編寫教案時,教師需要考慮學生的學習能力和興趣,確保教學的個性化和差異化。以下是一些針對不同教材和教學內容的初中教案范文,希望對大家的教學工作有所幫助。
初中數學函數教案(模板19篇)篇一
今天小編為大家精心整理了一篇有關初中數學教案之函數的相關內容,以供大家閱讀!函數教學目標:
1、進一步理解函數的概念,能從簡單的實際事例中,抽象出函數關系,列出函數解析式;
2、使學生分清常量與變量,并能確定自變量的取值范圍.3、會求函數值,并體會自變量與函數值間的對應關系.4、使學生掌握解析式為只含有一個自變量的簡單的整式、分式、二次根式的函數的自變量的取值范圍的求法.5、通過函數的教學使學生體會到事物是相互聯系的.是有規律地運動變化著的.教學重點:了解函數的意義,會求自變量的取值范圍及求函數值.教學難點:函數概念的抽象性.教學過程:(一)引入新課:
第1頁/共6頁式中的自變量與函數嗎?
剛才所舉例子中的函數,都是利用數學式子即解析式表示的.這種用數學式子表示函數時,要考慮自變量的取值必須使解析式有意義.如第一題中的學生數n必須是正整數.例1、求下列函數中自變量x的取值范圍.(1)(2)(3)(4)(5)(6)。
第2頁/共6頁數大于、等于零.的被開方數是.。
(2)若估計前來停放的3500輛次自行車中,變速車的輛次。
收入在1225元至1330元之間。
總結。
:對于反映實際問題的函數關系,應使得實際問題有意義.這樣,就要求聯系實際,具體問題具體分析.對于函數,當自變量時,相應的函數y的值是.60叫做這個函數當時的函數值.例3、求下列函數當時的函數值:(1)(2)(3)(4)。
注:本例既鍛煉了學生的計算能力,又創設了情境,讓學生體會對于x的每一個值,y都有唯一確定的值與之對應.以此加深對函數的理解.(二)小結:
第5頁/共6頁往學的詞語、生活經驗聯系起來,在發展想象力中發展語言。如啄木鳥的嘴是長長的,尖尖的,硬硬的,像醫生用的手術刀―樣,給大樹開刀治病。通過聯想,幼兒能夠生動形象地描述觀察對象。
作業:習題13.2a組2、3、5死記硬背是一種傳統的教學方式,在我國有悠久的歷史。但隨著素質教育的開展,死記硬背被作為一種僵化的、阻礙學生能力發展的教學方式,漸漸為人們所摒棄;而另一方面,老師們又為提高學生的語文素養煞費苦心。其實,只要應用得當,“死記硬背”與提高學生素質并不矛盾。相反,它恰是提高學生語文水平的重要前提和基礎。今天的內容就介紹到這里了。
第6頁/共6頁。
初中數學函數教案(模板19篇)篇二
數學是一門培養人的思維,發展人的思維的重要學科。因此,在教學中,不僅要使學生“知其然”而且要使學生“知其所以然”。所以在學生為主體,教師為主導的原則下,要充分揭示獲取知識和方法的思維過程。因此本節課我以建構主義的“創設問題情境——提出數學問題——嘗試解決問題——驗證解決方法”為主,主要采用觀察、啟發、類比、引導、探索相結合的教學方法。在教學手段上,則采用多媒體輔助教學,將抽象問題形象化,使教學目標體現的更加完美。
三角函數的誘導公式是普通高中課程標準實驗教科書(人教a版)數學必修四,第一章第三節的內容,其主要內容是三角函數誘導公式中的公式(二)至公式(六).本節是第一課時,教學內容為公式(二)、(三)、(四).教材要求通過學生在已經掌握的任意角的三角函數的定義和誘導公式(一)的基礎上,利用對稱思想發現任意角與終邊的對稱關系,發現他們與單位圓的交點坐標之間關系,進而發現他們的三角函數值的關系,即發現、掌握、應用三角函數的誘導公式公式(二)、(三)、(四).同時教材滲透了轉化與化歸等數學思想方法,為培養學生養成良好的學習習慣提出了要求.為此本節內容在三角函數中占有非常重要的地位.
本節課的授課對象是本校高一(1)班全體同學,本班學生水平處于中等偏下,但本班學生具有善于動手的良好學習習慣,所以采用發現的教學方法應該能輕松的完成本節課的教學內容.
(1).基礎知識目標:理解誘導公式的發現過程,掌握正弦、余弦、正切的誘導公式;。
(4).個性品質目標:通過誘導公式的學習和應用,感受事物之間的普通聯系規律,運用化歸等數學思想方法,揭示事物的本質屬性,培養學生的唯物史觀.
理解并掌握誘導公式.
正確運用誘導公式,求三角函數值,化簡三角函數式.
