活動,去經歷主動觀察——獨立思考——小組交流——提出猜想——驗證規律——運用規律的過程,豐富了學生學習的體驗,培養學生的數學思維。
商的變化規律說課稿(優秀19篇)篇十七
教學內容:積的變化規律(人教課標版《數學》四年級上冊第58頁例四,59頁練習九)。
教學目標:
1、讓學生探索并掌握一個因數不變,另一個因數乘(或除以)幾,積也乘(或除以)幾的變化規律;能將這規律恰當地運用于實際計算和解決簡單的實際問題。
2、使學生經歷積的變化規律的發現過程,初步獲得探索和發現數學規律的基本方法和經驗。
3、通過學習活動的參與,培養學生的探究能力、合作交流能力和歸納總結能力,使學生獲得成功的樂趣,增強學習的興趣和自信心。
4、培養學生從正反兩個方面觀察事物的辨證思想。
教學過程:
一、創設情景,提出問題。
師:誰來幫忙解答第一個問題?
生:6╳2=12(元)。
師:你能說說在這道乘法算式中,6和2是什么?12又是什么?
生:6和2是乘法中的兩個因數,12是積。
師:說得好!第二個問題呢?
生:6╳40=240(元)。
師:接著說第三個問題?
生:6╳200=1200(元)。
師:和他們想法一樣的請舉舉手。(同學們紛紛舉起手來)。
師:仔細觀察、比較這組算式,你能發現什么?
6╳2=12(元)。
6╳40=240(元)。
6╳200=1200(元)。
生1:有一個因數都是6。
生2:對,一個因數相同,另一個因數不同,積也不同。
師:觀察得真仔細!一個因數相同可以說一個因數不變,那另一個因數呢?
生3:另一個因數變了,積也變了。
生4:我看到一個因數不變,另一個因數越變越大,積也越變越大。
師:你是從上往下觀察的,還可以怎樣看?
生5:倒過來,從下往上看,一個因數不變,另一個因數越變越大,積也越變越大。
師:當一個因數不變時,另一個因數和積是怎樣變化的?積的變化有沒有規律呢?是什么規律呢?這節課我們來研究這個問題。
二.自主探究,發現規律。
生:(2)式與(1)比,一個因數不變,另一個因數2括大20倍是40,積12擴大20倍是240。
師:2括大20倍是40,也就是另一個因數乘2,積呢?
生:一個因數不變,另一個因數乘2,積也乘2。
師:說得很清楚。再把(3)式和(1)式比看?
生:一個因數不變,另一個因數乘100,積也乘100。
師:大家比的結果和他一樣嗎?
生(全體):是。
師:誰來說說通過剛才的兩次比較,你們又發現了什么?
生:一個因數不變,另一個因數變化,積也變化。
師:怎樣變化的?能說得具體些嗎?
生1:一個因數不變,另一個因數乘一個數,積也乘相同的數。
生2:一個因數不變,另一個因數乘幾,積也乘幾。
生2:(2)式與(3)比,一個因數不變,另一個因數除以5,積也除以5。
生3:(1)式與(3)比,一個因數不變,另一個因數除以100,積也除以100。
生4:老師,我發現一個因數不變,另一個因數除以幾,積也除以幾。
生:我們可以自己找一些乘法算式的例子用剛才的比較方法研究,看看積的變化是不是具有相同的特點。(其他同學向他投去敬佩的目光)。
生1:把60乘9等于540,另一個因數8不變。
師:你猜猜看,積會怎樣?
生1:積也會乘9,等于4320。
師:那你們橫著算,540乘8是等于4320嗎?
生2:也是4320。
師:祝賀你們猜對了。再來試一次。
生3:我把60不變,另一個因數乘30,猜積也乘30。
師:你們橫著算一算。
生4:對,也是14400。
生5:你們都舉的是乘幾的變化,我來出個別的,60除以12等于5,8不變,積也除以12,是40,橫著算,5乘8的確等于40。
師:你的研究意識真強。除次以外,還可以有多少種變化.。
生:無數種。
師:下面,你們同座位之間也這樣相互出一道乘法算式作標準,自己將其中一個因數不變,,另一個因數變化觀察積的變化情況。,好嗎?計算比較大的數時,可以用計算器幫忙,開始!