“授人以魚不如授之以魚”,作為一名老師,我們不僅要傳授給學生數學知識,更重要的是傳授給學生數學思想方法,如何實現這一目的,要求我們每一位教者苦心鉆研、認真探究.下面我從教法、學法、預期效果等三個方面做如下分析.
數學教學是數學思維活動的教學,而不僅僅是數學活動的結果,數學學習的目的不僅僅是為了獲得數學知識,更主要作用是為了訓練人的思維技能,提高人的思維品質.
在本節課的教學過程中,本人以學生為主題,以發現為主線,盡力滲透類比、化歸、數形結合等數學思想方法,采用提出問題、啟發引導、共同探究、綜合應用等教學模式,還給學生“時間”、“空間”,由易到難,由特殊到一般,盡力營造輕松的學習環境,讓學生體味學習的快樂和成功的喜悅.
“現代的文盲不是不識字的人,而是沒有掌握學習方法的人”,很多課堂教學常常以高起點、大容量、快推進的做法,以便教給學生更多的知識點,卻忽略了學生接受知識需要時間消化,進而泯滅了學生學習的興趣與熱情.如何能讓學生最大程度的消化知識,提高學習熱情是教者必須思考的問題.
在本節課的教學過程中,本人引導學生的學法為思考問題共同探討解決問題簡單應用重現探索過程練習鞏固.讓學生參與探索的全部過程,讓學生在獲取新知識及解決問題的方法后,合作交流、共同探索,使之由被動學習轉化為主動的自主學習.
1.復習銳角300,450,600的三角函數值;。
2.復習任意角的三角函數定義;。
3.問題:由,你能否知道sin2100的值嗎?引如新課.
自信的鼓勵是增強學生學習數學的自信,簡單易做的題加強了每個學生學習的熱情,具體數據問題的出現,讓學生既有好像會做的心理但又有迷惑的茫然,去發掘潛力期待尋找機會證明我能行,從而思考解決的辦法.
1.讓學生發現300角的終邊與2100角的終邊之間有什么關系;。
2100與sin300之間有什么關系.
由特殊問題的引入,使學生容易了解,實現教學過程的平淡過度,為同學們探究發現任意角與的三角函數值的關系做好鋪墊.
初中數學函數教案(模板19篇)篇三
(要求學生盡量用自己的話描述初中函數的定義,并試舉出各類學過的函數例子)
提問1.是函數嗎?
(由學生討論,發表各自的意見,有的認為它不是函數,理由是沒有兩個變量,也有的認為是函數,理由是可以可做.)
二、新課
現在請同學們打開書翻到第50頁,從這開始閱讀有關的內容,再回答我的問題.(約2-3分鐘或開始提問)
提問2.新的函數的定義是什么?能否用最簡單的語言來概括一下.
(板書)2.2函數
一、函數的概念
問題3:映射與函數有何關系?(函數一定是映射嗎?映射一定是函數嗎?)
引導學生發現,函數是特殊的映射,特殊在集合a,b必是非空的數集.
2.本質:函數是非空數集到非空數集的映射.(板書)
然后讓學生試回答剛才關于是不是函數的問題,要求從映射的角度解釋.
此時學生可以清楚的看到滿足映射觀點下的函數定義,故是一個函數,這樣解釋就很自然.
教師繼續把問題引向深入,提出在映射的觀點下如何解釋是個函數?
從映射角度看可以是其中定義域是,值域是.
3.函數的三要素及其作用(板書)
以下關系式表示函數嗎?為什么?
(1);(2).
解:(1)由有意義得,解得.由于定義域是空集,故它不能表示函數.
(2)由有意義得,解得.定義域為,值域為.
由以上兩題可以看出三要素的作用
(1)判斷一個函數關系是否存在.(板書)
(1);(2) (3);(4).
解:先認清,它是(定義域)到(值域)的映射,其中
.
再看(1)定義域為且,是不同的;(2)定義域為,是不同的;
(4),法則是不同的;
而(3)定義域是,值域是,法則是乘2減1,與完全相同.
(2)判斷兩個函數是否相同.(板書)
4.對函數符號的理解(板書)
已知函數試求(板書)
分析:首先讓學生認清的含義,要求學生能從變量觀點和映射觀點解釋,再進行計算.
含義1:當自變量取3時,對應的函數值即;
含義2:定義域中原象3的象,根據求象的方法知.而應表示原象的象,即.
計算之后,要求學生了解與的區別,是常量,而是變量,只是中一個特殊值.
三、小結
1.函數的定義
2.對函數三要素的認識
3.對函數符號的認識
四、作業:略
五、
2.2函數例1.例3.
一.函數的概念
1.定義
2.本質例2.小結:
3.函數三要素的認識及作用
4.對函數符號的理解
答案:
初中數學函數教案(模板19篇)篇四
這一節的重點就是鈉的化學性質——與水反應,還有鈉的物理性質——顏色。難點就是鈉與氧氣在充足及過量時候的反應,還有就是實驗,由于反應速度快,難以觀察,最后就是反應的化學方程式。
三教學理念及其方法。
對反應速度快這個問題可以通過慢放實驗的動化,使學生能看清楚過程。
2涉及原子等微觀粒子的結合過程,需要很強的空間想象力,可以通過計算機動畫演示,使反應變得直觀,更容易理解。
3對于鈉與水的反應,具有一定的危險性,可以通過動畫來展示實驗不當造成的后果。
四教學過程。
2再以水滅火圖片給學生觀看,然后以鈉放入水中為參比,激發學生的興趣。
3再通過一些趣味性實驗演示,能更進一步激發學習的積極性,例如用一裝有半瓶水的塑料瓶,瓶塞上扎一黃豆大的鈉的大頭針,瓶倒置使鈉和水充分反應,取下塞子、點燃火柴靠近瓶口有尖銳的爆鳴聲,效果得到大大改進。
五學法分析。
通過這節課的教學教給學生對金屬鈉的認識,掌握金屬鈉的性質,透過現象看本質,分析、歸納物質的性質,培養學生觀察、分析問題的能力,調動學生積極性,激發學生的學習興趣。
五總結性質,得出結論,布置作業。
列出來,這樣條理就清晰了,然后再總述一下這節所學的內容,講述的重點及難點。最后布置2個思考題:
(1)鈉為什么保存在煤油中?
(2)把鈉投到苯和水的混合液中鈉在水和苯間跳上“水上芭蕾”,為什么?
再講一下鈉的用途。
六板書設計。
板書設計第一節鈉。
一、鈉的物理性質。
二、鈉的化學性質。
1鈉的原子結構。
2鈉與氧氣反應(條件不同,產物不同)。
3鈉與水反應(重點)。
初中數學函數教案(模板19篇)篇五
1.掌握對數函數的概念,圖象和性質,且在掌握性質的基礎上能進行初步的應用。
(1)能在指數函數及反函數的概念的基礎上理解對數函數的定義,了解對底數的要求,及對定義域的要求,能利用互為反函數的兩個函數圖象間的關系正確描繪對數函數的圖象。
(2)能把握指數函數與對數函數的實質去研究認識對數函數的性質,初步學會用對數函數的性質解決簡單的問題。
2.通過對數函數概念的學習,樹立相互聯系相互轉化的觀點,通過對數函數圖象和性質的學習,滲透數形結合,分類討論等思想,注重培養學生的觀察,分析,歸納等邏輯思維能力。
3.通過指數函數與對數函數在圖象與性質上的對比,對學生進行對稱美,簡潔美等審美教育,調動學生學習數學的積極性。
(1)對數函數又是函數中一類重要的基本初等函數,它是在學生已經學過對數與常用對數,反函數以及指數函數的基礎上引入的。故是對上述知識的應用,也是對函數這一重要數學思想的進一步認識與理解。對數函數的概念,圖象與性質的學習使學生的知識體系更加完整,系統,同時又是對數和函數知識的拓展與延伸。它是解決有關自然科學領域中實際問題的重要工具,是學生今后學習對數方程,對數不等式的基礎。
(2)本節的教學重點是理解對數函數的定義,掌握對數函數的圖象性質。難點是利用指數函數的圖象和性質得到對數函數的圖象和性質。由于對數函數的概念是一個抽象的形式,學生不易理解,而且又是建立在指數與對數關系和反函數概念的基礎上,故應成為教學的重點。
(3)本節課的主線是對數函數是指數函數的反函數,所有的問題都應圍繞著這條主線展開。而通過互為反函數的兩個函數的關系由已知函數研究未知函數的性質,這種方法是第一次使用,學生不適應,把握不住關鍵,所以應是本節課的難點。
(1)對數函數在引入時,就應從學生熟悉的指數問題出發,通過對指數函數的認識逐步轉化為對對數函數的認識,而且畫對數函數圖象時,既要考慮到對底數的分類討論而且對每一類問題也可以多選幾個不同的底,畫在同一個坐標系內,便于觀察圖象的特征,找出共性,歸納性質。
(2)在本節課中結合對數函數教學的特點,一定要讓學生動手做,動腦想,大膽猜,要以學生的研究為主,教師只是不斷地反函數這條主線引導學生思考的方向。這樣既增強了學生的參與意識又教給他們思考問題的方法,獲取知識的途徑,使學生學有所思,思有所得,練有所獲,,從而提高學習興趣。
初中數學函數教案(模板19篇)篇六
2、能正確且較為熟練地運用去括號的符號法則去化簡代數式過程與方法目標學習目標。
1、通過觀察、合作交流、討論總結等活動得出去括號的符號法則,培養學生觀察、分析、總結的能力。
2、通過例題講解,和鞏固練習,培養學生的計算能力班級:初一四班nn。
1、數學知識:
2、數學思想方法:布置作業:板書設計nn教學反思nn。
初中數學函數教案(模板19篇)篇七
教學目標:
1、能利用反比例函數的相關的知識分析和解決一些簡單的實際問題。
3、在解決實際問題的過程中,進一步體會和認識反比例函數是刻畫現實世界中數量關系的一種數學模型。
教學重點、難點:
重點:能利用反比例函數的相關的知識分析和解決一些簡單的實際問題。
教學過程:
一、情景創設:
為了預防“非典”,某學校對教室采用藥熏消毒法進行消毒,已知藥物燃燒時,室內每立方米空氣中的含藥量y(mg)與時間x(min)成正比例.藥物燃燒后,y與x成反比例(如圖所示),現測得藥物8min燃畢,此時室內空氣中每立方米的含藥量為6mg,請根據題中所提供的信息,解答下列問題:。
(1)藥物燃燒時,y關于x的函數關系式為:________,自變量x的取值范圍是:_______,藥物燃燒后y關于x的函數關系式為_______.