匯報情況略。
師:既然許許多多的乘法算式中都有這樣的積的變化特點,它就是今天我們探究的積的變化規律。誰來把這個規律再說一說。
生:一個因數不變,另一個因數乘幾,積也乘幾;一個因數不變,另一個因數除以幾,積也除以幾。
師:數學講究簡潔美,能把它說得再簡單點嗎?
生:一個因數不變,另一個因數乘(或除以)幾,積也乘(或除以)幾。
師:說得太棒了!
小精靈:同學們,祝賀你們發現了積的變化規律,愿意用它解決實際問題嗎?那就跟我走吧!
三、運用規律,解決問題。
1、根據8×50=400,直接寫出下面各題的積。
16×50=32×50=8×25=。
……。
師:32×50的積是多少?
生1:等于1600。
師:怎樣算的?
生2:以8×50=400為標準,把32×50與它作比較,一個因數50不變,另一個因數乘4,積也乘4等于1600。
生3:還能以16×50=800為標準,把32×50與它作比較,一個因數50不變,另一個因數乘2,積也乘2等于1600。
師:很有數學頭腦,運用規律算得可真快。
……。
行()千米。一列火車在青藏鐵路上行駛的速度是汽車的2倍,這列火車用同樣的。
時間可行()千米。
生:一輛汽車4小時可以行駛240千米,用60乘4等于240千米。
師:根據什么數量關系來列式計算?
生:速度乘時間等于路程。
師:第二個問題呢?
生:60×2×4=480千米,先算出火車速度,乘時間4小時等于路程。
師:還有其它解法嗎?
生:240×2=480(千米),因為速度乘2就是一個因數乘2,時間不變就是一個因數不變,那么積也就是路程也要乘2等于480千米。
師:能運用積的變化規律解決問題,你的數學意識很強。同學們喜歡那種方法?
生:喜歡第2種,只需一步計算。
師:多關注已有信息,靈活運用規律能使解題思路更開闊。
……。
四、全課總結,拓展延伸。
生1:我們找到了積的變化規律:一個因數不變,另一個因數乘(或除以)幾,積也乘(或除以)幾。
生3;我還學會了研究規律的方法。
……。
師:大家用自己智慧的雙眼,聰明的大腦發現并運用了乘法規律,老師真為你們高興。學以致用,其樂無窮。先選擇下面計算題中的一道算出積,然后直接寫出其他各題的積。
18×30=18×15=。
18×5=54×5=。
……。
商的變化規律說課稿(優秀19篇)篇十八
教學目標。
1.使學生經歷積的變化規律的發現過程,感受發現數學中的規律是一件十分有趣的事情。
2.嘗試用簡潔的語言表達積的變化規律,培養初步的概括和表達能力。
3.初步獲得探索規律的一般方法和經驗,發展學生的推理能力。
教學教程。
一、喚起學生得探求新知的欲望。
1.口算。
6×2=80×4=。
6×20=40×4=。
6×200=20×4=。
2.請仔細觀察上面每組算式,你能根據每組算式的特點接著再往下寫2個算式嗎?試一試。學生獨立寫出。
二、自主學習,探索新知。
1.現在就請同學們以小組為單位,互相交流自己寫得算式,并說一說你是怎樣想的?
如果讓你接著再往下寫,你還能再寫出來嗎?
3.猜一猜,如果一個因數不變,另一個因數擴大5倍,積會有怎樣的變化?請同學們寫出一組這樣的算式驗證一下。學生寫出后匯報。如果擴大30倍呢?如果擴大100倍呢?你能試著用一句話來概括一下我們發現的這些規律嗎?讓我們一起把剛才的發現記錄下來:一個因數不變,另一個因數乘幾,積也要乘幾。
4.同學們都這么愛動腦思考,你一定也發現了第二組算式的特點?誰來說一說?