二、新授:
(1)如果小明以每分種120字的.速度錄入,他需要多少時間才能完成錄入任務?
(3)小明希望能在3h內完成錄入任務,那么他每分鐘至少應錄入多少個字?
例2某自來水公司計劃新建一個容積為的長方形蓄水池。
(1)蓄水池的底部s與其深度有怎樣的函數關系?
(2)如果蓄水池的深度設計為5m,那么蓄水池的底面積應為多少平方米?
(3)由于綠化以及輔助用地的需要,經過實地測量,蓄水池的長與寬最多只能設計為100m和60m,那么蓄水池的深度至少達到多少才能滿足要求?(保留兩位小數)。
三、課堂練習。
1、一定質量的氧氣,它的密度(kg/m3)是它的體積v(m3)的反比例函數,當v=10m3時,=1.43kg/m3.(1)求與v的函數關系式;(2)求當v=2m3時求氧氣的密度.
2、某地上年度電價為0.8元度,年用電量為1億度.本年度計劃將電價調至0.55元至0.75元之間.經測算,若電價調至x元,則本年度新增用電量y(億度)與(x-0.4)(元)成反比例,當x=0.65時,y=-0.8.
(1)求y與x之間的函數關系式;
3、如圖,矩形abcd中,ab=6,ad=8,點p在bc邊上移動(不與點b、c重合),設pa=x,點d到pa的距離de=y.求y與x之間的函數關系式及自變量x的取值范圍.
四、小結。
五、作業。
30.31、2、3。
初中數學函數教案(模板19篇)篇八
1.質疑問難是學生自主學習的重要表現,優化課堂結構,激活學生的主體意識,必須鼓勵學生質疑問難。教師要創造和諧融合的課堂氣氛,允許學生隨時“插嘴”、提問、爭辯,甚至提出與教師不同的看法。
2.二次函數是初中階段繼一次函數、反比例函數之后,學生要學習的最后一類重要的代數函數,它也是描述現實世界變量之間關系的重要的數學模型。
3.學生有疑而問、質疑問難,是用心思考、自主學習、主動探究的可貴表現,理應得到老師的熱情鼓勵和贊揚?,F在對學生的隨時“插嘴”,提出的各種疑難問題,應抱歡迎、鼓勵的態度給與肯定,并做出正確的解釋。
4.初中階段主要研究二次函數的概念、圖像和性質,用二次函數的觀點審視一元二次方程,用二次函數的相關知識分析和解決簡單的實際問題。
文檔為doc格式。
初中數學函數教案(模板19篇)篇九
教學目標:在復習指數函數與對數函數的特性之后,通過圖像對比使學生較快的學會不求值比較指數函數與對數函數值的大小及提高對復合型函數的定義域與值域的解題技巧。
難點:指導學生如何根據上述特性解決復合型函數的定義域與值域的問題。
教學方法:多媒體授課。
學法指導:借助列表與圖像法。
教具:多媒體教學設備。
教學過程:
初中數學函數教案(模板19篇)篇十
3.探究發現任意角 與 的三角函數值的關系.
利用誘導公式(二),口答下列三角函數值.
(1). ;(2). ;(3). .
喜悅之后讓我們重新啟航,接受新的挑戰,引入新的問題.
由sin300= 出發,用三角的定義引導學生求出 sin(-300),sin1500值,讓學生聯想若已知sin = ,能否求出sin( ),sin( )的值.
1.探究任意角 與 的三角函數又有什么關系;
2.探究任意角 與 的三角函數之間又有什么關系.
遺忘的規律是先快后慢,過程的再現是深刻記憶的重要途徑,在經歷思考問題-觀察發現-到一般化結論的探索過程,從特殊到一般,數形結合,學生對知識的理解與掌握以深入腦中,此時以類同問題的提出,大膽的放手讓學生分組討論,重現了探索的整個過程,加深了知識的深刻記憶,對學生無形中鼓舞了氣勢,增強了自信,加大了挑戰.而新知識點的自主探討,對教師駕馭課堂的能力也充滿了極大的挑戰.彼此相信,彼此信任,產生了師生的默契,師生共同進步.
誘導公式(三)、(四)
給出本節課的課題
三角函數誘導公式
標題的后出,讓學生在經歷整個探索過程后,還回味在探索,發現的成功喜悅中,猛然回頭,哦,原來知識點已經輕松掌握,同時也是對本節課內容的小結.
的三角函數值,等于 的同名函數值,前面加上一個把 看成銳角時原函數值的符合.(即:函數名不變,符號看象限.)
設計意圖
簡便記憶公式.
求下列三角函數的值:(1).sin( ); (2). co.
設計意圖
本練習的設置重點體現一題多解,讓學生不僅學會靈活運用應用三角函數的誘導公式,還能養成靈活處理問題的良好習慣.這里還要給學生指出課本中的“負角”化為“正角”是針對具體負角而言的.
學生練習
化簡: .
設計意圖
重點加強對三角函數的誘導公式的綜合應用.
1.小結使用誘導公式化簡任意角的三角函數為銳角的步驟.
2.體會數形結合、對稱、化歸的思想.
3.“學會”學習的習慣.
1.課本p-27,第1,2,3小題;
2.附加課外題 略.
設計意圖
加強學生對三角函數的誘導公式的記憶及靈活應用,附加題的設置有利于有能力的同學“更上一樓”.
八.課后反思
對本節內容在進行教學設計之前,本人反復閱讀了課程標準和教材,針對教材的內容,編排了一系列問題,讓學生親歷知識發生、發展的過程,積極投入到思維活動中來,通過與學生的互動交流,關注學生的思維發展,在逐漸展開中,引導學生用已學的知識、方法予以解決,并獲得知識體系的更新與拓展,收到了一定的預期效果,尤其是練習的處理,讓學生通過個人、小組、集體等多種解難釋疑的嘗試活動,感受“觀察——歸納——概括——應用”等環節,在知識的形成、發展過程中展開思維,逐步培養學生發現問題、探索問題、解決問題的能力和創造性思維的能力,充分發揮了學生的主體作用,也提高了學生主體的合作意識,達到了設計中所預想的目標。
然而還有一些缺憾:對本節內容,難度不高,本人認為,教師的干預(講解)還是太多。
在以后的教學中,對于一些較簡單的內容,應放手讓學生多一些探究與合作。隨著教育改革的深化,教學理念、教學模式、教學內容等教學因素,都在不斷更新,作為數學教師要更新教學觀念,從學生的全面發展來設計課堂教學,關注學生個性和潛能的發展,使教學過程更加切合《課程標準》的要求。用全新的理論來武裝自己,讓自己的課堂更有效。
初中數學函數教案(模板19篇)篇十一
在函數教學中,我們不僅要在教會函數知識上下功夫,而且還應該追求解決問題的“常規方法”——基本函數知識中所蘊含的思想方法,要從數學思想方法的高度進行函數教學。在函數的教學中,應突出“類比”的思想和“數形結合”的思想。
2.注重“數學結合”的教學。
數形結合的思想方法是初中數學中一種重要的思想方法。數學是研究現實世界數量關系和空間形式的科學。而數形結合就是通過數與形之間的對應和轉化來解決數學問題。它包含以形助數和以數解形兩個方面,利用它可使復雜問題簡單化,抽象問題具體化,它兼有數的嚴謹與形的直觀之長。
(1)讓學生經歷繪制函數圖象的具體過程。
(2)切莫急于呈現畫函數圖象的簡單畫法。
(3)注意讓學生體會研究具體函數圖象規律的方法。
目標。
1、理解直線y=kx+b與y=kx之間的位置關系;。
2、會選擇兩個合適的點畫出一次函數的圖象;
3、掌握一次函數的性質.