根據我們發現的規律,同學們來查一查你寫的算式,對嗎?
板書:一個因數不變,另一個因數除以幾,積也要除以幾。
誰來出一組算式,驗證一下我們的猜想!
5.同學們,你能把我們發現的規律用一句話來概括嗎?
板書:一個因數不變,另一個因數乘(或除以)幾,積也要乘(或除以)幾。
7.小結:我們是怎樣探索發現積的變化規律的?研究問題,歸納規律,驗證規律。
三、鞏固拓展,運用新知。
第59頁3、1、2、4、
四、送一首小詩。
同學們,你們用自己的智慧發現了數學上的規律,真了不起。只要大家肯動腦筋,數學中還有許多規律等待我們去發現。大家有信心嗎?送大家一首小詩。
生活中并不缺少美,
缺少的是發現美的眼睛。
生活中并不缺少數學,
缺少的是發現數學的眼睛。
讓我們用數學的眼光來發現生活中的美,
更要學會用數學的方法來創造生活中的美。
教后反思。
《辭海》將“規律”解釋為:事物之間的內在的必然聯系和趨勢。至于“探索”,則是當代學習理論所倡導的,強調獨立思考和發現。因此,探索規律是一個發現關系、發展思維的過程,有利于學生夯實基礎,鼓勵創新,更能夠體現數學思考,凸顯過程與方法,同時,也能夠讓學生在自主探索與思考中感受到學習的快樂,形成積極的學習情感與態度。
1.探索規律,改進學生的學習方式。
改進學生的學習方式是當前課程改革的一個主要目標,在數學學習過程中,有多種學習方式并存,我們應該處理好接受性學習與自主合作探究的學習方式之間的關系,絕不是簡單劃一或者替代。因為“學什么與怎樣學是分不開的”,離開了學習內容,學習方式本身也無本身的優劣。而作為探索規律的教學,應該依托內容來驅動學生進行自主思考,合作學習,主動探究。
探索規律的內容更需要自主思考。在出示兩給算式之后,讓同學們以小組為單位,互相交流自己寫得算式,并說一說你是怎樣想的?讓學生嘗試用自己的語言說明寫算式的理由,也就是解釋自己發現的規律。
從元認知的發展來說,學生要思考的不僅是結果是什么?而且還要思考過程是怎樣的—“我們是怎樣發現這個規律的”。學生反思探索規律的過程,陳述有觀察,有猜想,有驗證。探索規律過程中蘊藏著更多的問題,就更需學生自主思考。在本節課的教學中,我引導學生總結了探索規律的一般過程,并讓大家應用這一過程發現“兩個數相乘,一個因數不變,另一個因數除以幾,積也除以幾”。當然這一環節的教學展示得不夠充分,沒有很好地體現出課標精神。
探索規律中有一部分內容可以采用合作學習的方式組織教學,發展學生的合作能力。在日常教學中我們不難發現,有的合作是來自老師的指令,而并非是學生自覺性的合作,理想的合作,應該是在學生個體獨立思考基礎上,因學習需要而自主尋求合作。學生自主驗證規律,如果只出示一個或兩個算式驗證,這一驗證過程是不規范的。雖然驗證規律這一環節從組織形式分析,可以單獨完成,也可以小組合作。我們可以想見,與學生獨立學習相比,小組之間的合作探究從知識形成的角度來說:這樣的規律是更具數學的普遍性,因為例證不是來自于一個個體,而是一個群體。
探索規律本身就是一種探究活動。探究性學習不僅天然地成為其普遍的學習方式,反過來,探索規律這一內容也能很好地發展學生的探究能力。與一般的基礎知識和基本技能的學習過程相比,探索規律的教學具有更大的思維強度,具有更大的挑戰性和思維的驅動性。
2.給學生創造成功的數學學習體驗。
教育俗語“跳一跳,摘果子”,是寓意學習具有一定的挑戰性,學生才會樂于參與,才會產生學習的成功感。從教育學“成就動機理論”也同樣可以發現:當問題的成功可能性p=50%時,學生的學習動機強度最大,最愿意參與學習。在教學實踐中,我們可以發現“隨隨便便的成功,學生很難有深刻的體驗”。由此,與一般的教學內容相比,探索規律具有一定的挑戰性,就具有吸引學生參與學習、參與挑戰的一種潛質,探索規律的教學,能激發學生學習數學的興趣,能讓學生在學習的活動中,經歷一個探究的過程,體驗到學習成功的不易,真切地體會到學習的快樂。
商的變化規律說課稿(優秀19篇)篇十九
我教學的內容是人教課標版數學四年級上冊第五單元例5“商的變化規律”。
一、教材分析。
“商的變化規律”在小學數學中占有很重要的地位,它是進行除法簡便運算的依據,也是今后學習小數乘除法、分數、比的基本性質等知識的基礎。教材中利用學生已有的計算技能,通過計算比較,提出問題引導學生思考發現商的變化規律。這部分內容不但可以鞏固所學的計算知識,同時培養了學生初步的抽象、概括能力以及善于觀察、勤于思考、勇于探索的良好的學習習慣。
二、教學目標、重點難點。
本節課的教學目標是:
1、通過觀察、比較、探索,使學生發現商隨除數(或被除數)的變化而變化的規律。
2、培養學生初步抽象、概括能力。
3、培養學生善于觀察、勤于思考、勇于探索的良好習慣。
教學重難點:通過觀察、比較、探討發現商的變化規律。
三、教法學法。
本節課我根據教學內容的編排特點和兒童的認知發展規律,引導學生用眼觀察,比較相關算式的內在聯系;動腦去想,抽象出“變與不變”的規律;動口去說,概括出商的變化規律,讓學生在多種感官的協同活動中主動獲取知識。
而學生也在創設的情境中,圍繞中心問題通過觀察比較,探究規律,發現規律,表述規律,應用規律,同時也培養了學生的自主發現、抽象概括、語言表達能力以及創新精神。
四、教學設計。
一開始我選擇這一個內容,還以為只學習“商不變的性質”這一條規律,可是經過仔細閱讀教材之后,才發現這節課要解決的是商的三條規律,這樣一來,這節課的內容就很多,從量上來講就很足,一堂課要完成這么多的內容,這給我上好這堂課出了一個大難題。于是,思考過后,要同時完成這些內容,那么這節課就只能定位在讓學生通過觀察、比較、探索,使學生發現商隨除數(或被除數)。
的變化而變化的規律,并且能應用這些規律解決一些簡單的問題。
教材編排的時候,把被除數不變時,商隨除數變化而變化的規律放在最前面,接著是除數不變時,商隨著被除數的變化而變化的規律,最后是商不變的性質。因為我們知道被除數不變時,商和除數是成反比例的,這對學生來講可能較難理解,于是,我把除數不變時,商的變化規律放在第一個,這樣在正比例的基礎上,再來學習反比例,學生想度來說較容易理解。
在整堂課中,始終圍繞著觀察算式、得出規律、表述規律和應用規律來進行教學。當然學生在學習這三條規律時,也是一條比一條輕松。第一條規律學生在教師的引導下,順利的得出,第二條第三條規律就放手讓學生學生自己去觀察算式,發現規律,表述規律,充分體現了學生的主體性和主動性。
在這里我要感謝那些不厭其煩地一遍又一遍聽我試講,不斷幫我改教案、幫我指點的老師,真的感謝你們!另外,在我的課中還有很多不足之處,懇請在場的各位領導和老師批評指正,希望你們能給我多提一些寶貴的建議。
文檔為doc格式。