過程與方法目標。
2、通過一次函數的圖象總結函數的性質,體驗數形結合法的應用,培養推理及抽象思維能力。
2、在探究一次函數的圖象和性質的活動中,通過一系列富有探究性的問題,滲透與他人交流、合作的意識和探究精神。
一次函數的圖象和性質。
由一次函數的圖像歸納得出一次函數的性質及對性質的理解。
初中數學函數教案(模板19篇)篇十二
1、初步掌握函數概念,能判斷兩個變量間的關系是否可看作函數。
2、根據兩個變量間的關系式,給定其中一個量,相應地會求出另一個量的值。
3、會對一個具體實例進行概括抽象成為數學問題。
過程與方法。
1、通過函數概念,初步形成學生利用函數的觀點認識現實世界的意識和能力。
2、經歷具體實例的抽象概括過程,進一步發展學生的抽象思維能力。
情感與價值觀。
1、經歷函數概念的抽象概括過程,體會函數的模型思想。
2、讓學生主動地從事觀察、操作、交流、歸納等探索活動,形成自己對數學知識的理解和有效的學習模式。
1、掌握函數概念。
2、判斷兩個變量之間的關系是否可看作函數。
3、能把實際問題抽象概括為函數問題。
1、理解函數的概念。
2、能把實際問題抽象概括為函數問題。
一、創設問題情境,導入新課。
『師』:同學們,你們看下圖上面那個像車輪狀的物體是什么?
初中數學函數教案(模板19篇)篇十三
1.使學生了解反函數的概念,初步掌握求反函數的方法.
2.通過反函數概念的學習,培養學生分析問題,解決問題的能力及抽象概括的能力.
3.通過反函數的學習,幫助學生樹立辨證唯物主義的世界觀.
重點是反函數概念的形成與認識.
難點是掌握求反函數的方法.
投影儀。
自主學習與啟發結合法。
一.揭示課題。
今天我們將學習函數中一個重要的概念----反函數.
(一)反函數的概念(板書)。
二.講解新課。
教師首先提出這樣一個問題:在函數中,如果把當作因變量,把當作自變量,能否構成一個函數呢?(讓學生思考后回答,要講明理由)可以根據函數的定義在的允許取值范圍內的任一值,按照法則都有唯一的與之相對應.(還可以讓學生畫出函數的圖象,從形的角度解釋“任一對唯一”)。
學生很快會意識到是的反函數,教師可再引申為與是互為反函數的.然后利用問題再引申:是不是所有的函數都有反函數呢?如果有,請舉出例子.在教師啟發下學生可以舉出象這樣的函數,若將當自變量,當作因變量,在允許取值范圍內一個可能對兩個(可畫圖輔助說明,當時,對應),不能構成函數,說明此函數沒有反函數.
通過剛才的例子,了解了什么是反函數,把對的反函數的研究過程一般化,概括起來就可以得到反函數的定義,但這個數學的抽象概括,要求比較高,因此我們一起閱讀書上相關的內容.
1.反函數的定義:(板書)(用投影儀打出反函數的定義)。
為了幫助學生理解,還可以把定義中的換成某個具體簡單的函數如解釋每一步驟,如得,再判斷它是個函數,最后改寫為.給出定義后,再對概念作點深入研究.
2.對概念得理解(板書)。
教師先提出問題:反函數的“反”字應當是相對原來給出的函數而言,指的是兩者的關系你能否從函數三要素的角度解釋“反”的含義呢?(仍可以與為例來說)。
學生很容易先想到對應法則是“反”過來的,把與的位置換位了,教師再追問它們的互換還會帶來什么變化?啟發學生找出另兩個要素之間的關系.最后得出結論:的定義域和值域分別由的值域和定義域決定的.再把結論從特殊發展到一般,概括為:反函數的三要素是由原來函數的三要素決定的.給出的函數確定了,反函數的三要素就已經確定了.簡記為“三定”.
(1)“三定”(板書)。
最后教師進一步明確“反”實際體現為“三反”,“三反”中起決定作用的是與的位置的反置,正是由于它的反置,才把它的范圍也帶走了,引起了另外兩“反”.
(2)“三反”(板書)。
此時教師可把問題再次引向深入,提出:如果一個函數存在反函數,應怎樣求這個反函數呢?下面我給出兩個函數,請同學們根據自己對概念的理解來求一下它們的反函數.
例1.求的反函數.(板書)。
(由學生說求解過程,有錯或不規范之處,暫時不追究,待例2解完之后再一起講評)。
解:由得,所求反函數為.(板書)。
例2.求,的反函數.(板書)。
解:由得,又得,。
故所求反函數為.(板書)。
求完后教師請同學們作評價,學生之間可以討論,充分暴露表述中得問題,讓學生自行發現,自行解決.最后找代表發表意見,指出例2中問題,結果應為,.
教師可先明知故問,與,有什么不同?讓學生明確指出兩個函數定義域分別是和,所以它們是不同的函數.再追問從何而來呢?讓學生能從三定和三反中找出理由,是從原來函數的值域而來.
在此基礎上,教師最后明確要求,由于反函數的定義域必是原來函數的值域,而不是從自身解析式出發尋求滿足的條件,所以求反函數,就必須先求出原來函數的值域.之后由學生調整剛才的求解過程.
解:由得,又得,。
又的值域是,。
故所求反函數為,.
(可能有的學生會提出例1中為什么不求原來函數的值域的問題,此時不妨讓學生去具體算一算,會發現原來函數的值域域求出的函數解析式中所求定義域時一致的,所以使得最后結果沒有出錯.但教師必須指出結論得一致性只是偶然,而不是必然,因此為規范求解過程要求大家一定先求原來函數的值域,并且在最后所求結果上注明反函數的定義域,同時讓學生調整例的表述,將過程補充完整)。
最后讓學生一起概括求反函數的步驟.
3.求反函數的步驟(板書)。
(1)反解:。
(2)互換。
(3)改寫:。
對以上環節教師可稍作解釋,然后提出再通過下面的練習來檢驗是否真正理解了.
三.鞏固練習。
練習:求下列函數的反函數.
(1)(2).(由兩名學生上黑板寫)。
解答過程略.
教師可針對學生解答中出現的問題,進行講評.(如正負的選取,值域的計算,符號的使用)。
四.小結。
1.對反函數概念的認識:。
2.求反函數的基本步驟:。
五.作業。
課本第68頁習題2.4第1題中4,6,8,第2題.
六.板書設計。
2.4反函數例1.練習.
一.反函數的概念(1)(2)。
1.定義。
2.對概念的理解例2.
(1)三定(2)三反。
3.求反函數的步驟。
(1)反解(2)互換(3)改寫。
初中數學函數教案(模板19篇)篇十四
(3)能正確使用“區間”及相關符號,能正確求解各類的定義域.。
2.通過概念的學習,使學生在符號表示,運算等方面的能力有所提高.。
(1)對記號有正確的理解,準確把握其含義,了解(為常數)與的區別與聯系;
(2)在求定義域中注意運算的合理性與簡潔性.。
3.通過定義由變量觀點向映射觀點的過渡,是學生能從發展的角度看待數學的學習.。
1.教材分析。
(1)知識結構。
(2)重點難點分析。
是的定義和符號的認識與使用.。
2.教法建議。
初中數學函數教案(模板19篇)篇十五
調查中,所要考察對象的全體稱為總體,而組成總體的每一個考察對象稱為個體。
例如,某班10名女生的考試成績是總體,每一名女生的考試成績是個體。
從總體中抽取部分個體進行調查,這種調查稱為抽樣調查,其中從總體中抽取的一部分個體叫做總體的一個樣本。
例如,要調查全縣農村中學生學生平均每周每人的零花錢數,由于人數較多(一般涉及幾萬人),我們從中抽取500名學生進行調查,就是抽樣調查,這500名學生平均每周每人的零花錢數,就是總體的一個樣本。
將一組數據按照由小到大(或由大到?。┑捻樞蚺帕?,如果數據的個數是奇數,則處于中間位置的數稱為這組數據的中位數;如果數據的個數是偶數,則中間兩個數據的平均數稱為這組數據的中位數。
一組數據中出現次數最多的數據就是這組數據的眾數。
例如:求一組數據3,2,3,5,3,1的眾數。
解:這組數據中3出現3次,2,5,1均出現1次。所以3是這組數據的眾數。
又如:求一組數據2,3,5,2,3,6的眾數。
解:這組數據中2出現2次,3出現2次,5,6各出現1次。
所以這組數據的眾數是2和3。
【規律方法小結】。
(1)平均數、中位數、眾數都是描述一組數據集中趨勢的量。
(2)平均數反映一組數據的平均水平,與這組數據中的每個數據都有關,是最為重要的量。
(3)中位數不受個別偏大或偏小數據的影響,當一組數據中的個別數據變動較大時,一般用它來描述集中趨勢。
(4)眾數只與數據出現的頻數有關,不受個別數據影響,有時是我們最為關心的統計數據。
探究交流。
1、一組數據的中位數一定是這組數據中的一個,這句話對嗎?為什么?
解析:不對,一組數據的中位數不一定是這組數據中的一個,當這組數據有偶數個時,中位數由中間兩個數的平均數決定,若中間兩數相等,則這組數據的中位數在這組數據之中,反之,中位數不在這組數據之中。
總結:
(1)中位數在一組數據中是唯一的,可能是這組數據中的一個,也可能不是這組數據中的數據。
(2)求中位數時,先將數據按由小到大的順序排列(或按由大到小的順序排列)。若這組數據是奇數個,則最中間的數據是中位數;若這組數據是偶數個,則最中間的兩個數據的平均數是中位數。
(3)中位數的單位與數據的單位相同。
(4)中位數與數據排序有關。當一組數據中的個別數據變動較大時,可用中位數來描述這組數據的集中趨勢。
課堂檢測。
基本概念題。
1、填空題。
(1)數據15,23,17,18,22的平均數是;
(4)為了考察某公園一年中每天進園的人數,在其中的30天里,對進園的人數進行了統計,這個問題中的總體是________,樣本是________,個體是________。
基礎知識應用題。
2、某公交線路總站設在一居民小區附近,為了了解高峰時段從總站乘車出行的人數,隨機抽查了10個班次的乘車人數,結果如下:20,23,26,25,29,28,30,25,21,23。
(1)計算這10個班次乘車人數的平均數;
(2)如果在高峰時段從總站共發車60個班次,根據前面的計算結果,估計在高峰時段從總站乘該路車出行的乘客共有多少。
初中數學函數教案(模板19篇)篇十六
(二)解析:本節課要學的內容指的是會判定函數在某個區間上的單調性、會確定函數的單調區間、能證明函數的單調性,其關鍵是利用形式化的定義處理有關的單調性問題,理解它關鍵就是要學會轉換式子。學生已經掌握了函數單調性的定義、代數式的變換、函數的概念等知識,本節課的內容就是在此基礎上的應用。教學的重點是應用定義證明函數在某個區間上的單調性,解決重點的關鍵是嚴格按過程進行證明。
二、教學目標及解析。
(一)教學目標:
掌握用定義證明函數單調性的步驟,會求函數的單調區間,提高應用知識解決問題的能力。
(二)解析:
會證明就是指會利用三步曲證明函數的單調性;會求函數的單調區間就是指會利用函數的圖象寫出單調增區間或減區間;應用知識解決問題就是指能利用函數單調性的意義去求參變量的取值情況或轉化成熟悉的問題。
三、問題診斷分析。
在本節課的教學中,學生可能遇到的問題是如何才能準確確定的符號,產生這一問題的原因是學生對代數式的恒等變換不熟練。要解決這一問題,就是要根據學生的實際情況進行知識補習,特別是因式分解、二次根式中的分母有理化的補習。
在本節課的教學中,準備使用(),因為使用(),有利于()。
初中數學函數教案(模板19篇)篇十七
2、把已知條件(自變量與函數對應值)代入解析式,得到關于待定系數的方程(組);。
3、解方程(組),求出待定系數;。
4、將求得的待定系數的值代回所設的函數解析式,從而得到所求函數解析式。
例、已知:一次函數的圖象經過點(2,--1)和點(1,-2).
(1)求此一次函數的解析式;(2)求此一次函數與x軸、y軸的交點坐標。
分析:一般一次函數有兩個待定字母k、b.要求解析式,只須將兩個獨立條件代入,再解方程組即可.凡涉及求兩個函數圖象的交點坐標時,一般方法是將兩個函數的解析式組成方程組,求出方程組的解就求出了交點坐標.
解:(1)設函數解析式為y=kx+b.
(2)當y=0時x=3,當x=0時y=-3。可得直線與x軸交點(3,0)、與y軸交點(0,-3)。
評析:用待定系數法求函數解析式,求直線的交點均與解方程(組)有關,因此必須重視函數與方程之間的關系.
初中數學函數教案(模板19篇)篇十八
認知基礎:學生在七年級下冊第四章已學習了《變量之間的關系》,對變量間互相依存的關系有了一定的認識,但對于變量間的變化規律尚不明確,理解的很膚淺,也缺乏理論高度,另外本章在認知方式和思維深度上對學生有較高的要求,學生在理解和運用時會有一定的難度。
活動經驗基礎:在七年級下冊《變量之間的關系》一章中,學生接觸了大量的生活實例額,體會了變量之間相互依賴關系的普遍性,感受到了學習變量關系的必要性,初步具備了一定的識圖能力和主動參與、合作的意識和初步的觀察、分析、抽象概括的能力。
知識與技能目標:
(1)初步掌握函數概念,能判斷兩個變量之間的關系是否可以看作函數。
(2)根據兩個變量之間的關系式,給定其中一個變量的值相應的會求出另一個變量的值。
(3)會對一個具體實例進行概括抽象成為函數問題。
過程與方法目標:
(1)通過函數概念初步形成利用函數的觀點認識現實世界的意識和能力。
(2)經歷具體實例的抽象概括過程,進一步發展學生的抽象思維能力。
情感態度與價值觀目標:
(1)經歷函數概念的抽象概括過程,體會函數的模型思想。
(2)能主動從事觀察、操作、交流、歸納等探索活動,形成自己對數學知識的理解和有效的學習模式。
初中數學函數教案(模板19篇)篇十九
3.能夠綜合運用各種法則求函數的導數.。
函數的和、差、積、商的求導法則的推導與應用.。
1.問題情境.。
(1)常見函數的導數公式:(默寫)。
(2)求下列函數的`導數:;;.。
(3)由定義求導數的基本步驟(三步法).。
2.探究活動.。
例1求的導數.。
思考已知,怎樣求呢?
函數的和差積商的導數求導法則:
練習課本p22練習1~5題.。
點評:正確運用函數的四則運算的求導法則.。
函數的和差積商的導數求導法則.。
1.見課本p26習題1.2第1,2,5~7題.。